EMC TEST REPORT				
	FCC ID: 2AUHG-FM-NI5C			
Report No.	: <u>SSP24030197-1E</u>			
Applicant	: ARTIKA FOR LIVING INC			
Product Name	: Niko LED White FM 5CCT			
Model Name	: FM-NI5C-HD2WH			
Test Standard	: FCC Part 15 Subpart B			
Date of Issue	: 2024-03-27			
	CCUT			
Sł	ienzhen CCUT Quality Technology Co., Ltd.			
1F, Building 35, Changxing Te	echnology Industrial Park, Yutang Street, Guangming District, Shenzhen, a; (Tel.:+86-755-23406590 website: www.ccuttest.com)			
-	above client company and the product model only. It may not be duplicated permitted by Shenzhen CCUT Quality Technology Co., Ltd.			

Test Report basic information				
Applicant	ARTIKA FOR LIVING INC			
Address of Applicant	1756 50th avenue, Lachine, Quebec, H8T 2V5 Canada			
Manufacturer	Foshan Topday Optoelectronics Technology Co., Ltd.			
Address of Manufacturer:	Huansheng Road, Guicheng Eastern ndustrial Zone B, Sanshan Nanhai District, Foshan, China			
Product Name	Niko LED White FM 5CCT			
Brand Name	artika			
Main Model	FM-NI5C-HD2WH			
Series Models	FM-NI5C-xxxxxx, CML15-793			
	FCC Part 15 Subpart B			
Test Standard	ANSI C63.4-2014			
Date of Test:	2024-03-25 to 2024-03-26			
Test Result	PASS			
	Well			
Tested By	Walker Wu (Walker Wu)			
	Lieber Ouyang (Lieber Ouyang) GAPPROVED			
Reviewed By	Lieber Ougang (Lieber Ouyang)			
	Lahn Peng Pic pit			
Authorized Signatory	(Lahm Peng) *			
Note : This test report is limited	to the above client company and the product model only. It may not be			
duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in				
this test report is only applicable to presented test sample.				

Test Report Basic Information

CONTENTS

1. General Information	.5
1.1 Product Information	.5
1.2 Test Setup Information	.5
1.3 Compliance Standards	.6
1.4 Test Facilities	
1.5 Measurement Uncertainty	.6
1.6 List of Test and Measurement Instruments	
2. Summary of Test Results	.8
3. Conducted Emissions	
3.1 Standard and Limit	
3.2 Test Procedure	.9
3.3 Test Data and Results	
4. Radiated Disturbance1	
4.1 Standard and Limit1	2
4.2 Test Procedure1	12
4.3 Test Data and Results1	2

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-03-27	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	Niko LED White FM 5CCT			
Trade Name:	artika			
Main Model:	FM-NI5C-HD2WH			
Series Models:	FM-NI5C-xxxxx, CML15-793			
Class of Equipment:	Class A Class B			
Highest Internal Frequency:	<108MHz			
Rated Voltage:	Input: AC 120V/60Hz			
Note 1: The test data is gathered from a production sample, provided by the manufacturer.				
Note 2: The color of appearance and model name of series models listed are different from the main model, but				
the circuit and the electronic construction are the same, declared by the manufacturer, The suffix "XXXXXX" can				
be A to Z and/or 0 to 9 and/or blank denotes commercial code.				

1.2 Test Setup Information

List of Test Modes					
Test Mode	Description		Remark		
TM1	V	Vorking		-	
-		-		-	
-		-		-	
-		-		-	
List and Detail	ls of Auxiliary	Cable			
Descrip	otion	Length (cm)		Shielded/Unshielded	With/Without Ferrite
-		-		-	-
-		-		-	-
-		-		-	-
List and Details of Auxiliary Equipment					
Descrip	otion	Manufacture	r	Model	Serial Number
-		-		-	-
-		-		-	-
-					
The equipment under test (EUT) was configured to measure its highest possible emission and immunity level.					
The test modes were adapted according to the operation manual for use.					

1.3 Compliance Standards

Compliance Standards			
	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart B	Unintentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test methodology			
FCC Part 15 Subpart B	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
	Unintentional Radiators		
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI (63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

1.5 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Disturbance	9kHz~30MHz	±1.64 dB
Radiated Disturbance	30MHz ~ 1GHz	±3.32 dB
Radiated Disturbance	1GHz ~ 18GHz	±3.50 dB

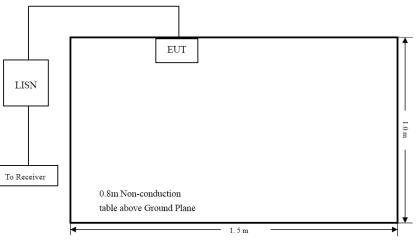
Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
	Conducted Emissions						
AMN	ROHDE&SCHWARZ	ENV216	101097	2023-10-21	2024-10-20		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2023-07-31	2024-07-30		
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A		
		Radiated Emissio	ons				
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2023-07-31	2024-07-30		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2023-07-31	2024-07-30		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2023-07-31	2024-07-30		
Amplifier	HUABO	YXL0518-2.5-45		2023-07-31	2024-07-30		
Loop Antenna	DAZE	ZN30900C	21104	2023-08-07	2024-08-06		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2023-08-07	2024-08-06		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2023-08-07	2024-08-06		
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A		

1.6 List of Test and Measurement Instruments

2. Summary of Test Results

FCC Rule	Description of Test Item	Result		
FCC Part 15.107	Conducted Emissions	Passed		
FCC Part 15.109	Radiated Emissions	Passed		
Passed: The EUT complies with the essential requirements in the standard				
Failed: The EUT does not comply with the essential requirements in the standard				
N/A: Not applicable				

3. Conducted Emissions


3.1 Standard and Limit

According to the rule FCC Part 15.107, Conducted limit, the limit for a class A and class B device as below:

Frequency of Emission	Class A (dBuV)		Class B (dBuV)		
(MHz)	Quasi-peak Average		Quasi-peak	Average	
0.15-0.5	79	66	66 to 56	56 to 46	
0.5-5	73	60	56	46	
5-30	73 60		60	50	
Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz					
Note 2: The lower limit applies at the band edges					

3.2 Test Procedure

Test is conducting under the description of ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

Test Setup Block Diagram

3.3 Test Data and Results

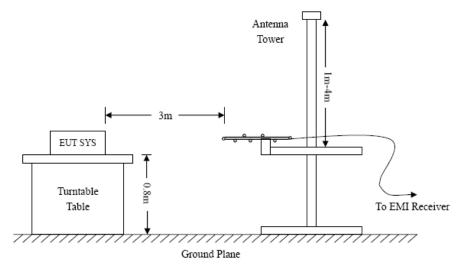
Based on all tested data, the EUT complied with the FCC Part 15.107 standard limit for a Class B device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Test P	lots and Data o	f Conducte	ed Emissic	ons						
Tested	l Model:	FM-N	NI5C-HD2	WH						
Tested	l Mode:	TM1								
Test V	oltage:	AC 1	20V/60Hz							
Test P	ower Line:	Neut	ral							
Remai	rk:									
90.0	dBuV									
80										
70										
	3								FCC Part15 CE-Class B_QP	
60 ¥										_
50	- Martin								FCC Part15 CE-Class B_AVe	
40		N N N								11 ¥2
	m	Archer	Myney .	Z					9 4	
30		W AWWWWWWWW	- Walter	university the state	Witten I					
20		S Manual M	and the second second		And the second second	With Mahada			Market Market	₩
10					The area and a second	No.	Worksymme	whenter	under work with the	peak
0						a president	margan and	raman	- Marker Will	AVG
-10										
0.1	50	0.5	00		(MHz)		5.0	00		30.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.1514	30.72	9.25	39.97	55.92	-15.95	AVG	Р		
2	0.1516	49.30	9.24	58.54	65.91	-7.37	QP	Р		
3 *		52.97	9.04	62.01	64.63	-2.62	QP	Р		
4	0.1770	28.70	9.04	37.74	54.63	-16.89	AVG	P		
5	0.3614	34.02	9.82	43.84	58.70	-14.86	QP	Р		
6	0.3614	17.98	9.82	27.80	48.70	-20.90	AVG	P		
7	1.2703	20.69	10.03	30.72	56.00	-25.28	QP	P		
8	1.2703	9.45	10.03	19.48	46.00	-26.52	AVG	P		
9	18.4695	22.10	10.45	32.55	60.00	-27.45	QP AVG	P		
10	18.4695 23.5860	3.36 29.53	10.45 10.37	13.81 39.90	50.00 60.00	-36.19 -20.10	AVG QP	P P		
12	23.5860	29.33	10.37	37.11	50.00	-12.89	AVG	P		
12	20.0000	20.14	10.07	01.11	00.00	12.03				

Test P	Plots and Data of Cor	nducted Emissi	ons					
Testeo	d Model:	FM-NI5C-HD2	2WH					
Testeo	d Mode:	TM1						
Test V	/oltage:	AC 120V/60H	Z					
Test P	ower Line:	Live						
Rema	rk:							
90.0	dBuV							
[
80							_	
70								
								FCC Part15 CE-Class B_QP
60 🗲	3	~~						
50	5							FCC Part15 CE-Class B_AVe
40	a My	M.						
	where a	many many	and Manhority					Å
30		March Martin	aput Munther My	14nA				× v
20		- And Marine		the work the state of	WWWWWWWW		_	19/14
10				n man and the state	- Marine	market Mayer	honowigh	www.www.while
					and the second sec	un mana		
0								
-10	150	0.500		(MHz)		5.0	00	30.000
<u> </u>		0.500		(J.0		
No.		ading Factor BuV) (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1		9.27	39.82	56.00	-16.18	AVG	Ρ	
2 *		9.39 9.25	58.64	65.97	-7.33	QP	P	
3		4.62 9.47 4.51 9.47	54.09 33.98	61.94 51.94	-7.85 -17.96	QP AVG	P P	
5		8.06 9.78	47.84	59.92	-12.08	QP	P	
6		9.89 9.78	29.67	49.92	-20.25	AVG	Ρ	
7		.88 10.03	31.91	56.00	-24.09	QP	Ρ	
8		0.00 10.03	20.03	46.00	-25.97	AVG	P	
9 10		3.9810.49.9610.49	29.47 15.45	60.00 50.00	-30.53 -34.55	QP AVG	P P	
11		.96 10.49 5.88 10.40	36.28	60.00	-34.55 -23.72	AVG QP	P P	
12		3.51 10.40	23.91	50.00	-26.09	AVG	P	
			1					1

4. Radiated Disturbance


4.1 Standard and Limit

According to the rule FCC Part 15.109, Radiated emission limit for a class A and class B device as below:

Frequency of Emission (MHz)	Class A (3m)	Class B (3m)							
Frequency of Emission (MHz)	Quasi-peak (dBuV/m)	Quasi-peak (dBuV/m)							
30-88	50	40							
88-216	54.0	43.5							
216-960	57.0	46							
Above 960	60	54							
Note: The more stringent limit applies at transition frequencies.									

4.2 Test Procedure

Test is conducting under the description of ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

Test Setup Block Diagram

4.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.109 standard limit for a Class B device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Fest P	lots and	Data o	f Radia	ated	Emissi	ion	S									
Tested Model:				FM-NI5C-HD2WH												
Tested Mode:					TM1											
Test Voltage:					AC 120V/60Hz											
Test Antenna Polarization:					Horizontal											
Remark:					1101120	mu	•									
80.0	dBuV∕r	n														
[
70																_
60																
										FC	C Part15 RI	E-Class B_	30-10	DOMHz		
50										Ma	rgin -6 dB					-
40																4
														5 X	SX Muylun	
30														and w	multi	11417
20		1						2 X	З Х		*	al marker and	1 provinsion	~		
	programming	rmalmal.	- MARMAN	him	the		whenman	awarded with	What have	Murriy MAM	anut have					
10					· • • • • • • • • • • • • • • • • • • •	ndi se	WHA AND IN									_
0.0																
30	.000		60.	.00				(MHz)		300).00				10	00.000
	_		Deed		E a ata		Laural	1 : :4	Manusia							
No.	Frequ (MI		Readi (dBu	V)	Facto (dB/m		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Rer	nark	
1	48.8		26.6		-8.83		17.78	40.00	-22.22	QP	100	353	Ρ			
2	184.4		32.8		-11.3		21.48	43.50	-22.02	QP	100	346	P			
3	198.		33.4		-12.02		21.44	43.50	-22.06	QP	100	353	P			
4	393.4	4723	28.1	6	-6.11		22.05	46.00	-23.95	QP	100	338	P			

5 *

6

744.8661

878.3214

31.60

28.90

0.73

2.92

32.33

31.82

46.00

46.00

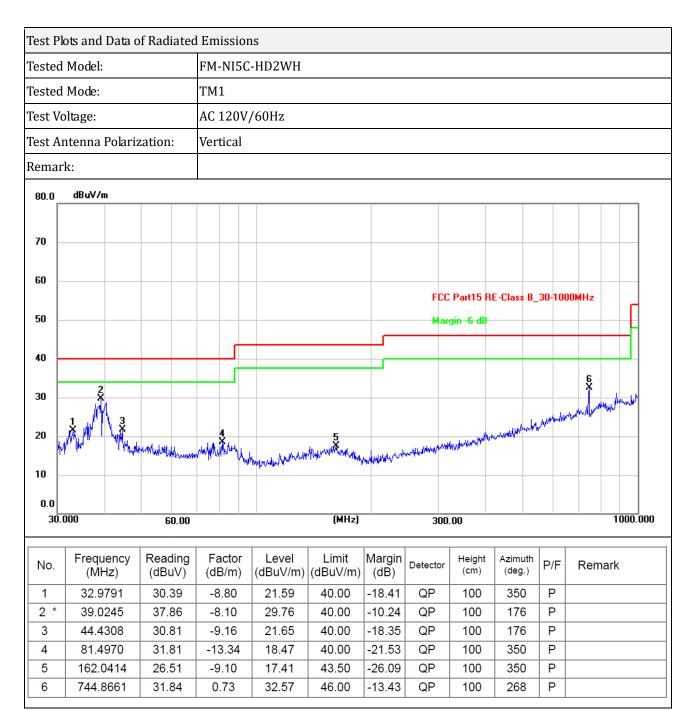
-13.67

-14.18

QP

QP

100


100

103

93

Ρ

Ρ

Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded in report.