

TEST REPORT

Product Name: FCC ID:	Wireless Audio Receiver / Transmitter 2AUIF-NV-07001
Trademark:	
Model Number:	NV-07001 C C C C C C C C C C C
Prepared For:	MAX SALES GROUP
Address:	15240 NELSON AVENUE CITY OF INDUSTRY, CA 91744 USA
Manufacturer:	MAX SALES GROUP
Address:	Unit 1007 10/FL Peninsula Square, No. 18 Sung On Street Kowloon, Hong Kong
Prepared By:	Shenzhen CTB Testing Technology Co., Ltd.
Address:	Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong China
Sample Received Date:	Jun. 15, 2021
Sample tested Date: Issue Date:	Jun. 15, 2021 to Jun. 22, 2021 Jul.01, 2021
Report No.:	CTB210616015RFX
Test Standards	FCC Part15.247 ANSI C63.10:2013
Test Results	PASS
Remark:	This is Bluetooth radio test report.

Compiled by:

Reviewed by:

Arron 200

Bin Mer

Approved by:

Arron Liu

<u>Bin Mei</u>

Rita Xiao / Director

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

TABLE OF CONTENT

Те	est F	Report Declaration	Page
1	h	VERSION	4
2	<u>2. Č</u>	TEST SUMMARY	
	3.	MEASUREMENT UNCERTAINTY	6
	4.	PRODUCT INFORMATION AND TEST SETUP	7
4	1.1	Product Information	7
52	1.2	Test Setup Configuration	
4	1.3	Support Equipment	7
2	1.4	Channel List	
4	1.5	Test Mode	8
4	1.6	Test Environment	8
Ę	5. C	TEST FACILITY AND TEST INSTRUMENT USED	9
Ę	5.1	Test Facility	9
Ę	5.2	Test Instrument Used	9
e	5. <i>I</i>	AC POWER LINE CONDUCTED EMISSION	11
6	5.1	Block Diagram Of Test Setup	11
6	6.2	Limit	11
6	5.3	Test procedure	
e	6.4	Test Result	13
57	7.	RADIATED SPURIOUS EMISSION	15
7	7.1	Block Diagram Of Test Setup	
Ç 1	7.2	Limit	
7	7.3	Test procedure	16
1	7.4	Test Result	
8	3. 🗘	BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS	
8	3.1	Block Diagram Of Test Setup	26
8	3.2	Limit	26
8	3.3	Test procedure	26
8	3.4	Test Result	27
ç).	COUDUCTED PEAK OUTPUT POWER	32
Sg	9.1	Block Diagram Of Test Setup	32
ç	9.2	LITTIL	
59	9.3	Test procedure	32
ç	9.4	Test Result	
	10.	20DB OCCUPIED BANDWIDTH	
1	10.1	Block Diagram Of Test Setup	
c 1	10.2	Limit	
	0.3		
	10.4		
		CARRIERFREQUENCIES SEPARATION	
	11.1	Block Diagram Of Test Setup	
51	11.2	Limit	39

СТВ

Shenzhen CTB Testing Technology Co., Ltd. Report No.: CTB210616015RFX

11.3	Test procedure	39
11.4	Test Result	
12.	HOPPING CHANNEL NUMBER	
12.1	Block Diagram Of Test Setup	42
12.2	Limit	42
12.3		42
12.4	Test Result	42
13.	DWELL TIME	44
13.1	Block Diagram Of Test Setup	44
13.2	Limit	
13.3	Test procedure	
13.4	Test Result	45
14.	PSEUDORANDOM FREQUENCY	49
14.1	Limit	49
14.2	Test procedure	49
14.3	Test Result	
15.	ANTENNA REQUIREMENT	51
16.	EUT PHOTOGRAPHS	
17.	EUT TEST SETUP PHOTOGRAPHS	53

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
CTB210616015RFX	Jul.01, 2021	Original	Valid

2. TEST SUMMARY

The Product has been tested according to the following specifications:

C Test Item C C	Test Requirement	Test method	Result
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Band edge and RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)/15.205(a)	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
RF Exposure Evaluation	47 CFR Part 15 Subpart C Section 15.247 (i)/1.1310/2.1093	KDB447498D01v06	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty
Occupancy bandwidth	54.3kHz
Conducted output power Above 1G	0.9dB
Conducted output power below 1G	0.9dB
Power Spectral Density, Conduction	0.9dB
Conduction spurious emissions	2.0dB
Out of band emission	2.0dB
3m camber Radiated spurious emission(30MHz-1GHz)	4.6dB
3m chamber Radiated spurious emission(1GHz-18GHz)	5.1dB
3m chamber Radiated spurious emission(18GHz-40GHz)	3.4dB
humidity uncertainty	5.5%
Temperature uncertainty	0.63 ℃
frequency	1×10-7
Conducted Emission (150KHz-30MHz)	3.2 dB
Radiated Emission(30MHz ~ 1000MHz)	4.8 dB
Radiated Emission(1GHz ~6GHz)	4.9 dB

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s):	NV-07001
Model Description:	N/A
Bluetooth Version:	Bluetooth 5.0
Hardware Version:	V1.0
Software Version:	V1.0

Operation Frequency:	Bluetooth: 2402-2480MHz
Max. RF output power:	Bluetooth: 3.047dBm
Type of Modulation:	Bluetooth: GFSK, π/4 DQPSK
Antenna installation:	Bluetooth: PCB Antenna
Antenna Gain:	Bluetooth: 0Bi
Ratings:	DC 5.0V charging from adapter DC3.7V from battery

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

ltem	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
. 4 ⁴	10 10 10 10	14 A	× * * * *	x * x * x * x * x * x *	1 4 S

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	~ / ~ ·

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

1	Test mode	Low channel	Middle channel	High channel
5	Transmitting (GFSK, π/4 DQPSK,)	2402MHz	2441MHz	2480MHz
>	Receiving (GFSK, π/4 DQPSK,)	2402MHz	2441MHz	2480MHz

4.6 Test Environment

Humidity(%):	55
Atmospheric Pressure(kPa):	101.1
Normal Voltage(DC):	3.7V
Normal Temperature(°C)	25
Low Temperature(°C)	\circ
High Temperature(°C)	40

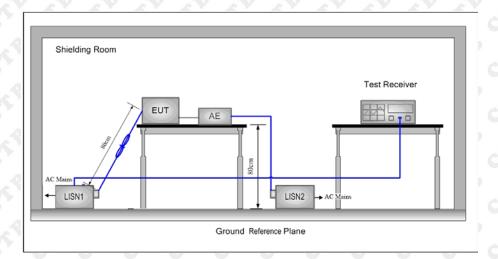
5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Street, Baoan District, Shenzhen China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated unti
1	Spectrum Analyzer	Agilent	N9020A	MY52090073	Sep. 28, 2020	Sep. 28, 2021
2	Power Sensor	Agilent	U2021XA	MY56120032	Sep. 28, 2020	Sep. 28, 2021
3	Power Sensor	Agilent	U2021XA	MY56120034	Sep. 28, 2020	Sep. 28, 2021
4	Communication test set	R&S	CMW500	108058	Sep. 28, 2020	Sep. 28, 2021
5	Spectrum Analyzer	R&S	FSP40	100550	Sep. 28, 2020	Sep. 28, 2021
6	Signal Generator	Agilent	N5181A	MY49060920	Sep. 28, 2020	Sep. 28, 2021
7	Signal Generator	Agilent	N5182A	MY47420195	Sep. 28, 2020	Sep. 28, 2021
8	Communication test set	Agilent	E5515C	MY50102567	Oct. 10, 2020	Oct. 10, 2021
9	band rejection filter	Shenxiang	MSF2400-24 83.5MS-1154	20181015001	Sep. 28, 2020	Sep. 28, 2021
10	band rejection filter	Shenxiang	MSF5150-58 50MS-1155	20181015001	Sep. 28, 2020	Sep. 28, 2021
11	band rejection filter	Xingbo	XBLBQ-DZA 120	190821-1-1	Sep. 28, 2020	Sep. 28, 2021
12	BT&WI-FI Automatic test software	Micowave	MTS8310	Ver. 2.0.0.0	* c5 * c5 *	crel re
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	Sep. 28, 2020	Sep. 28, 2021
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	Sep. 28, 2020	Sep. 28, 2021
15	234G Automatic test software	Micowave	MTS8200	Ver. 2.0.0.0	8 5 P 5 P	~*\~*
16	966 chamber	C.R.T.	966 Room	966	Nov. 9, 2019	Nov. 08, 2022
17	Receiver	R&S	ESPI	100362	Sep. 28, 2020	Sep. 28, 2021


18	Amplifier	HP	8447E	2945A02747	Sep. 28, 2020	Sep. 28, 2021
19	Amplifier	Agilent	8449B	3008A01838	Sep. 28, 2020	Sep. 28, 2021
20	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	Nov. 02, 2020	Nov. 01, 2021
21	Horn Antenna	Schwarzbeck	BBHA9120D	1911	Nov. 02, 2020	Nov. 01, 2021
22	Software	Fala	EZ-EMC	FA-03A2 RE		50150
23	3-Loop Antenna	Daze	ZN30401	17014	Sep. 28, 2020	Sep. 28, 2021
24	loop antenna	ZHINAN	ZN30900A		Sep. 28, 2020	Sep. 28, 2021
25	Horn antenna	A/H/System	SAS-574	588	Sep. 28, 2020	Sep. 28, 2021
26	Amplifier	AEROFLEX		S/N/ 097	Sep. 28, 2020	Sep. 28, 2021

		(Conducted er	missions Test		
27	Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
28	AMN	ROHDE&SC HWARZ	ESH3-Z5	100318	Sep. 28, 2020	Sep. 28, 2021
29	Pulse limiter	ROHDE&SC HWARZ	ESH3Z2	357881052	Sep. 28, 2020	Sep. 28, 2021
30	EMI TEST RECEIVER	ROHDE&SC HWARZ	ESCS30	834115/006	Sep. 28, 2020	Sep. 28, 2021
31	Coaxial cable	ZDECL	Z302S	18091804	Sep. 28, 2020	Sep. 28, 2021
32	ISN	TESEQ	NTFM8158	183	Sep. 28, 2020	Sep. 28, 2021
33	EMI TEST RECEIVER	ROHDE&SC HWARZ	ESCI	100428/003	Sep. 28, 2020	Sep. 28, 2021
34	Software	Fala	EZ-EMC	EMC-CON 3A1.1	8 59 5B	5 8 158

6. AC POWER LINE CONDUCTED EMISSION

6.1 Block Diagram Of Test Setup

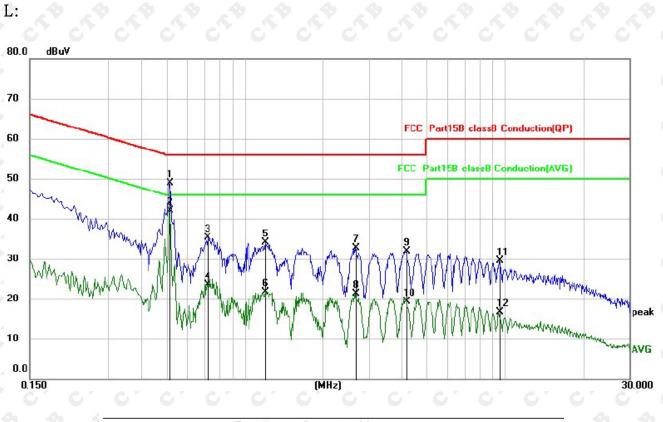
6.2 Limit

	M	Maximum RF Line Voltage (dBμV)						
Frequency (MHz)	CLAS	SS A	CLASS B					
(11112)	Q.P.	Ave.	Q.P.	Ave.				
0.15 - 0.50	79	66	66-56*	56-46*				
0.50 - 5.00	73	60	56	46				
5.00 - 30.0	73	60	60	50				

* Decreasing linearly with the logarithm of the frequency

6.3 Test procedure

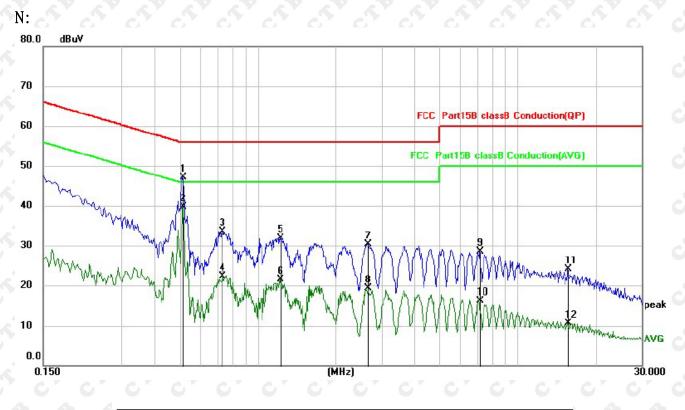
1) The mains terminal disturbance voltage test was conducted in a shielded room.


- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was

between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
- 6) All modes were tested at AC 120V and 240V, only the worst result of AC 120V 60Hz was reported.
- 7) If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

6.4 Test Result

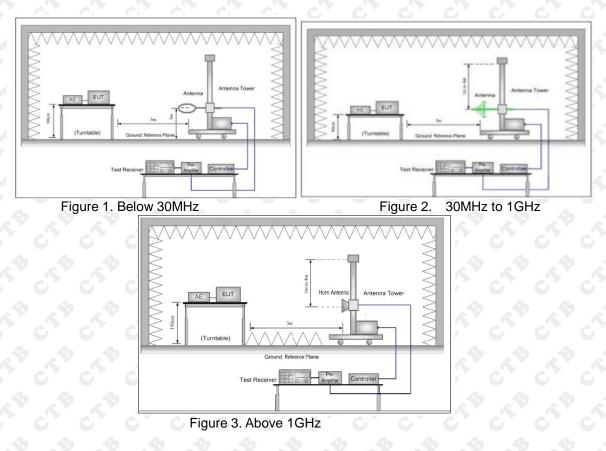


No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.5180	38.95	9.96	48.91	56.00	-7.09	QP
2 *	0.5180	32.08	9.96	42.04	46.00	-3.96	AVG
3	0.7220	25.26	9.96	35.22	56.00	-20.78	QP
4	0.7220	13.54	9.96	23.50	46.00	-22.50	AVG
5	1.2020	24.08	9.97	34.05	56.00	-21.95	QP
6	1.2020	11.70	9.97	21.67	46.00	-24.33	AVG
7	2.6700	22.68	10.05	32.73	56.00	-23.27	QP
8	2.6700	11.24	10.05	21.29	46.00	-24.71	AVG
9	4.1979	21.69	10.13	31.82	56.00	-24.18	QP
10	4.1979	9.13	10.13	19.26	46.00	-26.74	AVG
11	9.5260	18.74	10.74	29.48	60.00	-30.52	QP
12	9.5260	5.91	10.74	16.65	50.00	-33.35	AVG

Remark:

Factor = Cable loss + LISN factor, Margin = Measurement - Limit

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.5180	37.13	9.96	47.09	56.00	-8.91	QP
2 *	0.5180	29.73	9.96	39.69	46.00	-6.31	AVG
3	0.7300	23.53	9.96	33.49	56.00	-22.51	QP
4	0.7300	12.39	9.96	22.35	46.00	-23.65	AVG
5	1.2180	22.02	9.97	31.99	56.00	-24.01	QP
6	1.2180	11.48	9.97	21.45	46.00	-24.55	AVG
7	2.6619	20.25	10.05	30.30	56.00	-25.70	QP
8	2.6619	9.18	10.05	19.23	46.00	-26.77	AVG
9	7.1620	18.11	10.44	28.55	60.00	-31.45	QP
10	7.1620	5.79	10.44	16.23	50.00	-33.77	AVG
11	15.6540	13.21	10.99	24.20	60.00	-35.80	QP
12	15.6540	-0.20	10.99	10.79	50.00	-39.21	AVG


Remark:

Factor = Cable loss + LISN factor, Margin = Measurement – Limit

7. RADIATED SPURIOUS EMISSION

7.1 Block Diagram Of Test Setup

7.2 Limit

Spurious Emissions:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	0_0	000	300
0.490MHz-1.705MHz	24000/F(kHz)	5- Y - S	A CAR	30
1.705MHz-30MHz	30	2	a <u>a</u>	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

7.3 Test procedure

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

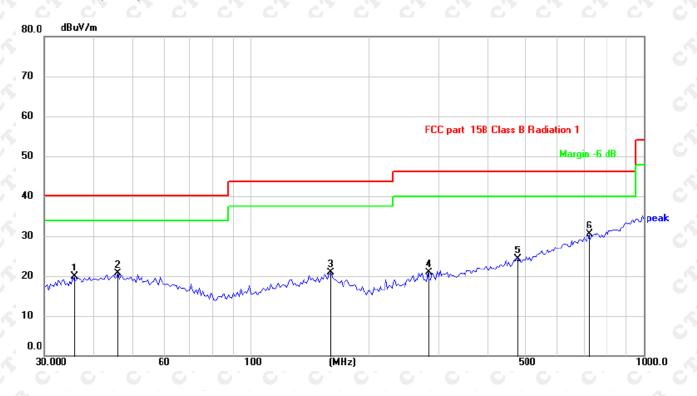
Above 1GHz test procedure as below:

g.Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).

h.Test the EUT in the lowest channel ,the middle channel ,the Highest channel

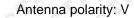
j.Repeat above procedures until all frequencies measured was complete.

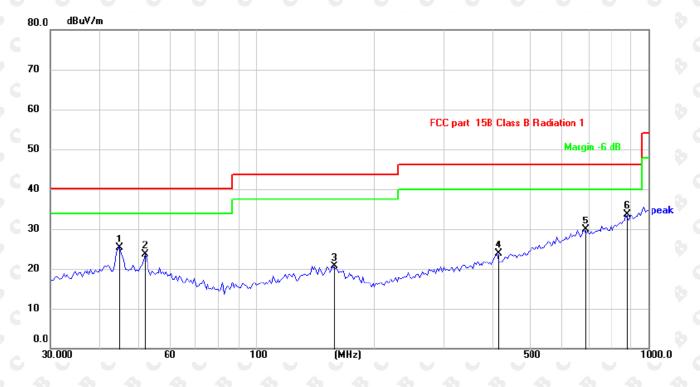
j. Full battery is usedduring test


Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300KHz	Quasi-peak
	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Receiver set:

7.4 Test Result


Below 1GHz Test Results: Antenna polarity: H



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	1
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		35.4371	27.20	-7.24	19.96	40.00	-20.04	QP
2		46.0971	27.69	-6.96	20.73	40.00	-19.27	QP
3	,	160.0648	27.58	-6.60	20.98	43.50	-22.52	QP
4	2	282.9852	28.13	-7.21	20.92	46.00	-25.08	QP
5	4	474.6662	27.31	-2.91	24.40	46.00	-21.60	QP
6	*	722.9924	27.38	3.08	30.46	46.00	-15.54	QP

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Measurement- Limit

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
_	1		44.9006	32.32	-6.92	25.40	40.00	-14.60	QP
	2		52.1164	31.01	-7.26	23.75	40.00	-16.25	QP
	3		157.2829	27.49	-6.70	20.79	43.50	-22.71	QP
	4	4	412.5467	28.31	-4.37	23.94	46.00	-22.06	QP
	5		685.9470	27.47	2.52	29.99	46.00	-16.01	QP
	6	*	876.7829	27.77	5.85	33.62	46.00	-12.38	QP

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Measurement-Limit

Above 1 GHz Test Results:

CH Low (2402MHz) Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804	57.42	-3.65	53.77	74.00	-20.23	peak
4804	49.57	-3.65	45.92	54.00	-8.08	AVG
7206	59.02	-0.95	58.07	74.00	-15.93	peak
7206	40.31	-0.95	39.36	54.00	-14.64	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission level = Reading Result + Factor, Margin = Emission level - Limits

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detrotor
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	57.24	-3.65	53.59	74.00	-20.41	peak
4804	50.96	-3.65	47.31	54.00	-6.69	AVG
7206	60.04	-0.95	59.09	74.00	-14.91	peak
7206	42.96	-0.95	42.01	54.00	-11.99	AVG

CH Middle (2441MHz) Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Dotoctor
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882.00	58.79	-3.54	55.25	74.00	-18.75	peak
4882.00	49.09	-3.54	45.55	54.00	-8.45	AVG
7323.00	57.41	-0.81	56.60	74.00	-17.40	peak
7323.00	43.58	-0.81	42.77	54.00	-11.23	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission level = Reading Result + Factor, Margin = Emission level - Limits

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detertor
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882.00	57.68	-3.54	54.14	74.00	-19.86	peak
4882.00	48.80	-3.54	45.26	54.00	-8.74	AVG
7323.00	56.25	-0.81	55.44	74.00	-18.56	peak
7323.00	43.45	-0.81	42.64	54.00	-11.36	AVG

CH High (2480MHz) Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	56.61	-3.43	53.18	74.00	-20.82	peak
4960	47.30	-3.44	43.86	54.00	-10.14	AVG
7440	58.97	-0.77	58.20	74.00	-15.80	peak
7440	41.76	-0.77	40.99	54.00	-13.01	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission level = Reading Result + Factor, Margin = Emission level - Limits

V	er	tic	cal	t.	

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	56.62	-3.43	53.19	74.00	-20.81	peak
4960	48.25	-3.44	44.81	54.00	-9.19	AVG
7440	59.70	-0.77	58.93	74.00	-15.07	peak
7440	42.35	-0.77	41.58	54.00	-12.42	AVG

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz

(2). All modes of GFSK, $\pi/4$ DQPSK were test at Low, Middle, and High channel, only the worst result of GFSK DH5 Low Channel was reported for below 1GHz test.

(3). For BT above 1GHz test all modes of GFSK, $\pi/4$ DQPSK were test at Low, Middle, and High channel, only the worst result of GFSK DH5 was reported.

(4). By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

(5). Radiated emission test from 9kHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9kHz to 30MHz and not recorded in this report.

Restricted bands around fundamental frequency (Radiated)

hopping

Operation Mode: TX CH Low (2402MHz) Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	57.39	-5.81	51.58	74.00	-22.42	peak
2310.00	\$ /\$	-5.81		54.00	A 1	AVG
2390.00	54.72	-5.84	48.88	74.00	-25.12	peak
2390.00		-5.84		54.00	S 1 S	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	55.52	-5.81	49.71	74.00	-24.29	peak
2310.00		-5.81		54.00	1	AVG
2390.00	56.24	-5.84	50.40	74.00	-23.60	peak
2390.00		-5.84		54.00		AVG

Operation Mode: TX CH High (2480MHz) Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	55.60	-5.81	49.79	74.00	-24.21	peak
2483.50		-5.81		54.00		AVG
2500.00	53.78	-6.06	47.72	74.00	-26.28	peak
2500.00		-6.06	A LP L	54.00		AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	55.79	-5.81	49.98	74.00	-24.02	peak
2483.50		-5.81		54.00		AVG
2500.00	54.02	-6.06	47.96	74.00	-26.04	peak
2500.00		-6.06		54.00		AVG

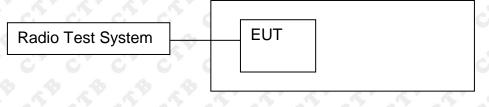
NO hopping

Operation Mode: TX CH Low (2402MHz) Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	56.54	-5.81	50.73	74.00	-23.27	peak
2310.00	s /s	-5.81		54.00	A 1	AVG
2390.00	54.60	-5.84	48.76	74.00	-25.24	peak
2390.00		-5.84	SI SI	54.00	SI S	AVG

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	54.90	-5.81	49.09	74.00	-24.91	peak
2310.00	\$ /\$	-5.81		54.00	1	AVG
2390.00	54.98	-5.84	49.14	74.00	-24.86	peak
2390.00		-5.84		54.00	515	AVG

Operation Mode: TX CH High (2480MHz) Horizontal (Worst case)


Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	57.01	-5.81	51.20	74.00	-22.80	peak
2483.50		-5.81		54.00		AVG
2500.00	54.30	-6.06	48.24	74.00	-25.76	peak
2500.00		-6.06	A LP LA	54.00	21	AVG

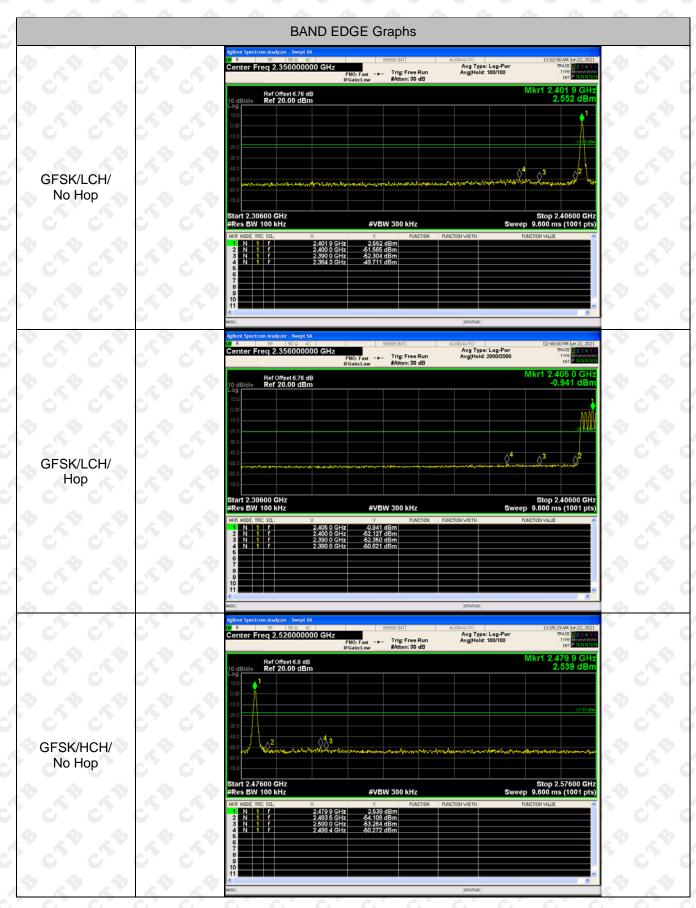
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	55.28	-5.81	49.47	74.00	-24.53	peak
2483.50	°, °	-5.81	C' / C '	54.00	0',0'	AVG
2500.00	54.20	-6.06	48.14	74.00	-25.86	peak
2500.00	6 /6	-6.06		54.00		AVG

8. BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS

8.1 Block Diagram Of Test Setup

8.2 Limit

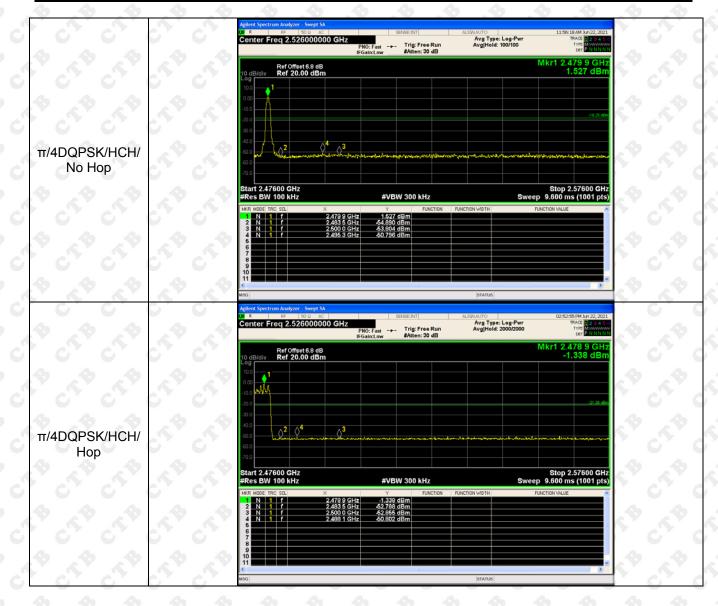
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


8.3 Test procedure

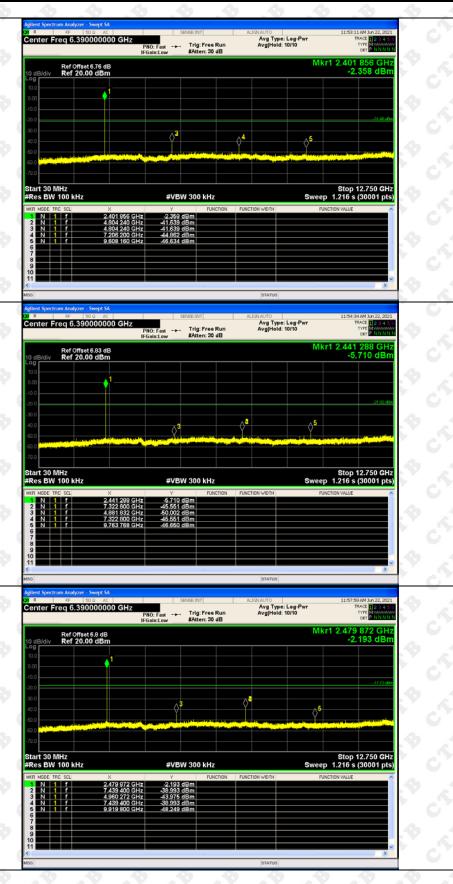
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: Blow 30MHz: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold Above 30MHz: RBW = 100KHz, VBW = 300KHz, Sweep = auto Detector function = peak, Trace = max hold

8.4 Test Result

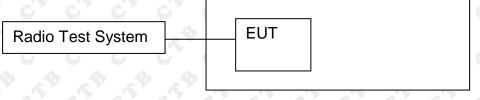


Report



π/4DQPSK /LCH

V , V , V


π/4DQPSK/MCH

π/4DQPSK/HCH

9. COUDUCTED PEAK OUTPUT POWER

9.1 Block Diagram Of Test Setup

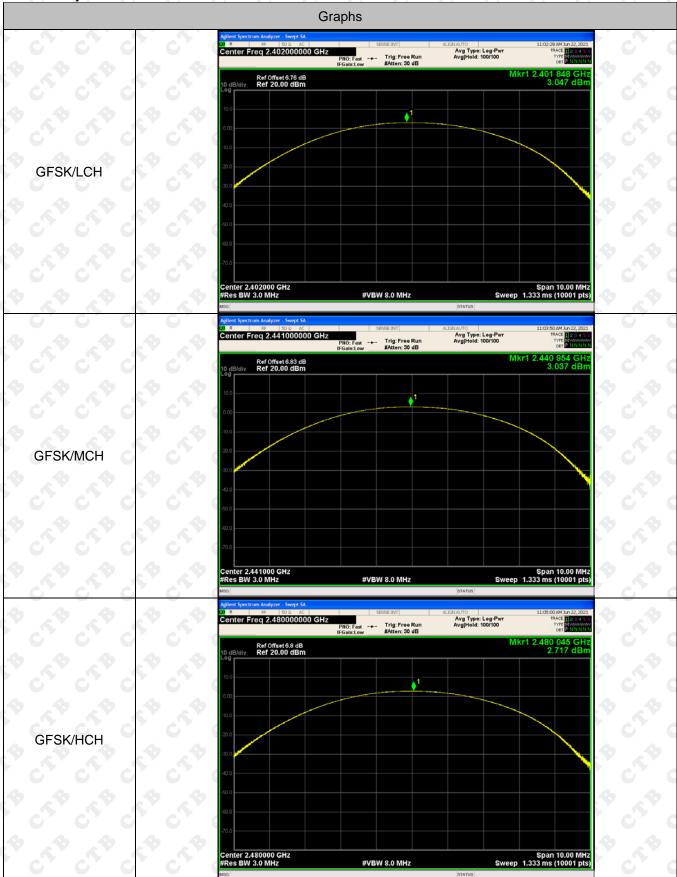
9.2 Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

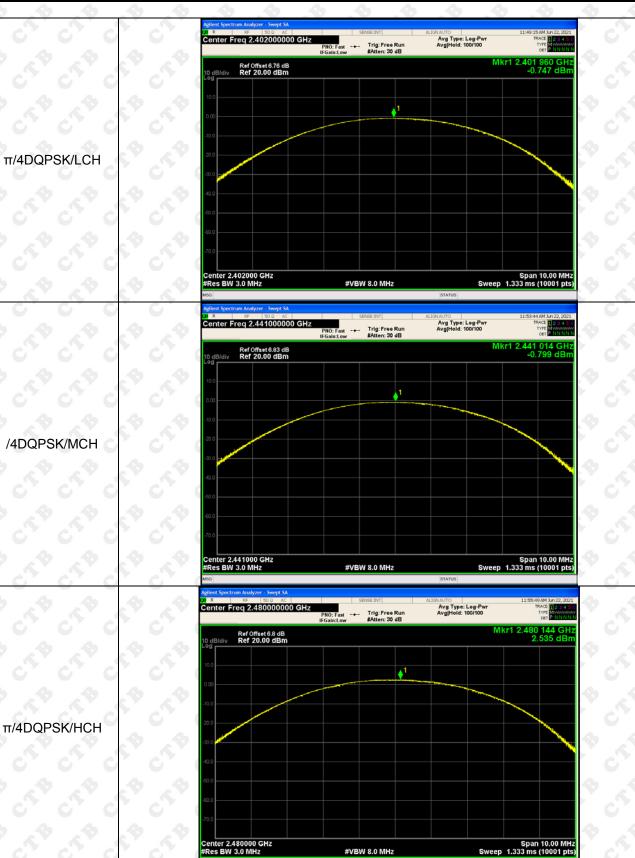
9.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

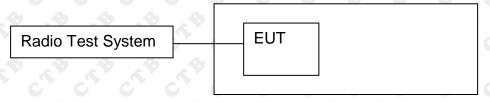
2. Set the spectrum analyzer: RBW = 3MHz. VBW = 8MHz. Sweep = auto; Detector Function = Peak.


3. Keep the EUT in transmitting at lowest, middle and highest channel individually. Record the max value.

9.4 Test Result


Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
EDR mode (GFSK)	LCH	3.047	PASS
	MCH	3.037	PASS C
	НСН	2.717	PASS
EDR mode (π/4DQPSK)	LCH	-0.747	PASS
	MCH	-0.799	PASS
	НСН	2.535	PASS

Test Graph:



#VBW 8.0 MHz

10. 20DB OCCUPIED BANDWIDTH

10.1 Block Diagram Of Test Setup

10.2 Limit

Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125nw.

10.3 Test procedure

- 1. Rem1. Set RBW = 30 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

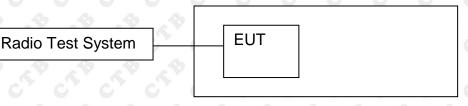
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Test Mode	Frequency	20dB Bandwidth (MHz)	Result	
X X X	Low channel	0.926	PASS	
GFSK	Mid channel	0.929	PASS O	
	High channel	0.92	PASS	
π/4DQPSK	Low channel	1.251	PASS	
	Mid channel	1.248	PASS	
	High channel	1.255	PASS	

Note: All modes of operation were Pre-scan and the worst-case emissions are reported.

Test Graph:



11. CARRIERFREQUENCIES SEPARATION

11.1 Block Diagram Of Test Setup

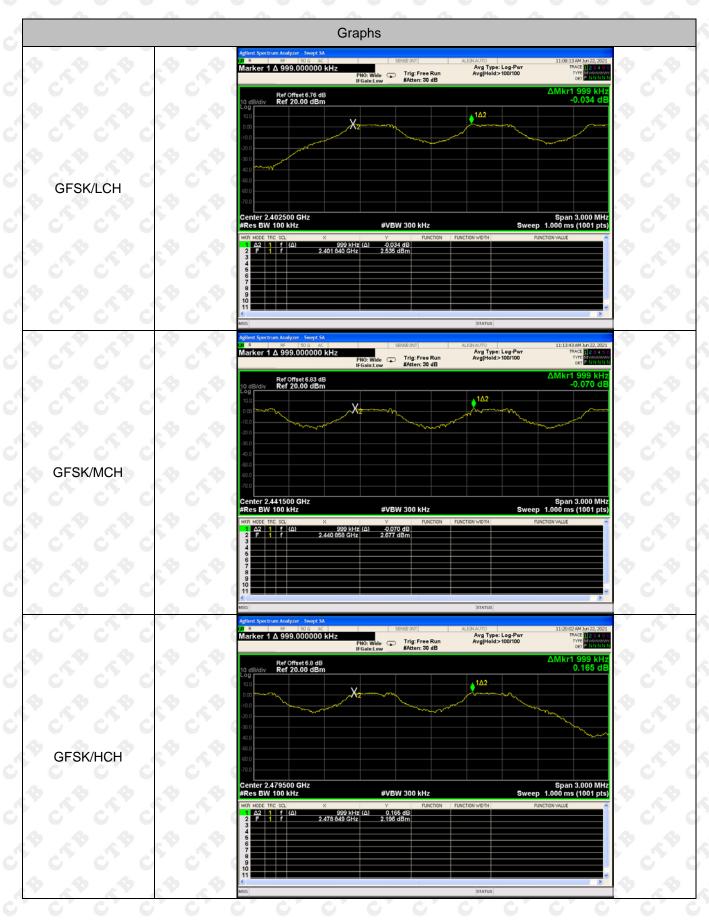
11.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

11.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

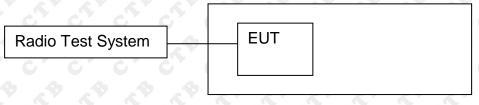
2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 3.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.


3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict		
GFSK	LCH	0.999	PASS		
GFSK	MCH C	0.999	PASS		
GFSK	HCH	0.999	PASS		
π/4DQPSK	LCH	0.999	PASS		
π/4DQPSK	MCH	0.999	PASS		
π/4DQPSK	НСН	1.002	PASS		

11.4 Test Result

Test Graph



12. HOPPING CHANNEL NUMBER

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

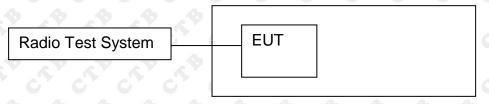
2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.

4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

12.4 Test Result

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS


Test Graph

	Graphs	
	Agilent Spectrum Analyzer - Swept SA SENSEDIT ALIGNATIO 11:15:96 AM3/n22,202 Interference R BF 90.0 AC SENSEDIT ALIGNATIO 11:15:96 AM3/n22,202 Center Freq 2.4441750000 GHz Frig: Free Run Avg Type: Log-Pwr TRACE Disa S Trig: Free Run Avg Hold: 68008000 Trie Rome IFGain:Low #Atten: 30 dB Content of the second of the seco	
	Ref Offset6.83 dB Mkr1 2.401 837 0 GHz 10 dB/div Ref 20.00 dBm 2.793 dBm 10 dJ 10 dJ 2.793 dBm 10 dJ 10 dJ 2.793 dBm	
	400 -000 -	CAN C
GFSK/Hop		
² د ⁴ ⁸ د ⁴ ⁸ د ⁴	Start 2.40000 GHz Stop 2.48350 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 8.000 ms (1001 pts MRI MODE TRC: SCL X Y Function Function width Function width </th <th>P CT P C</th>	P CT P C
cre cre cre cre	4 6 6 7 7 8 9	1 C 1 C
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	11 North Contraction Contracti	\$ \$
	Aglient Spectrum Analyzer - Sweyt SA    Dit  R  HP  ISO 0  AC  SENSE INT  ALIGNAUTO  12:17:15 FM3/n 22,022    Center Freq 2.441750000 GHz  PM0: Fait IFGain:Lew   Trig: Free Run #Atten: 30 dB  Avg/Hold: 80008000  Item Parts IP    Ref Offset 6,76 dB  Mkr1 2.401 837 0 GH2  Mkr1 2.401 R37 0 GH2  22,541 dBm	\$ 5 \$
	109 1 2.541 dBm	P . 1 P
π/4DQPSK/Hop		P 5 P
64 8 64 8 64 8 64 8 64 8 64 8 64 8 64 8	Vision  Stop 2.48350 GHz    #Res BW 100 kHz  #VBW 300 kHz  Sweep 8.000 ms (1001 pts    WVR MODE TRE SCL  X  Y  FUNCTION  FUNCTION VALUE  4	P P
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N  I  F  2.401 837 0 GHz  2.541 dBm  0.801 dBm    2  N  I  F  2.479 306 5 GHz  0.961 dBm    3  3  3  3  3  3    4  5  5  5  5    7  7  7  7  7  7	P 5 P
-1° -1° -1°	8 9 10 11 11 4 4 4 4 5 10 10 10 10 10 10 10 10 10 10 10 10 10	P . P



# 13. DWELL TIME

## 13.1 Block Diagram Of Test Setup



# 13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

13.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

#### 13.4 Test Result

СТВ

Mode	Packet	Channel	Pulse Time (ms)	Total Dwell Time (ms)	Limit (ms)	Verdict
	DH1	LCH	0.372	119.04	400	PASS
	DH1	MCH	0.373	119.36	400	PASS
	DH1	НСН	0.373	119.36	400	PASS
	DH3	LCH	1.633	261.28	400	PASS
GFSK	DH3	MCH	1.632	261.12	400	PASS
	DH3	HCH	1.633	261.28	400	PASS
	DH5	LCH	2.869	306.027	400	PASS
	DH5	MCH	2.869	306.027	400	PASS
	DH5	HCH	2.869	306.027	400	PASS

Remark: DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

DH5:1600/79/6*0.4*79*(MkrDelta)/1000 DH3:1600/79/4*0.4*79*(MkrDelta)/1000 DH1:1600/79/2*0.4*79*(MkrDelta)/1000 Remark: Mkr Delta is once pulse time.



# Test Graph

<u></u>	Graphs	
GFSK_DH1/LCH	Addent Spectrum Audyner. Sweyt SA 28 200 200 Center Freq 2.402000000 GHz Frig: Video Frig: V	
GFSK_DH1/MCH	Adjest Switch Adjest Switch Center Freq 2.441000000 GHz Fro: Fax b Center Freq 2.441000000 GHz Fro: Fax b Center Freq 2.441000000 GHz Ref Offset 8.83 dB Conter Freq 2.00 dBm Center 2.441000000 GHz Ref Offset 8.83 dB Conter Freq 2.00 dBm Center 2.441000000 GHz Ref Offset 8.83 dB Conter Freq 2.441000000 GHz Ref Offset 8.83 dB Conter Freq 2.441000000 GHz Ref Offset 8.83 dB Conter Center 2.441000000 GHz Ref Offset 8.83 dB Center 2.4410000000 GHz Ref Offset 8.83 dB Center 2.4410000000 GHz Ref Offset 8.83 dB Center 2.4410000000 GHz Ref Offset 8.83 dB Center 2.441000000 GHz Ref Offset 8.83 dB Center 2.4410000000 GHz Ref Offset 8.83 dB Center 2.441000000 GHz Ref Offset 8.83 dB Center 2.441000000 GHz Ref Offset 8.83 dB Center 2.4410000000 GHz Ref Offset 8.83 dB Center 2.44100	
GFSK_DH1/HCH	Adjent  Spectrum  Analyzor  Swept SA  Status  S	



5 5 5 5 \$ \$ \$ \$	C* C	Agilent Spectrum Analyzer  Swigt SA    00  R  RP  50 2 AC  SHSE:R/T  ALISNAUTO  12:10:14 PPU.Dr.22, 2021    Center Freq 2.402000000 GHz  Frig Delay-1.000 ms  Avg Type: Leg-Pwr  Trind Delay-1.000 ms  Avg Type: Leg-Pwr    PR0: Fast   Frig: Video  Avg Type: Leg-Pwr  Trind Delay-1.000 ms    Ref Offset 5.76 dB  CMMkr1 1.633 ms  CMMkr1 1.633 ms	2
	6° 6 1	Ref Offset 5.76 dB  Clinic 11.053 ms    10 dB/div  Ref 20.00 dBm  -3.77 dB    00  -3.77 dB  -3.77 dB    100  -3.77 dB  -3.77 dB	
GFSK_DH3/LCH			
		Center 2.402000000 GHz  Span 0 Hz    Res BW 1.0 MHz  #VBW 3.0 MHz  Sweep 3.000 ms (10001 pts)    Mrit Mode Tric Sci.  X  Y  Function  Function value	
	5 B C	1  Δ2  1  t  1633 mt  Δ)  -3.77 dB  -3.77 dB  -3.56 dBm  -3.56 dBm <td></td>	
<u>* * * * * *</u>	24 C	9 10 11 12 45 45 45 45 45 45 45 45 45 45	A B
	cr ^{s b} cr	OT  B  50.0  AC  SPARE-BYT  ALISMANTO  1228402/MA/n22.021.    Center Freq 2.441000000 GHz  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Context Type Type: Leg-Pwr  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Trig Delay-1.000 ms  Avg Type: Leg-Pwr  Trig Delay-1.000 ms  Trig Delay-1.000 ms	
	cr & cr		
GFSK_DH3/MCH	crs® cr		
	cr & cr	Center 2.441000000 GHz  Span 0 Hz    Res BW 1.0 MHz  #VBW 3.0 MHz  Sweep 3.000 ms (10001 pts)    Mr8t Mode Tric Sci.  X  Y  Function	
	Cr Cr		
	c ^r c	11	5
	€° € .\$	Center Freq 2.480000000 GHz  Trip Delay-1.000 ms  Avg Type: Log-Pwr  TRACE ID: 24.35 0    PNO: Fast	
	ن ک مرکع		
GFSK_DH3/HCH	C' C	State  State <th< td=""><td></td></th<>	
		Center 2.480000000 GHz  Span 0 Hz  Span 0 Hz    Res BW 1.0 MHz  #VBW 3.0 MHz  Sweep 3.000 ms (10001 pts)    MVR MODE TRC ScL  X  Y  F    1  A2  1  t  (1)    2  F  1  t  999.9.01  -10.51 dBm	
	67 ° 6		
<u> </u>		usa status	



enter F	req 2.4	02000000 G		ast Tr	g Delay-1.000 m g: Video tten: 30 dB	s Avg T	ype: Log-Pwr		TYPE DET PNNNN
) dB/div	Ref Of Ref 2	fset 6.76 dB 0.00 dBm						∆Mkr1	2.869 ms 2.89 dE
0.0									
.00					*****			<u>۵</u> 2	
0.0		X_2							
0.0									TRIG LVL
0.0									
0.0 100	buthelite	philliphane						La Philippina the	hand the state
0.0 0.0	nielijiraj	-t-toppy							n feis is is in the
	402000 1.0 MHz	000 GHz		#VBW 3.	0 MHz		Sweep	5.000 ms	Span 0 Hz (10001 pts
KR MODE T	RC SCL	×	869 ms (Δ)	Y 2.89 dB	FUNCTION	FUNCTION WIDTH		UNCTION VALUE	~
			99.5 µs	-10.92 dBm					
4									
6									
8									
io l									

# GFSK_DH5/LCH

855			STATUS		
gilent Spectrum Analyzer - Swept SA	63	NSEINT	ALISNAUTO	11:4	8:39 AM Jun 22:20
Center Freq 2.441000000 GHz	PNO: Fast	Trig Delay-1.000 m Trig: Video #Atten: 30 dB			TRACE 234 TYPE CONTRACT
Ref Offset 6.83 dB 10 dB/div Ref 20.00 dBm				ΔMkr	1 2.869 n -3.55 c
10.0					
Xo				1∆2	
0.0 A2					TROD
0.0					
0.0				and a state	الالار والمراجع
				line had been	n fallen
enter 2.441000000 GHz es BW 1.0 MHz	#VBW	/ 3.0 MHz		Sweep 5.000 m	Span 0 is (10001 p
KR MODE TRC SCL X 1 Δ2 1 t (Δ) 2,869 r	γ 1s (Δ) -3.55	FUNCTION	FUNCTION WIDTH	FUNCTION VALU	C
2 F 1 t 1.000 r	ns -7.47 d	IBm			
6 7 8					
9 <b></b>					

## GFSK_DH5/MCH

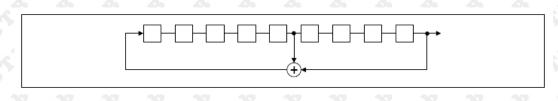
	S.S.B	C'SP
		CTB
		S.B

T						
	gilent Spectrum Analyzer - Swept SA					
	R RF SO.Q AC	SENS		ALIGNAUTO		AM 3un 22, 2021
6	enter Freq 2.480000000 GHz		rig Delay-1.000 ms rig: Video	Avg Type: L		YPE WWWWWWWW
			Atten: 30 dB			DET EINNINN
		iroain.cow #	Actent. 00 all			_
	Ref Offset 6.8 dB					2.869 ms
1	0 dB/div Ref 20.00 dBm					-1.44 dB
	og					
4	10.0					
	0.00				<u>1</u> Δ2	
	10.0 X2					
	20.0					TRIO LVL
	20.0					1000 616
4	30.0					
	40.0					
	the start at the start of the					ما ي أه م
	50.0 MANANA PANANA PANANA PANANA				allow a setting to the set	cathe size (indu
	גראי לה לא איז איז אלים האיז איז איז איז איז איז איז איז איז איז				its diabha thata.	والمتعاقلة والمتعادية
	teration of the last state of the					1 11 H H H
	70.0					
	<u> </u>					
	enter 2.480000000 GHz					Span 0 Hz
F	tes BW 1.0 MHz	#VBW 3	3.0 MHz		Sweep 5.000 ms (	10001 pts)
	KRIMODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	~
Ľ	1 Δ2 1 t (Δ) 2.869 m	ns (Δ) -1.44 di	в			
л	2 F 1 t 1.000 m		m			
н	3					
н	4					
н	6					-
н	7					
н	8					
a.	9					
						~
E						2
			<u>ц</u>			~
	20			STATUS		

#### GFSK_DH5/HCH

# 14. **PSEUDORANDOM FREQUENCY**

## 14.1 Limit


СТВ

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

# 14.2 Test procedure

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)



An example of Pseudorandom Frequency Hopping Sequence as follow:

20	6	24	6 77		7	64	8 73		16.7	75 1	Ē
	Γ	Τ	Τ	Τ				 		Τ	

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



## 14.3 Test Result

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.



# 15. ANTENNA REQUIREMENT

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **EUT Antenna:**

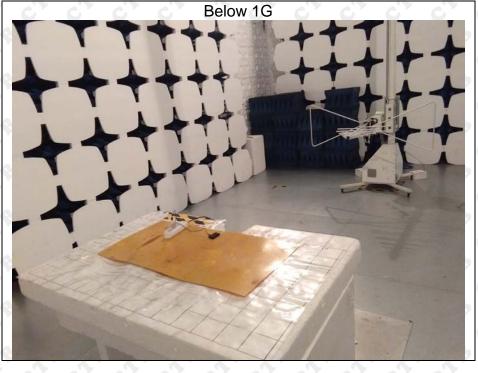
The antenna is PCB Antenna. The best case gain of the antenna is 0dBi.

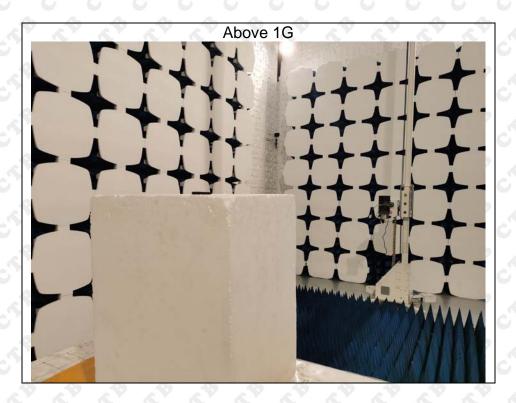


# 16. EUT PHOTOGRAPHS

**EUT Photo 1** 







Report



# 17. EUT TEST SETUP PHOTOGRAPHS

Radiated Emission







#### Conducted emissions



#### **** END OF REPORT ****