1. MAXIMUM PERMISSIBLE EXPOSURE (MPE)

1.1 General Information

Client Information	
Applicant:	ARTIKA FOR LIVING INC
Address of applicant:	1756 50th Avenue Lachine, Quebec Canada, H8T 2V5
Manufacturer:	SHEN ZHEN HIDIN TECHNOLOGY CO., LTD
Address of manufacturer:	6th floor, No. 1301-59, Yinxing Industrial Park, Guanlan,
	Longhua district, Shenzhen, Guangdong China

General Description of EUT:

Product Name:	Dimmer Switch Gradateur
Trade Name:	/
Model No.:	DIM-PULW
Adding Model(s):	/
Rated Voltage:	AC120V
Power Adapter Model:	/
FCC ID:	2AUHG-DIM-PULW-1
Equipment Type:	Fixed Device

Technical Characteristics of EUT:

802.11b, 802.11g, 802.11n-HT20
2412-2462MHz for 802.11b/g/n(HT20)
15.16dBm (Conducted)
DBPSK,BPSK,DQPSK,QPSK,16QAM,64QAM
11 for 802.11b/g/n(HT20);
5MHz
PCB Antenna
3dBi

1.2 Standard Applicable

According to § 1.1307(b)(1) and KDB 447498 D01 General RF Exposure Guidance v06, system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.

(a) Limits for Occupational / Controlled Exposure

Frequency range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Times $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500	/	/	F/300	6
1500-100000	/	/	5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Times $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	F/1500	30
1500-100000	/	/	1	30

Note: f = frequency in MHz: * = Plane-wave equivalents power density

1.3 MPE Calculation Method

 $S = (30*P*G) / (377*R^2)$

S = power density (in appropriate units, e.g., mw/cm²)

P = power input to the antenna (in appropriate units, e.g., mw)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor is normally numeric gain.

 \mathbf{R} = distance to the center of radiation of the antenna (in appropriate units, e.g., cm)

1.4 MPE Calculation Result

For Wi-Fi

Maximum Tune-Up output power: <u>16.0 (dBm)</u> Maximum peak output power at antenna input terminal: <u>39.81 (mW)</u> Prediction distance: <u>>20(cm)</u> Prediction frequency: <u>2412 (MHz)</u> Antenna gain: <u>3 (dBi)</u> Directional gain (numeric gain): <u>2.0</u> The worst case is power density at prediction frequency at 20cm: <u>0.0158 (mw/cm²)</u> MPE limit for general population exposure at prediction frequency: <u>1 (mw/cm²)</u>

Result: Pass