GTS Global United Technology Services Co., Ltd.

Report No.: GTSL2023090254F01

TEST REPORT

Applicant:	ARTIKA FOR LIVING INC			
Address of Applicant:	1756 50th avenue, Lachine, Quebec, H8T2V5 Canada			
Manufacturer/Factory:	Foshan Topday Optoelectronics Technology Co.,Ltd.			
Address of Manufacturer/Factory: Equipment Under Test (E	Huansheng Road,Guicheng Eastern Industrial Zone B,Sanshan Nanhai District,Foshan,China UT)			
Product Name:	Marble 1LT LED sconce			
Model No.: Trade Mark:	SCO-MB5C-XXXXXX (The suffix "XXXXXX" can be A to Z and/or 0 to 9 and/or blank denotes commercial code.) ARTIKA			
FCC ID:	2AUHG-SCO-MB5C			
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B			
Date of sample receipt:	September 19, 2023			
Date of Test:	September 21, 2023			
Date of report issued:	September 21, 2023			
Test Result :	Pass *			

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No. Date		Description		
00	September 21, 2023	Original		

Prepared by:

Date:

September 21, 2023

Project Engineer

Reviewed by:

objuson lund Date: Reviewer

September 21, 2023

GTS

Report No.: GTSL2023090254F01

3 Contents

1	cov	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	
	5.1 5.2 5.3 5.4	GENERAL DESCRIPTION OF EUT TEST MODE AND TEST VOLTAGE DESCRIPTION OF SUPPORT UNITS DEVIATION FROM STANDARDS	5 5
	5.4 5.5 5.6 5.7	ABNORMALITIES FROM STANDARD CONDITIONS TEST FACILITY TEST LOCATION	5 6
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1 7.2	RADIATED EMISSION	13
8	TES	Т SETUP PHOTO 1	6
9	EUT	CONSTRUCTIONAL DETAILS 1	7

4 Test Summary

Test Item	Test Requirement	Test Method	Class / Severity	Result	
Conducted Emission	FCC Part15.107	ANSI C63.4	Class B	PASS	
Radiated Emissions #	FCC Part15.109	ANSI C63.4	Class B	PASS	

Remark:

1. Pass: The EUT complies with the essential requirements in the standard.

2. # Refer to FCC Part 15.33 (b)(1) conditional testing procedure :

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower.

Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes	
Radiated Emission	30MHz-200MHz 3.8039dB			
Radiated Emission	200MHz-1GHz	(1)		
Radiated Emission	1GHz-18GHz 4.29dB		(1)	
AC Power Line Conducted 0.15MHz ~ 30MHz 3.44dB				
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.	

5 General Information

5.1 General Description of EUT

Product Name: Marble 1LT LED sconce					
Model No.: SCO-MB5C-XXXXXX (The suffix "XXXXXX" can be A to Z and/or 0 to 9 and/or blank deno commercial code.)					
	Remark: All above models are identical in the same PCB layout, interior structure and electrical circuits.				
	The difference is model name for commercial purpose.				
	Power supply: AC120V, 60Hz, 7W				

Remark: The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

5.2 Test mode and Test voltage

	Test mode:				
	Operation mode	Keep the EUT in the operation status.			
	Test voltage:				
Sec. Sec.	AC 120V/60Hz				
5.3	Description of Support	Units			
	None.				
5.4	Deviation from Standard	ds			
	None.				
5.5	Abnormalities from Star	ndard Conditions			
2223	None.				
and the second					

	5.6	Test Facility			
		The test facility is recognized, certified, or accredited by the following organizations:			
		• FCC —Registration No.: 381383			
		Designation Number: CN5029			
		Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully			
3		described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter			
5		from the FCC is maintained in files.			
		ISED —Registration No.: 9079A			
		CAB identifier: CN0091			
	The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered				
		by Certification and Engineering Bureau of ISED for radio equipment testing.			
		• NVLAP (LAB CODE:600179-0)			
		Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory			
		Accreditation Program (NVLAP).			
-	5.7	Test Location			
		Tests were performed at:			
		Global United Technology Services Co., Ltd.			
		Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan			
1		District, Shenzhen, Guangdong, China 518102			
	1282	Tel: 0755-27798480 Fax: 0755-27798960			

6 Test Instruments list

Rad	Radiated Emission:						
ltem	m Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024	
8	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023	
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024	
10	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024	
11	Horn Antenna (18- 26.5GHz)	1	UG-598A/U	GTS664	Oct. 30, 2022	Oct. 29, 2023	
12	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 30, 2022	Oct. 29, 2023	
13	FSV-Signal Analyzer (10Hz- 40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024	
14	Amplifier	1	LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024	
15	CDNE M2+M3-16A	НСТ	30MHz-300MHz	GTS668	Dec. 20, 2022	Dec.19, 2023	
16	Wideband Amplifier	1	WDA-01004000-15P35	GTS602	April 14, 2023	April 13, 2024	
17	Thermo meter	JINCHUANG	GSP-8A	GTS643	April 19, 2023	April 18, 2024	
18	RE cable 1	GTS	N/A	GTS675	July 31. 2023	July 30. 2024	
19	RE cable 2	GTS	N/A	GTS676	July 31. 2023	July 30. 2024	
20	RE cable 3	GTS	N/A	GTS677	July 31. 2023	July 30. 2024	
21	RE cable 4	GTS	N/A	GTS678	July 31. 2023	July 30. 2024	
22	RE cable 5	GTS	N/A	GTS679	July 31. 2023	July 30. 2024	
23	RE cable 6	GTS	N/A	GTS680	July 31. 2023	July 30. 2024	
24	RE cable 7	GTS	N/A	GTS681	July 31. 2023	July 30. 2024	
25	RE cable 8	GTS	N/A	GTS682	July 31. 2023	July 30. 2024	

Con	Conducted Emission						
Item Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	July 12, 2022	July 11, 2027	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024	
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	April 14, 2023	April 13, 2024	
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	April 19, 2023	April 18, 2024	
7	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 14, 2023	April 13, 2024	
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 14, 2023	April 13, 2024	
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 14, 2023	April 13, 2024	
10	Antenna end assembly	Weinschel	1870A	GTS560	April 14, 2023	April 13, 2024	

Gen	General used equipment:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Barometer	KUMAO	SF132	GTS647	April 19, 2023	April 18, 2024

7 Test Results and Measurement Data

7.1 Radiated Emission

FCC Part15 B Secti	ion 15.109			
ANSI C63.4:2014				
30MHz to 1GHz				
Class B				
Measurement Dista	ince: 3m (Sem	i-Anechoic (Chamber)	
Frequency	Detector	RBW	VBW	Value
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Frequency				Value
				asi-peak
				asi-peak
		a state of the second state of		asi-peak
960MHZ-1GHZ	54	4.00	Qu	asi-peak
Test Re	sceiver - Pre-			
 the ground at a rotated 360 der radiation. 2. The EUT was a antenna, which tower. 3. The antenna he the ground to c Both horizonta make the meas 4. For each susper case and then meters and the degrees to find 	a 3 meter semi grees to detern set 3 meters an was mounted eight is varied determine the l and vertical p surement. ected emission the antenna w e rotatable tabl I the maximum	-anechoic cl mine the pos way from the d on the top of from one me maximum va polarizations h, the EUT w ras tuned to e was turned n reading.	namber. The sition of the e interference of a variable eter to four n lue of the fil of the anter vas arranged heights from d from 0 dec	e table was highest ce-receiving e-height antenna meters above eld strength. nna are set to d to its worst n 1 meter to 4 grees to 360
	 ANSI C63.4:2014 30MHz to 1GHz Class B Measurement Distand Frequency 30MHz-1GHz S0MHz-1GHz S0MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz TestRe 1. The EUT was a rotated 360 de radiation. The EUT was a antenna, which tower. The EUT was a antenna, which tower. The antenna h the ground to a solution. For each susport case and then meters and the degrees to find 	ANSI C63.4:2014 30MHz to 1GHz Class B Measurement Distance: 3m (Sem Frequency Detector 30MHz-1GHz Quasi-peak Frequency Limit (dBp 30MHz-88MHz 40 88MHz-216MHz 40 960MHz-1GHz 40 960MHz-1GHz 54 Image: Construct of the ground at a 3 meter semi rotated 360 degrees to determine the ground at a 3 meters and antenna, which was mounted tower. Image: The EUT was set 3 meters and antenna, which was mounted tower. Image: The antenna height is varied the ground to determine the post horizontal and vertical post horizontal and the notatable table degrees to find the maximum	 ANSI C63.4:2014 30MHz to 1GHz Class B Measurement Distance: 3m (Semi-Anechoic O Frequency Detector RBW 30MHz-1GHz Quasi-peak 120kHz Frequency Limit (dBµV/m @3m) 30MHz-88MHz 40.00 88MHz-216MHz 43.50 216MHz-960MHz 46.00 960MHz-1GHz 54.00 Image: the state of	ANSI C63.4:2014 30MHz to 1GHz Class B Measurement Distance: 3m (Semi-Anechoic Chamber) Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120kHz 300kHz Frequency Limit (dBµV/m @3m) 30MHz-88MHz 40.00 Quasi-peak 120kHz 100Hz-88MHz 43.50 Quasi-216MHz 46.00 960MHz-1GHz 54.00 Quasi-peak 216MHz-960MHz 46.00 Quasi-peak 960MHz-1GHz 54.00 Quasi-peak 200mu Image: the answer the answer the transwer transwer the transwer the transwer transwer the transwer transwer the transwer transwer to the transwer transwer to the transwer transwer transwer transwer to the transwer transwer transwer to the transwer transwer transwer transwer to the transwer to the transwer transwer transwer to the transwer transwer transwer transwer the transwer transwer the measurement. 1. The EUT was set 3 meters away transmer to the transwer transwer to the transwer transwer transwer transwer transwer transwer to the transwer transwer transwer transwer transwere transwere transwer transwer transwer transwer transwe

	 Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test environment:	Temp.:25 °CHumid.:52%Press.:1 012mbar
Test Instruments:	Refer to section 6 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

est mod	de:	Op	eration mode		Anter	nna Polarity:	Horiz	ontal	
80	vel (dBuV/m)								- <u>1</u>
70-	1-				8	5			< 3.
60	14		<u></u>		22		FC	C PART 15 CLA	SSB
50	л т. Д 1					8			
40						2		And May Provident	manuto
30	down more wanted	motion a mating	mention	Warming and Western Warder	5	hour and the start	Wy Mennahrunder MUMA		
10	-				-				
0 30		50	100	Frequen	200 cy (MHz)		500		1000
Item	Freq	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detecto
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)	
	44.90	13.18	16.49	0.00	0.67	30.34	40.00	-9.66	Peak
1		the state of the state of the	11.64	0.00	0.68	26.30	40.00	-13.70	Peak
1 2	64.43	13.98	11.04				The second se		
	64.43 98.49	13.98 14.87	11.35	0.00	0.83	27.05	43.50	-16.45	Peak
2				0.00 0.00	0.83 1.41	27.05 26.24	43.50 43.50	-16.45 -17.26	
2 3	98.49	14.87	11.35						Peak Peak Peak

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss

2. If Peak Result comply with QP limit, QP Result is deemed to comply with QP limit

est mod	de:	Op	eration mode		Antenr	a Polarity:	Vertio	cal	
80	vel (dBuV/m)		- <u> </u>		1				
70						8			<u>12 - 5</u> 1
60						3			<u>is 3</u> 0
Steel							FC	C PART 15 CLA	SS B
50						8			
40						2	-	ILL . Luder	month
	when they	2	3			E LOSS	6 Lithanker / Well	here a supervision of the superv	
30	and the	um Up	+ Walker		4 under linne	water the production of the	- March 1997		
20	(2 ²⁰ 5	W. Wata	hiperral to the second	Wrulder	2 2	Strange Balancher / March	<u> </u>	55 - 51
10									
30.000								- 1	
0		50	100	Freque	200 ncy (MHz)		500		1000
997595		Read	100 Antenna	Freque	a many or the first of the second	Result	500	Over	
030	Freq	Read Level	Antenna Factor	PRM Factor	ncy (MHz) Cable Loss	Level	Limit Line	Limit	
0 30 Item (Mark)	Freq (MHz)	Read Level (dBµV)	Antenna Factor (dB/m)	PRM Factor dB	ncy (MHz) Cable Loss dB	Level (dBµV/m)	Limit Line (dBµV/m)	Limit (dB)	Detect
0 Item (Mark) 1	Freq (MHz) 43.81	Read Level (dBµV) 16.22	Antenna Factor (dB/m) 16.78	PRM Factor dB 0.00	ncy (MHz) Cable Loss dB 0.68	Level (dBµV/m) 33.68	Limit Line (dBµV/m) 40.00	Limit (dB) -6.32	Detect QP
0 ₃₀ Item (Mark) 1 2	Freq (MHz) 43.81 60.28	Read Level (dBμV) 16.22 19.68	Antenna Factor (dB/m) 16.78 12.63	PRM Factor dB 0.00 0.00	ncy (MHz) Cable Loss dB 0.68 0.61	Level (dBµV/m) 33.68 32.92	Limit Line (dBµV/m) 40.00 40.00	Limit (dB) -6.32 -7.08	Detect QP Peak
030 Item (Mark) 1 2 3	Freq (MHz) 43.81 60.28 91.50	Read Level (dBμV) 16.22 19.68 19.39	Antenna Factor (dB/m) 16.78 12.63 9.54	PRM Factor dB 0.00 0.00 0.00	Cable Loss dB 0.68 0.61 0.84	Level (dBµV/m) 33.68 32.92 29.77	Limit Line (dBµV/m) 40.00 40.00 43.50	Limit (dB) -6.32 -7.08 -13.73	Detect QP Peak Peak
0 ₃₀ Item (Mark) 1 2	Freq (MHz) 43.81 60.28	Read Level (dBμV) 16.22 19.68	Antenna Factor (dB/m) 16.78 12.63	PRM Factor dB 0.00 0.00	ncy (MHz) Cable Loss dB 0.68 0.61	Level (dBµV/m) 33.68 32.92	Limit Line (dBµV/m) 40.00 40.00	Limit (dB) -6.32 -7.08	Detecto

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss

2. If Peak Result comply with QP limit, QP Result is deemed to comply with QP limit

7.2 Conducted Emissions

Test Requirement:	FCC Part15 B Section 15.107	7	
Test Method:	ANSI C63.4:2014		
Test Frequency Range:	150kHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:		Limit (c	BuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30 * Decreases with the logarith	60 m of the frequency	50
Test setup:	Reference		
Test procedure	LISN 40cm AUX E.U.T Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Netw Test table height=0.8m 1.		- AC power
	 a line impedance stabiliz 50ohm/50uH coupling im The peripheral devices a through a LISN that prov with 50ohm termination. test setup and photograp Both sides of A.C. line an interference. In order to the positions of equipment a changed according to AN measurement. 	ation network(L.I.S.N.) npedance for the measure are also connected to the rides a 500hm/50uH co (Please refers to the blochs). The checked for maximum find the maximum emisure and all of the interface comparison	. The provide a uring equipment. The main power oupling impedance lock diagram of the m conducted ssion, the relative tables must be
Test environment:	Temp.: 25 °C Hum	id.: 52% Pre	ss.: 1 012mbar
Test Instruments:	Refer to section 6 for details		
Test mode:	Refer to section 5.2 for details	S	
Test results:	Pass		

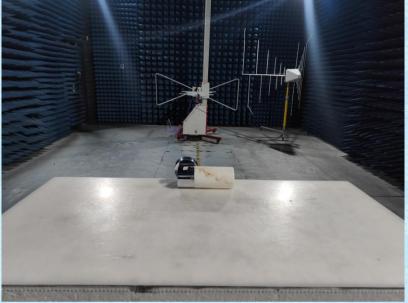
Measurement Data

Fest m	ode:	Op	eration mode		Phase P	olarity:	Line	
80.0 di	BuV							
							mit1: — mit2: —	
-		_						
M	M	<u> </u>			1			
40	W S VA	ע זייה		walkinghy				
Į (MA 1 10	Mar Marken	up the second provide the second second	white and the	July of the second second	when my potomicky	will peak	
	VILLA	1 1 1	down with the work of the second			1 Martin	Minder and	
	V M	Mar Marian	and the second war	there is a second se	gun kalanan		When when AVG	
	Vhalbal	An Martin	malliongament	manutaria			AVG	
0.150	Frequency	0.5	malinan (MHz)	5	man	30.000	
	Frequency (MHz)	An Martin	malliongament	manutaria			AVG	
0.150		0.5 Reading	kryalitytytytytytytytytytytytytytytytytytyty	MHz) Result	5 Limit	Margin	30.000	
0.150 No.	(MHz)	0.5 Reading (dBuV)	(I Correct Factor(dB)	MHz) (dBuV)	5 Limit (dBuV)	Margin (dB)	30.000 Remark	
0.150 No.	(MHz) 0.1540	0.5 Reading (dBuV) 44.52	Tector(dB) 9.73	MHz) Result (dBuV) 54.25	5 Limit (dBuV) 65.78	Margin (dB) -11.53	30.000 Remark	
0.150 No. 1 2	(MHz) 0.1540 0.1540	0.5 Reading (dBuV) 44.52 21.74	Correct Factor(dB) 9.73 9.73	MHz) Result (dBuV) 54.25 31.47	5 Limit (dBuV) 65.78 55.78	Margin (dB) -11.53 -24.31	30.000 Remark QP AVG	
No. 1 2 3	(MHz) 0.1540 0.1540 0.1860	0.5 Reading (dBuV) 44.52 21.74 40.38	Correct Factor(dB) 9.73 9.73 9.76	MHz) Result (dBuV) 54.25 31.47 50.14	5 Limit (dBuV) 65.78 55.78 64.21	Margin (dB) -11.53 -24.31 -14.07	30.000 Remark QP AVG QP	
0.150 No. 1 2 3 4	(MHz) 0.1540 0.1540 0.1860 0.1860	0.5 Reading (dBuV) 44.52 21.74 40.38 26.45	Correct Factor(dB) 9.73 9.73 9.76 9.76	MHz) Result (dBuV) 54.25 31.47 50.14 36.21	5 Limit (dBuV) 65.78 55.78 64.21 54.21	Margin (dB) -11.53 -24.31 -14.07 -18.00	30.000 Remark QP AVG QP AVG	
0.150 No. 1 2 3 4 5	(MHz) 0.1540 0.1540 0.1860 0.1860 0.2460	0.5 Reading (dBuV) 44.52 21.74 40.38 26.45 27.28	Correct Factor(dB) 9.73 9.73 9.76 9.76 9.83	MHz) Result (dBuV) 54.25 31.47 50.14 36.21 37.11	5 Limit (dBuV) 65.78 55.78 64.21 54.21 61.89	Margin (dB) -11.53 -24.31 -14.07 -18.00 -24.78	30.000 Remark QP AVG QP AVG QP	
0.150 No. 1 2 3 4 5 6	(MHz) 0.1540 0.1540 0.1860 0.1860 0.2460 0.2460	0.5 Reading (dBuV) 44.52 21.74 40.38 26.45 27.28 15.66	Correct Factor(dB) 9.73 9.73 9.76 9.76 9.83 9.83	MHz) Result (dBuV) 54.25 31.47 50.14 36.21 37.11 25.49	5 Limit (dBuV) 65.78 55.78 64.21 54.21 61.89 51.89	Margin (dB) -11.53 -24.31 -14.07 -18.00 -24.78 -26.40	30.000 Remark QP AVG QP AVG QP AVG QP AVG	
0.150 No. 1 2 3 4 5 6 7	(MHz) 0.1540 0.1540 0.1860 0.1860 0.2460 0.2460 0.3060	0.5 Reading (dBuV) 44.52 21.74 40.38 26.45 27.28 15.66 25.87	Correct Factor(dB) 9.73 9.73 9.76 9.76 9.83 9.83 9.83 9.92	MHz) Result (dBuV) 54.25 31.47 50.14 36.21 37.11 25.49 35.79	5 Limit (dBuV) 65.78 55.78 64.21 54.21 61.89 51.89 60.08	Margin (dB) -11.53 -24.31 -14.07 -18.00 -24.78 -26.40 -24.29	30.000 Remark QP AVG QP AVG QP AVG QP AVG QP	
0.150 No. 1 2 3 4 5 6 7 8	(MHz) 0.1540 0.1540 0.1860 0.1860 0.2460 0.2460 0.3060 0.3060	0.5 Reading (dBuV) 44.52 21.74 40.38 26.45 27.28 15.66 25.87 14.04	Correct Factor(dB) 9.73 9.73 9.76 9.76 9.83 9.83 9.83 9.92 9.92	MHz) Result (dBuV) 54.25 31.47 50.14 36.21 37.11 25.49 35.79 23.96	5 Limit (dBuV) 65.78 55.78 64.21 54.21 61.89 51.89 60.08 50.08	Margin (dB) -11.53 -24.31 -14.07 -18.00 -24.78 -26.40 -24.29 -26.12	AVG 30.000 Remark QP AVG QP AVG QP AVG QP AVG AVG	
0.150 No. 1 2 3 4 5 6 7 8 9	(MHz) 0.1540 0.1540 0.1860 0.2460 0.2460 0.2460 0.3060 0.3060 0.3700	0.5 Reading (dBuV) 44.52 21.74 40.38 26.45 27.28 15.66 25.87 14.04 23.00	Correct Factor(dB) 9.73 9.73 9.76 9.76 9.83 9.83 9.83 9.83 9.92 9.92 10.01	MHz) Result (dBuV) 54.25 31.47 50.14 36.21 37.11 25.49 35.79 23.96 33.01	5 Limit (dBuV) 65.78 55.78 64.21 54.21 61.89 51.89 60.08 50.08 50.08 58.50	Margin (dB) -11.53 -24.31 -14.07 -18.00 -24.78 -26.40 -24.29 -26.12 -25.49	30.000 Remark QP AVG QP AVG QP AVG QP AVG QP AVG QP	

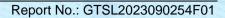
Test m	ode:	Op	eration mode		Phase P	olarity:	Neutral
80.0 di	BuV						
							imit1: — imit2: —
hy							
40	Man Miller	wall war	w Marine	What we way with the set	April 4 1990 Martin Carlle	which white white the white	al American peak
	W. W.W.	Mym	Manhandra	hydrownow	nunannana	man and a second and	AVG
0.0	W. W.W.	0.5	WWWWWWWW WWWWWWW	hy many many	monor	Mark Mark Mark	AVG 30.000
	Frequency	0.5 Reading	MMMMMM ^m Correct	hydrownow	manna	Margin	hand
0.150	Frequency (MHz)	965.039-04		MHz)	sunan managara	her an	30.000
0.150 No.		Reading	Correct	MHz)	5 Limit	Margin	30.000
0.150 No.	(MHz)	Reading (dBuV)	Correct Factor(dB) 9.73 9.73	MHz) (dBuV)	5 Limit (dBuV)	Margin (dB)	30.000 Remark
0.150 No.	(MHz) 0.1500 0.1500 0.1820	Reading (dBuV) 45.58 23.51 41.38	Correct Factor(dB) 9.73 9.73 9.76	MHz) Result (dBuV) 55.31 33.24 51.14	5 Limit (dBuV) 66.00 56.00 64.39	Margin (dB) -10.69 -22.76 -13.25	30.000 Remark QP AVG QP
No. 1 2	(MHz) 0.1500 0.1500 0.1820 0.1820	Reading (dBuV) 45.58 23.51 41.38 26.73	Correct Factor(dB) 9.73 9.73 9.76 9.76	MHz) Result (dBuV) 55.31 33.24 51.14 36.49	5 Limit (dBuV) 66.00 56.00 64.39 54.39	Margin (dB) -10.69 -22.76 -13.25 -17.90	30.000 Remark QP AVG QP AVG
0.150 No. 1 2 3 4 5	(MHz) 0.1500 0.1500 0.1820 0.1820 0.2420	Reading (dBuV) 45.58 23.51 41.38 26.73 30.91	Correct Factor(dB) 9.73 9.73 9.76 9.76 9.83	MHz) Result (dBuV) 55.31 33.24 51.14 36.49 40.74	5 Limit (dBuV) 66.00 56.00 64.39 54.39 62.03	Margin (dB) -10.69 -22.76 -13.25 -17.90 -21.29	30.000 Remark QP AVG QP AVG QP AVG QP
0.150 No. 1 2 3 4 5 6	(MHz) 0.1500 0.1500 0.1820 0.1820	Reading (dBuV) 45.58 23.51 41.38 26.73	Correct Factor(dB) 9.73 9.73 9.76 9.76	MHz) Result (dBuV) 55.31 33.24 51.14 36.49	5 Limit (dBuV) 66.00 56.00 64.39 54.39	Margin (dB) -10.69 -22.76 -13.25 -17.90	30.000 Remark QP AVG QP AVG QP AVG QP AVG
0.150 No. 1 2 3 4 5	(MHz) 0.1500 0.1500 0.1820 0.1820 0.2420	Reading (dBuV) 45.58 23.51 41.38 26.73 30.91	Correct Factor(dB) 9.73 9.73 9.76 9.76 9.83	MHz) Result (dBuV) 55.31 33.24 51.14 36.49 40.74	5 Limit (dBuV) 66.00 56.00 64.39 54.39 62.03	Margin (dB) -10.69 -22.76 -13.25 -17.90 -21.29	30.000 Remark QP AVG QP AVG QP AVG QP
0.150 No. 1 2 3 4 5 6	(MHz) 0.1500 0.1500 0.1820 0.1820 0.2420 0.2420	Reading (dBuV) 45.58 23.51 41.38 26.73 30.91 17.37	Correct Factor(dB) 9.73 9.73 9.76 9.76 9.83 9.83	MHz) Result (dBuV) 55.31 33.24 51.14 36.49 40.74 27.20	5 Limit (dBuV) 66.00 56.00 64.39 54.39 62.03 52.03	Margin (dB) -10.69 -22.76 -13.25 -17.90 -21.29 -24.83	30.000 Remark QP AVG QP AVG QP AVG QP AVG
0.150 No. 1 2 3 4 5 6 7	(MHz) 0.1500 0.1500 0.1820 0.1820 0.2420 0.2420 0.2420 0.3020	Reading (dBuV) 45.58 23.51 41.38 26.73 30.91 17.37 29.55	Correct Factor(dB) 9.73 9.73 9.76 9.76 9.83 9.83 9.83 9.91	MHz) Result (dBuV) 55.31 33.24 51.14 36.49 40.74 27.20 39.46	5 Limit (dBuV) 66.00 56.00 64.39 54.39 62.03 52.03 60.19	Margin (dB) -10.69 -22.76 -13.25 -17.90 -21.29 -24.83 -20.73	30.000 Remark QP AVG QP AVG QP AVG QP AVG QP
0.150 No. 1 2 3 4 5 6 7 8	(MHz) 0.1500 0.1500 0.1820 0.1820 0.2420 0.2420 0.2420 0.3020 0.3020	Reading (dBuV) 45.58 23.51 41.38 26.73 30.91 17.37 29.55 15.48	Correct Factor(dB) 9.73 9.73 9.76 9.76 9.83 9.83 9.83 9.91 9.91	MH₂) Result (dBuV) 55.31 33.24 51.14 36.49 40.74 27.20 39.46 25.39	5 Limit (dBuV) 66.00 56.00 64.39 54.39 62.03 52.03 60.19 50.19	Margin (dB) -10.69 -22.76 -13.25 -17.90 -21.29 -24.83 -20.73 -24.80	30.000 Remark QP AVG QP AVG QP AVG QP AVG QP AVG
0.150 No. 1 2 3 4 5 6 7 8 8 9	(MHz) 0.1500 0.1500 0.1820 0.1820 0.2420 0.2420 0.2420 0.3020 0.3020 0.3020 0.3673	Reading (dBuV) 45.58 23.51 41.38 26.73 30.91 17.37 29.55 15.48 23.92	Correct Factor(dB) 9.73 9.73 9.76 9.76 9.83 9.83 9.91 9.91 0.00	MHz) Result (dBuV) 55.31 33.24 51.14 36.49 40.74 27.20 39.46 25.39 33.92	5 Limit (dBuV) 66.00 56.00 64.39 54.39 62.03 52.03 60.19 50.19 58.56	Margin (dB) -10.69 -22.76 -13.25 -17.90 -21.29 -24.83 -20.73 -24.80 -24.64	30.000 Remark QP AVG QP AVG QP AVG QP AVG QP AVG QP

Notes:

1. An initial pre-scan was performed on the live and neutral lines with peak detector.


2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss

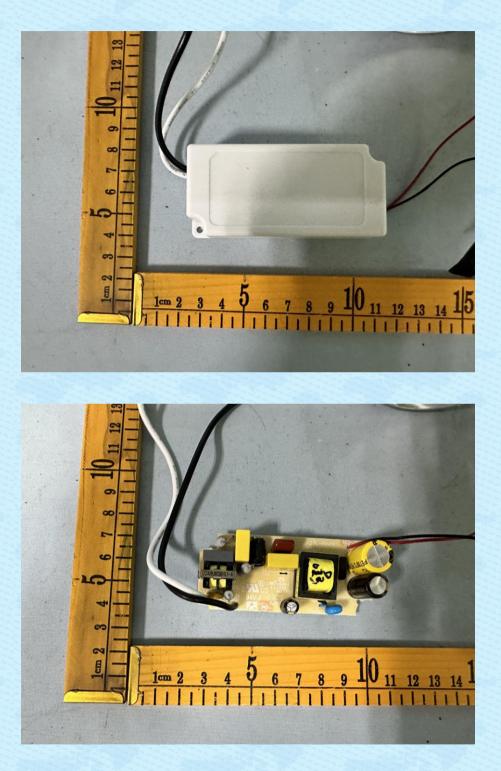

8 Test Setup Photo

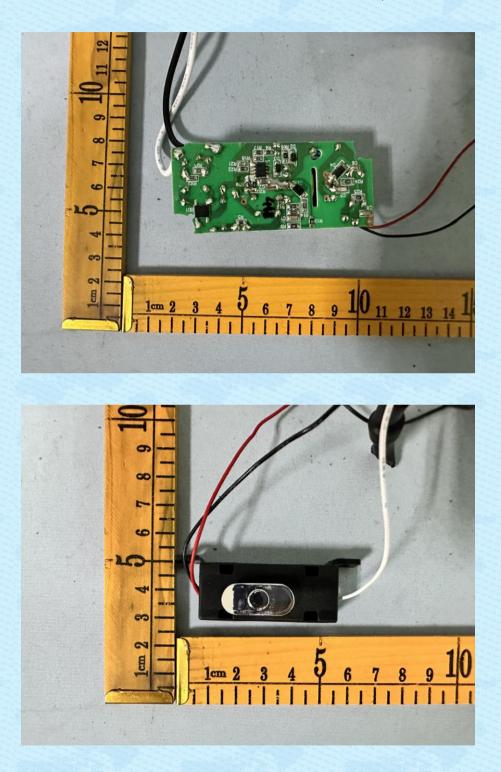
Radiated Emission

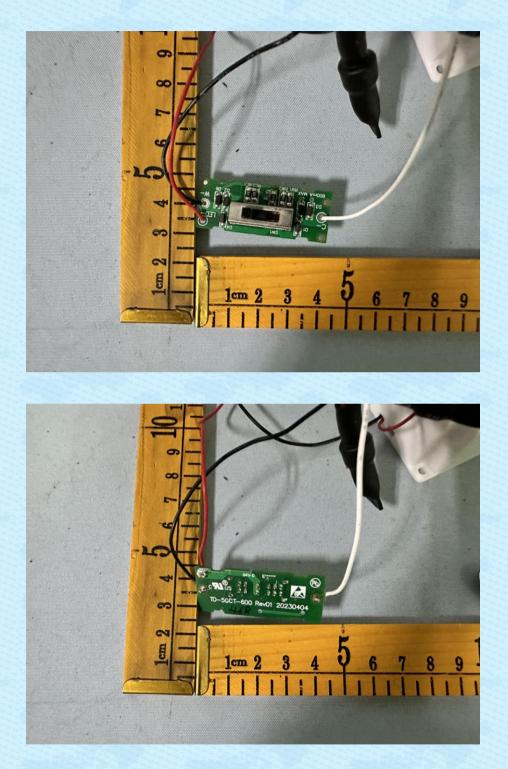
Conducted Emission

9 EUT Constructional Details

GTS


Report No.: GTSL2023090254F01





-----End-----