

FCC TEST REPORT

Applicant:	ARTIKA FOR LIVING INC.
Address of Applicant:	1756 50th Avenue Lachine, Quebec H8T 2V5 Canada
Manufacturer:	FOSHAN ECCO LIGHTING CO.,LTD
Address of Manufacturer:	No.70, Eas Development Zone, Donglian Shichen Village, Danzao Town, Nanhai District, Foshan City, Guangdong Province, P.R.China
Product name:	Maestro undercabinet light with wall and hardwire.
Model:	UCL-S2C-XXXXXX, "-XXXXXXX" can be A to Z and/or 0 to 9 and/or blank(commercial code)
Rating(s):	Input: 120V~, 60Hz
Trademark:	Artika
Standards:	FCC Part15 subpart B: 2021
FCC ID:	2AUHG-UCL-S2C
Date of Receipt:	2021-12-08
Date of Test:	2021-12-08~2021-12-16
Date of Issue:	2021-12-16
Test Result	Pass*

^{*} In the configuration tested, the test item complied with the standards specified above.

Authorized for issue by:

Test by:

Dec.13, 2021 Chivas Tsang
Project Engineer

Date

Name/Position

Reviewed by:

Dec.13, 2021 Victor Meng
Project Manager

Date

Name/Position

Signature

Date

Name/Position

Signature

Testing Laboratory information:

Testing Laboratory Name: ITL Co., Ltd

Guangdong, 523757 P.R.C.

 Testing location
 Same as above

 Tel
 0086-769-39001678

 Fax
 0086-20-62824387

 E-mail
 itl@i-testlab.com

Possible test case verdicts:

test case does not apply to the test object..: N/A
test object does meet the requirement.......: P (Pass)
test object does not meet the requirement .: F (Fail)

General remarks:

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report would be invalid test report without all the signatures of testing technician and approver. This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

General product information:

UCL-S2C-XXXXXX, "-XXXXXX" can be A to Z and/or 0 to 9 and/or blank(commercial code) All models are identical with each other except for model designation, color temperature. All tests were performed on the model UCL-S2C as representative.

Test Summary:

Electromagnetic Emissions										
Test Item	Test Standard Test Method		Class/Severity	Result						
Conducted Emission(0.15-30MHz)	FCC part 15.107	ANSI C63.4:2014	Class B	PASS						
Radiated Emission	FCC part 15.109 & FCC part 15.209	ANSI C63.4:2014	Class B	PASS						

Test Location

All the tests were performed in ITL Co., Ltd. Which is located at No. 8 Jinqianling Street 5, Huangjiang Town Dongguan, Guangdong, 523757 P.R.C.

Tel: 0086-769-39001678, Fax: 0086-20-62824387

No test is subcontracted

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS Lab code: L9342

FCC Designation No.:CN5035IC Registration NO.: 12593A

NVLAP LAB CODE: 600199-0

TABLE OF CONTENTS	
FCC TEST REPORT	1
Test Summary:	3
Test Location	
Test Facility	
Section 1 General Information and Equipment Used	
1.1 Client Information	
1.2 EUT General and Technical Descriptions	
1.3 Support Equipment(s) and Test Configuration	5
1.3.1 Details of Support Equipment(s)	
1.3.2 Working State of EUT	
1.3.3 Block Diagram of Test Configuration	
1.4 Equipment Used during Test	
Section 2 Emission Test Results	
2.1 Conducted Emission at Mains Terminals, 150 kHz to 30MHz	
2.1.1 E.U.T. Operation	
2.1.2 Test Setup and Procedure	
2.1.3 Measurement Data	
2.2 Radiated Emissions	
2.2.1 E.U.T. Operation	
2.2.2 Test Setup and Procedure	
2.2.3 Measurement Data	
Section 3 Photographs	
3.1 Conducted Emissions Mains Terminals Test Setup	
3.2 Radiated Emissions Test Setup	
3.3 EUT Constructional Details	1 <i>/</i>

Section 1 General Information and Equipment Used

1.1 Client Information

Applicant: ARTIKA FOR LIVING INC.

Address of Applicant: 1756 50th Avenue Lachine, Quebec H8T 2V5 Canada

Report. No. D220110001

1.2 EUT General and Technical Descriptions

EUT Name: Maestro undercabinet light with wall and hardwire

EUT Model: UCL-S2C
EUT Trademark: Artika
Input Voltage: 120V~
Frequency: 60Hz

Input Power/Current: /
Output rated: /
Power Cable Description: /
Other Cables Description: /
I/O Ports: /
Function(s) Description: /
Accessories information: /

1.3 Support Equipment(s) and Test Configuration

1.3.1 Details of Support Equipment(s)

Description	Manufacturer	Model No.	Connection	Working state
1	1	1	1	1

1.3.2 Working State of EUT

Power Supply of EUT: 120V~ 60Hz

EUT Status: Test the EUT in lighting mode.

1.3.3 Block Diagram of Test Configuration

1

1.4 Equipment Used during Test

Conducted Emission									
No.	Test Equipment	Manufacturer	Model	Serial No.	Last Cal.	Cal. Due			
DGITL-303a	EMI Test receiver	R&S	ESCI	100910	2021.05.11	2022.05.11			
DGITL-304	L.I.S.N.#1	R&S	ESH3-Z5	100272	2021.05.11	2022.05.11			
DGITL-302	Shielded Room	ETS•Lindgren	8*4*3	CT09010	2020.08.03	2022.08.03			
DGITL-316	Pulse Limiter	R&S	ESH3-Z2	100327	2021.05.11	2022.05.11			

Radiated Emi	Radiated Emission									
No.	Test Equipment	Manutacturer		Serial No.	Last Cal.	Cal. Due				
DGITL- 301	Semi-Anecho ic chamber	ETS•Lindgren	9*6*6	CT000874- 1181	2020.08.03	2022.08.03				
DGITL- 307	EMI test receiver	R&S	ESVS10	833616 /003	2021.05.11	2022.05.11				
DGITL- 306	Spectrum Analyzer	Agilent Technologies	N9010A	MY5420033 4	2021.05.11	2022.05.11				
DGITL- 308	Bilog Antenna	ETS•Lindgren	3142D	156975	2020.06.20	2022.06.20				
DGITL - 163	Active Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-062	2020.06.19	2022.06.18				
DGITL- 352	Pre Amplifier	MInI-Circuits	ZFC-1000 HX	SN2928011 10	2021.05.11	2022.05.11				

Section 2 Emission Test Results

2.1 Conducted Emission at Mains Terminals, 150 kHz to 30MHz

Test Requirement: FCC part 15.107
Test Method: ANSI C63.4:2014
Test Voltage: 120V AC, 60Hz
Frequency Range: 150 kHz to 30MHz
Detector: Peak for pre-scan

Quasi-Peak and Average at frequency with maximum peak

(9 kHz resolution bandwidth)

Uncertainty: 2Uc(V) = 2.3dB

Class / Limit: Class B

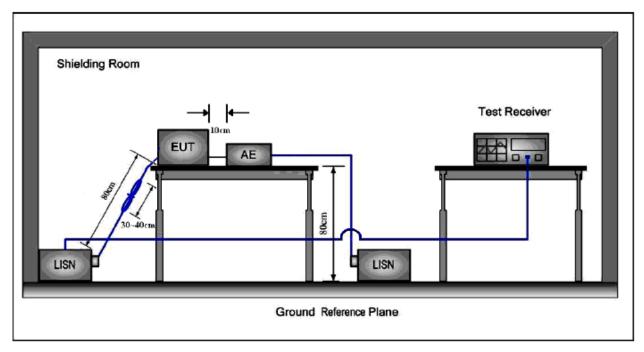
Frequency range	Class B Limits dB (μV)				
MHz	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

NOTE 1: The limit decreases linearly with the logarithm of the frequency in the range

0.15 MHz to 0.50 MHz.

NOTE 2: The lower limit is applicable at the transition frequency.

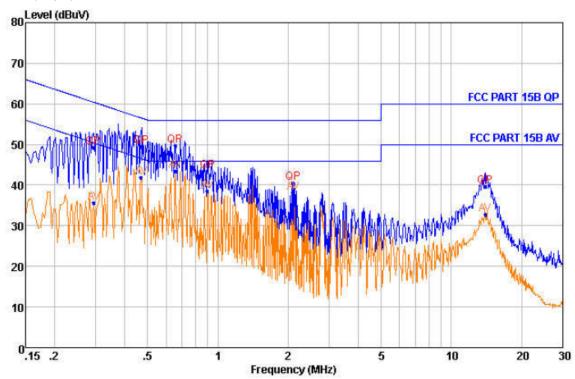
2.1.1 E.U.T. Operation


Operating Environment:

Temperature: 22.0 °C Humidity: 42 % RH Atmospheric Pressure: 101 kPa

EUT Operation: Test the EUT in lighting mode.

2.1.2 Test Setup and Procedure

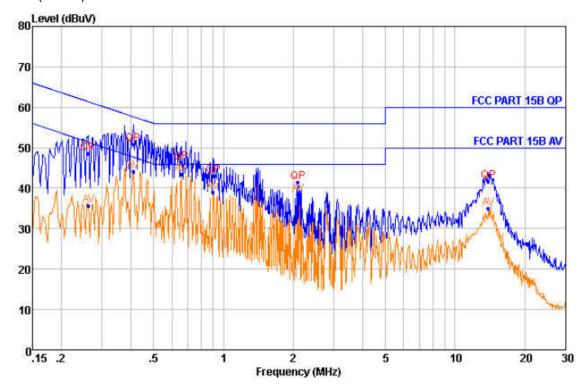

- 1. The mains terminal disturbance voltage test was conducted in a shielded room.
- 2. The EUT was connected to nominal power supply through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH+5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

2.1.3 Measurement Data

Pre-scan was performed with peak detected on both live and neutral cable. Quasi-peak & average measurements were performed at the frequencies which maximum peak emission level was detected. Please see the attached Quasi-peak and Average test results.

Live Line: Peak Scan: Level (dBµV)

Quasi-peak and Average measurement


NO.	Freq MHz	Level dBuV	Remark	LISN Factor dB	Cable Loss dB	Limit Line dBuV	Over Limit dB
1	0.293	49.18	QP	9.67	0.24	60.43	-11.25
2	0.294	35.65	Average	9.67	0.24	50.41	-14.76
3	0.470	49.44	QP	9.65	0.26	56.51	-7.07
4	0.470	41.98	Average	9.65	0.26	46.51	-4.53
5	0.658	49.60	QP	9.70	0.28	56.00	-6.40
6	0.658	43.46	Average	9.70	0.28	46.00	-2.54
7	0.902	43.41	QP	9.68	0.30	56.00	-12.59
8	0.902	38.63	Average	9.68	0.30	46.00	-7.37
9	2.094	40.56	QP	9.65	0.35	56.00	-15.44
8 9 10	2.094	38.02	Average	9.65	0.35	46.00	-7.98
11	13.966	39.76	QP	9.70	0.46	60.00	-20.24
12	13.966	32.67	Average	9.70	0.46	50.00	-17.33

Neutral Line:

Peak Scan:

Level (dB µ V)

Quasi-peak and Average measurement

NO.	Freq MHz	Level dBu∀	Remark	LISN Factor dB	Cable Loss dB	Limit Line dBuV	Over Limit dB
1	0.261	48.53	QP	9.64	0.23	61.40	-12.87
2	0.262	35.61	Average	9.64	0.23	51.38	-15.77
3	0.409	50.78	QP	9.66	0.26	57.66	-6.88
4	0.409	44.13	Average	9.66	0.26	47.66	-3.53
5	0.658	46.41	QP	9.63	0.28	56.00	-9.59
5 6	0.658	43.54	Average	9.63	0.28	46.00	-2.46
7	0.902	42.97	QP	9.63	0.30	56.00	-13.03
8	0.902	38.93	Average	9.63	0.30	46.00	-7.07
8 9	2.094	41.37	QP	9.62	0.35	56.00	-14.63
10	2.094	38.41	Average	9.62	0.35	46.00	-7.59
11	13.890	41.56	QP	9.63	0.46	60.00	-18.44
12	13.890	35.01	Average	9.63	0.46	50.00	-14.99

2.2 Radiated Emissions

Test Requirement: FCC part 15.109 & 15.209

Test Method: ANSI C63.4:2014
Test Voltage: 120V AC, 60Hz

Measurement Distance 3m

Detector: Peak for pre-scan

Quasi-Peak if maximised peak within 6dB of limit

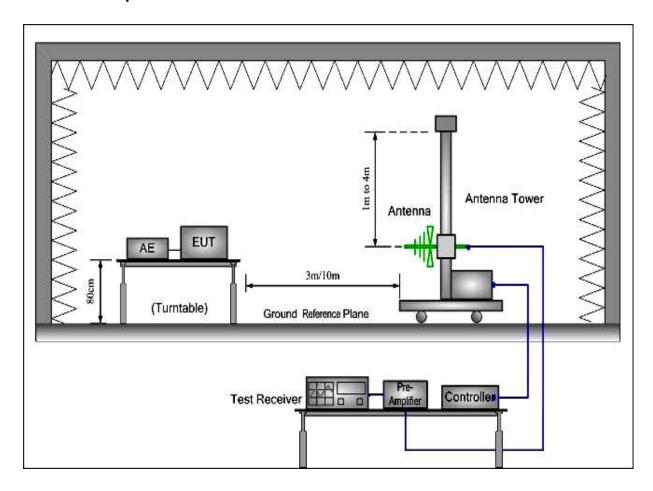
(120 kHz resolution bandwidth)

Uncertainty: 2Uc(V) = 3.35dB

Class / Limit:

Frequency	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	$20\log^{(30)} + 40$		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

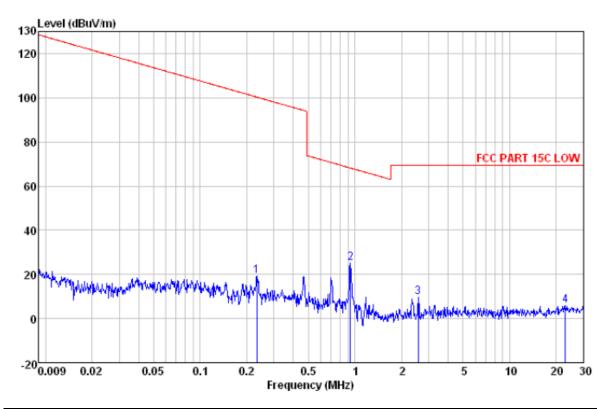
2.2.1 E.U.T. Operation


Operating Environment:

Temperature: 21.0 °C Humidity: 42 % RH Atmospheric Pressure: 101 kPa

EUT Operation: Test the EUT in lighting mode.

2.2.2 Test Setup and Procedure

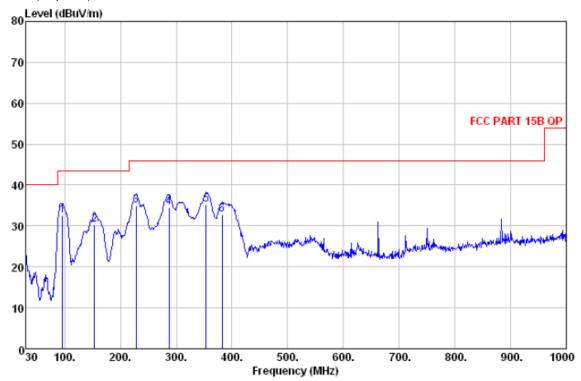

- The radiated emissions test was conducted in a semi-anechoic chamber.
- 2. Biconical and log periodic antenna was used for the frequency range from 30MHz to 1GHz
- 3. The EUT was connected to nominal power supply through a mains power outlet which was bonded to the ground reference plane; The mains cables were draped to the ground reference plane. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 4. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emissions spectrum plots of the EUT.
- 5. The frequencies of maximum emission were determined in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.

2.2.3 Measurement Data

Evaluation has been done with the antenna placed vertically and horizontally. Only the worst case test setup pictures and results are presented in the report

9kHz~30MHz Test result

Frequency (MHz)	Reading Level (dBµV/m)	Correct (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector
0.233	8.84	10.34	19.18	100.27	-81.09	PK
0.932	19.01	6.23	25.24	68.22	-42.98	PK
2.569	7.07	2.47	9.54	69.54	-60.00	PK
22.954	18.29	-12.23	6.06	69.54	-63.48	PK



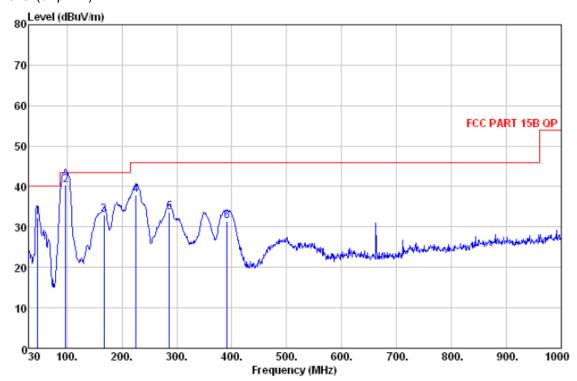
30 MHz~1 GHz Radiated Emissions .Quasi-Peak Measurement

Horizontal:

Peak scan

Level (dBµV/m)

Quasi-peak measurement


No.	Freq MHz	Read Level dBuV	Antenna Factor dB	Cable Loss dB	Preamp Factor dB		Limit Line dBuV/m	Over Limit dB	Pol/Phase	Remark
-										
1	95.960	51.72	8.28	1.14	28.64	32.50	43.50	-11.00	HORIZONTA	L QP
2	153.190	49.52	7.80	1.48	28.44	30.36	43.50	-13.14	HORIZONTA	L QP
3	227.880	49.10	11.60	1.83	27.56	34.97	46.00	-11.03	HORIZONTA	L QP
4	287.050	46.85	13.25	2.07	27.56	34.61	46.00	-11.39	HORIZONTA	L QP
5	353.980	45.91	14.54	2.29	27.48	35.26	46.00	-10.74	HORIZONTA	L QP
6	382.110	43.64	15.19	2.38	28.34	32.87	46.00	-13.13	HORIZONTA	L QP

Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor

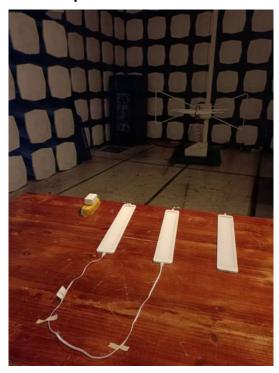
Vertical:

Peak scan Level (dBµV/m)

Quasi-peak measurement

No	. Freq	Read Level dBuV	Antenna Factor dB	Cable Loss dB	Preamp Factor dB	Level dBuV/m	Limit Line dBuV/m	Over Limit dB	Pol/Phase	Remark
-										
1	46.490	49.89	10.15	0.77	28.53	32.28	40.00	-7.72	VERTICAL	QP
2	97.900	59.64	8.34	1.16	28.72	40.42	43.50	-3.08	VERTICAL	QP
3	167.740	51.18	8.62	1.55	28.41	32.94	43.50	-10.56	VERTICAL	QP
4	225.940	52.15	11.46	1.82	27.62	37.81	46.00	-8.19	VERTICAL	QP
5	286.080	45.90	13.24	2.07	27.58	33.63	46.00	-12.37	VERTICAL	QP
6	391.810	41.75	15.41	2.42	28.26	31.32	46.00	-14.68	VERTICAL	QP

Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor



Section 3 Photographs

3.1 Conducted Emissions Mains Terminals Test Setup

3.2 Radiated Emissions Test Setup

3.3 EUT Constructional Details

END OF THE TEST REPORT