RF Exposure Evaluation

Test Requirement:
Evaluation Method:

FCC Part 1.1307
FCC Part 2.1091

Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|E\|^{2},\|\mathrm{H}\|^{2}$ or S $($ minutes $)$
$0.3-3.0$	614	1.63	$(100)^{\star}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$(900 / \mathrm{f})^{\star}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$			$\mathrm{~F} / 300$	6
$1500-100,000$			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|E\|^{2},\|\mathrm{H}\|^{2}$ or S $($ minutes $)$
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$(180 / \mathrm{f})^{\star}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$			$\mathrm{~F} / 1500$	30
$1500-100,000$			1.0	30

Note: $\mathrm{f}=$ frequency in MHz ; *Plane-wave equivalent power density

MPE Calculation Method

$\mathbf{P}=$ Peak RF output power (W)
$\mathbf{G}=$ EUT Antenna numeric gain (numeric)
$\mathbf{R}=$ Separation distance between radiator and human body $(m)=0.2 m$
The formula can be changed to
Pd $=P_{\text {out }}{ }^{*} \mathrm{G} /\left(4 * \mathrm{Pi}^{*} \mathrm{R}^{2}\right)$
From the peak EUT RF output power, the minimum mobile separation distance, $\mathrm{d}=0.2 \mathrm{~m}$, as well as the gain of the used antenna, the RF power density can be obtained.

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density $(\mathrm{mW} / \mathrm{cm} 2)$	Limit of Power Density $(\mathrm{mW} / \mathrm{cm} 2)$
-1	0.79	8.78	7.55	0.0012	1

Compliance.

