

# RADIO TEST REPORT FCC ID: 2AUHC-CTIP401

Product:4G Smart phoneTrade Mark:CommuniTakeModel No.:CTIP401Family Model:N/AReport No.:S19082902506001Issue Date:16 Mar. 2020

# **Prepared for**

CommuniTake Technologies Ltd. Yokneam Star Building, High-Tech Park, POB 344, Yokneam, Israel 2069205

# Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District Shenzhen, Guangdong, China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn



# TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

|            | TEST RESULT CERTIFICATION                                |    |
|------------|----------------------------------------------------------|----|
| 2          | SUMMARY OF TEST RESULTS                                  | 4  |
| 3          | FACILITIES AND ACCREDITATIONS                            | 5  |
| 3.1        | FACILITIES                                               | 5  |
| 3.2        |                                                          |    |
| 3.3        |                                                          |    |
|            | GENERAL DESCRIPTION OF EUT                               |    |
|            | DESCRIPTION OF TEST MODES                                |    |
| 6          | SETUP OF EQUIPMENT UNDER TEST                            | 9  |
| 6.1        |                                                          |    |
| 6.2        |                                                          | 10 |
| 6.3        |                                                          |    |
| 7          | FEST REQUIREMENTS                                        |    |
| 7.1        | CONDUCTED EMISSIONS TEST                                 |    |
| 7.2<br>7.3 |                                                          |    |
| 7.3        |                                                          |    |
| 7.5        | AVERAGE TIME OF OCCUPANCY (DWELL TIME)                   | 27 |
| 7.6        |                                                          |    |
| 7.7        |                                                          |    |
| 7.8<br>7.9 |                                                          | -  |
| 7.1        |                                                          |    |
| 7.1        | 1 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS |    |
| 8          | FEST RESULTS                                             | 35 |
| 8.1        | DWELL TIME                                               | 35 |
| 8.2        | MAXIMUM CONDUCTED OUTPUT POWER                           | 40 |
| 8.3        |                                                          |    |
| 8.4        |                                                          | 50 |
| 8.5<br>8.6 |                                                          |    |
| 8.7        | CONDUCTED RF SPURIOUS EMISSION                           |    |
| - / •      |                                                          |    |

# NTEKJL测

# **1 TEST RESULT CERTIFICATION**

| Applicant's name:            | CommuniTake Technologies Ltd.                                                                           |  |
|------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Address                      | Yokneam Star Building, High-Tech Park, POB 344, Yokneam, Israel 2069205                                 |  |
| Manufacturer's Name:         | Shenzhen Joyhong Technology Co., Ltd.                                                                   |  |
| Address:                     | Building A2, Xinhu Second Industrial Park, Zhongtai Road, Guangming, Bao'an, Shenzhen, Guangdong, China |  |
| Product description          |                                                                                                         |  |
| Product name:                | 4G Smart phone                                                                                          |  |
| Model and/or type reference: | CTIP401                                                                                                 |  |
| Family Model:                | N/A                                                                                                     |  |

Certificate #4298.01

#### Measurement Procedure Used:

#### APPLICABLE STANDARDS

| STANDARD/ TEST PROCEDURE                                                                                                      | TEST RESULT |
|-------------------------------------------------------------------------------------------------------------------------------|-------------|
| FCC 47 CFR Part 2, Subpart J<br>FCC 47 CFR Part 15, Subpart C<br>KDB 174176 D01 Line Conducted FAQ v01r01<br>ANSI C63.10-2013 | Complied    |

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

| Date of Test         | : | 20 Dec. 2019 ~ 10 Mar 2020 |
|----------------------|---|----------------------------|
| Testing Engineer     | : | Krang. Hu                  |
|                      |   | (Mary Hu)                  |
| Technical Manager    | : | Jason chen                 |
| -                    |   | (Jason Chen)               |
|                      |   | Sam. Chew                  |
| Authorized Signatory | : |                            |
|                      |   | (Sam Chen)                 |
|                      |   |                            |
|                      |   |                            |
|                      |   |                            |

# **NTEK北测**

# 2 SUMMARY OF TEST RESULTS

| FCC Part15 (15.247), Subpart C |                                |         |        |  |
|--------------------------------|--------------------------------|---------|--------|--|
| Standard Section               | Test Item                      | Verdict | Remark |  |
| 15.207                         | Conducted Emission             | PASS    |        |  |
| 15.209 (a)<br>15.205 (a)       | Radiated Spurious Emission     | PASS    |        |  |
| 15.247(a)(1)                   | Hopping Channel Separation     | PASS    |        |  |
| 15.247(b)(1)                   | Peak Output Power              | PASS    |        |  |
| 15.247(a)(iii)                 | Number of Hopping Frequency    | PASS    |        |  |
| 15.247(a)(iii)                 | Dwell Time                     | PASS    |        |  |
| 15.247(a)(1)                   | Bandwidth                      | PASS    |        |  |
| 15.247 (d)                     | Band Edge Emission             | PASS    |        |  |
| 15.247 (d)                     | Spurious RF Conducted Emission | PASS    |        |  |
| 15.203                         | Antenna Requirement            | PASS    |        |  |

ACC

Certificate #4298.01

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.



# **3 FACILITIES AND ACCREDITATIONS**

#### 3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

#### 3.2 LABORATORY ACCREDITATIONS AND LISTINGS

| Site Description |                                                                        |
|------------------|------------------------------------------------------------------------|
| CNAS-Lab.        | : The Laboratory has been assessed and proved to be in compliance with |
|                  | CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)                       |
|                  | The Certificate Registration Number is L5516.                          |
| IC-Registration  | The Certificate Registration Number is 9270A.                          |
|                  | CAB identifier:CN0074                                                  |
| FCC- Accredited  | Test Firm Registration Number: 463705.                                 |
|                  | Designation Number: CN1184                                             |
| A2LA-Lab.        | The Certificate Registration Number is 4298.01                         |
|                  | This laboratory is accredited in accordance with the recognized        |
|                  | International Standard ISO/IEC 17025:2005 General requirements for     |
|                  | the competence of testing and calibration laboratories.                |
|                  | This accreditation demonstrates technical competence for a defined     |
|                  | scope and the operation of a laboratory quality management system      |
|                  | (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).         |
| Name of Firm     | : Shenzhen NTEK Testing Technology Co., Ltd.                           |
| Site Location    | : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang       |
|                  | Street, Bao'an District, Shenzhen 518126 P.R. China.                   |

#### 3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y\pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                | Uncertainty |
|-----|-------------------------------------|-------------|
| 1   | Conducted Emission Test             | ±2.80dB     |
| 2   | RF power, conducted                 | ±0.16dB     |
| 3   | Spurious emissions, conducted       | ±0.21dB     |
| 4   | All emissions, radiated(30MHz~1GHz) | ±2.64dB     |
| 5   | All emissions, radiated(1GHz~6GHz)  | ±2.40dB     |
| 6   | All emissions, radiated(>6GHz)      | ±2.52dB     |
| 7   | Temperature ±0.5°C                  |             |
| 8   | Humidity ±2%                        |             |

# **NTEK北测**

# 4 GENERAL DESCRIPTION OF EUT

| Product Feature and Specification |                                                                                                |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------|--|--|
| Equipment                         | 4G Smart phone                                                                                 |  |  |
| Trade Mark                        | CommuniTake                                                                                    |  |  |
| FCC ID                            | 2AUHC-CTIP401                                                                                  |  |  |
| Model No.                         | CTIP401                                                                                        |  |  |
| Family Model                      | N/A                                                                                            |  |  |
| Model Difference                  | N/A                                                                                            |  |  |
| Operating Frequency               | 2402MHz~2480MHz                                                                                |  |  |
| Modulation                        | GFSK, π/4-DQPSK, 8-DPSK                                                                        |  |  |
| Bluetooth Version                 | BT V4.0                                                                                        |  |  |
| Number of Channels                | 79 Channels                                                                                    |  |  |
| Antenna Type                      | FPC Antenna                                                                                    |  |  |
| Antenna Gain                      | 1dBi                                                                                           |  |  |
|                                   | DC supply:<br>3.8V/3000mAh from Battery or DC 5V from type C Port.                             |  |  |
| Power supply                      | Adapter supply:<br>Model: SR-C50501000U1<br>Input: 100-240V~50/60Hz 0.2A<br>Output: 5.0V1000mA |  |  |
| HW Version                        | PD3S23CBG1A                                                                                    |  |  |
| SW Version                        | PD3S23.ZGW.F5732.HB.P0.HP.H6.0626.V0.04                                                        |  |  |

ACCRED

Certificate #4298.01

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.



# **Revision History**

ACCREDITED

Certificate #4298.01

| Report No.      | Version | Description             | Issued Date  |
|-----------------|---------|-------------------------|--------------|
| S19082902506001 | Rev.01  | Initial issue of report | Mar 16, 2020 |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |



### **5 DESCRIPTION OF TEST MODES**

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for  $\pi$ /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

#### Carrier Frequency and Channel list:

| Channel | Frequency(MHz) |
|---------|----------------|
| 0       | 2402           |
| 1       | 2403           |
|         |                |
| 39      | 2441           |
| 40      | 2442           |
|         |                |
| 77      | 2479           |
| 78      | 2480           |

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

| For AC Conducted Emission |                  |  |
|---------------------------|------------------|--|
| Final Test Mode           | Description      |  |
| Mode 1                    | normal link mode |  |
|                           |                  |  |

Note: AC power line Conducted Emission was tested under maximum output power.

| For Radiated Test Cases |                  |  |
|-------------------------|------------------|--|
| Final Test Mode         | Description      |  |
| Mode 1                  | normal link mode |  |
| Mode 2                  | CH00(2402MHz)    |  |
| Mode 3                  | CH39(2441MHz)    |  |
| Mode 4                  | CH78(2480MHz)    |  |

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

| For Conducted Test Cases    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Final Test Mode Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Mode 2                      | CH00(2402MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Mode 3 CH39(2441MHz)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Mode 4                      | CH78(2480MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Mode 5                      | Mode 5 Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                             | and the second sec |  |  |  |  |  |

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

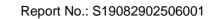


| 6 SETUP OF EQUIPMENT UNDER TEST                                                                                                                                |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM<br>For AC Conducted Emission Mode                                                                               |                         |
| AC PLUG                                                                                                                                                        |                         |
| EUT                                                                                                                                                            |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
| For Radiated Test Cases                                                                                                                                        |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
| EUT                                                                                                                                                            |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
| For Conducted Test Cases                                                                                                                                       |                         |
|                                                                                                                                                                |                         |
| C-1                                                                                                                                                            |                         |
| Measurement EUT                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
| Note: 1. The temporary antenna connector is soldered on the PCB board in order to                                                                              | perform conducted tests |
| <ul><li>and this temporary antenna connector is listed in the equipment list.</li><li>2. EUT built-in battery-powered, the battery is fully-charged.</li></ul> |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |
|                                                                                                                                                                |                         |



#### 6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


| Item | Equipment | Mfr/Brand | Model/Type No. | Series No. | Note |
|------|-----------|-----------|----------------|------------|------|
|      |           |           |                |            |      |
|      |           |           |                |            |      |
|      |           |           |                |            |      |
|      |           |           |                |            |      |
|      |           |           |                |            |      |

| Item | Cable Type | Shielded Type | Ferrite Core | Length |
|------|------------|---------------|--------------|--------|
| C-1  | RF Cable   | YES           | NO           | 0.1m   |
|      |            |               |              |        |
|      |            |               |              |        |
|      |            |               |              |        |
|      |            |               |              |        |
|      |            |               |              |        |
|      |            |               |              |        |

#### Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

# **NTEK北测**



#### 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

#### Radiation& Conducted Test equipment

| Kind of<br>Equipment                        | Manufacturer                                                                                                                                                                                                                                                    | Turne Me                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Calibrated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Calibrati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                                                                                                                                                                                                                                                                 | Type No.                                                                                                                                                                                                                                                                                                                                                                       | Serial No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calibrated<br>until                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on<br>period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Spectrum<br>Analyzer                        | Aglient                                                                                                                                                                                                                                                         | E4407B                                                                                                                                                                                                                                                                                                                                                                         | MY45108040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2019.05.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.05.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spectrum<br>Analyzer                        | Agilent                                                                                                                                                                                                                                                         | N9020A                                                                                                                                                                                                                                                                                                                                                                         | MY49100060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2019.08.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.08.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spectrum<br>Analyzer                        | R&S                                                                                                                                                                                                                                                             | FSV40                                                                                                                                                                                                                                                                                                                                                                          | 101417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2019.08.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.08.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Receiver                               | R&S                                                                                                                                                                                                                                                             | ESPI7                                                                                                                                                                                                                                                                                                                                                                          | 101318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2019.05.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.05.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bilog Antenna                               | TESEQ                                                                                                                                                                                                                                                           | CBL6111D                                                                                                                                                                                                                                                                                                                                                                       | 31216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2019.04.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.04.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50Ω Coaxial<br>Switch                       | Anritsu                                                                                                                                                                                                                                                         | MP59B                                                                                                                                                                                                                                                                                                                                                                          | 6200983705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2018.05.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.05.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Horn Antenna                                | EM                                                                                                                                                                                                                                                              | EM-AH-1018<br>0                                                                                                                                                                                                                                                                                                                                                                | 2011071402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2019.04.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.04.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Broadband<br>Horn Antenna                   | SCHWARZBE<br>CK                                                                                                                                                                                                                                                 | BBHA 9170                                                                                                                                                                                                                                                                                                                                                                      | 803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2019.12.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.12.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Amplifier                                   | EMC                                                                                                                                                                                                                                                             | EMC051835<br>SE                                                                                                                                                                                                                                                                                                                                                                | 980246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2019.08.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.08.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Active Loop<br>Antenna                      | SCHWARZBE<br>CK                                                                                                                                                                                                                                                 | FMZB 1519<br>B                                                                                                                                                                                                                                                                                                                                                                 | 055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2018.12.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2019.12.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Power Meter                                 | DARE                                                                                                                                                                                                                                                            | RPR3006W                                                                                                                                                                                                                                                                                                                                                                       | 15I00041SN<br>084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2019.08.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.08.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Cable<br>(9KHz-30MHz)                  | N/A                                                                                                                                                                                                                                                             | R-01                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2017.04.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.04.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Cable                                  | N/A                                                                                                                                                                                                                                                             | R-02                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2017.04.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.04.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| High Test<br>Cable(1G-40G<br>Hz)            | N/A                                                                                                                                                                                                                                                             | R-03                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2017.04.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.04.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| High Test<br>Cable(1G-40G<br>Hz)            | N/A                                                                                                                                                                                                                                                             | R-04                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2017.04.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.04.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Filter                                      | TRILTHIC                                                                                                                                                                                                                                                        | 2400MHz                                                                                                                                                                                                                                                                                                                                                                        | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2017.04.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2020.04.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| temporary<br>antenna<br>connector<br>(Note) | NTS                                                                                                                                                                                                                                                             | R001                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                             | AnalyzerSpectrumAnalyzerSpectrumAnalyzerTest ReceiverBilog Antenna50Ω CoaxialSwitchHorn AntennaBroadbandHorn AntennaAnglifierActive LoopAntennaPower MeterTest Cable(30MHz-1GHz)High TestCable(1G-40GHz)High TestCable(1G-40GHz)Filtertemporaryantennaconnector | AnalyzerAgilentSpectrum<br>AnalyzerAgilentSpectrum<br>AnalyzerR&STest ReceiverR&SBilog AntennaTESEQ50Ω Coaxial<br>SwitchAnritsuHorn AntennaEMBroadband<br>Horn AntennaSCHWARZBE<br>CKAmplifierEMCAntennaCKPower MeterDARETest Cable<br>(9KHz-30MHz)N/AHigh Test<br>Cable(1G-40G<br>Hz)N/AHigh Test<br>Cable(1G-40G<br>Hz)N/AFilterTRILTHICtemporary<br>antenna<br>connectorNTS | AnalyzerAgilentE4407 BSpectrum<br>AnalyzerAgilentN9020ASpectrum<br>AnalyzerR&SFSV40Test ReceiverR&SESPI7Bilog AntennaTESEQCBL6111D50Ω Coaxial<br>SwitchAnritsuMP59BHorn AntennaEMEM-AH-1018<br>0Broadband<br>Horn AntennaSCHWARZBE<br>CKBBHA 9170AmplifierEMCEMC051835<br>SEActive Loop<br>AntennaSCHWARZBE<br>CKFMZB 1519<br>BPower MeterDARERPR3006WTest Cable<br>(9KHz-30MHz)N/AR-01High Test<br>Cable(1G-40G<br>Hz)N/AR-03High Test<br>Cable(1G-40G<br>Hz)N/AR-04High Test<br>Cable(1G-40G<br>Hz)N/AR-04FilterTRILTHIC2400MHztemporary<br>antenna<br>connectorNTSR001 | AnalyzerAgilentE4407BMT45108040Spectrum<br>AnalyzerAgilentN9020AMY49100060Spectrum<br>AnalyzerR&SFSV40101417Test ReceiverR&SESPI7101318Bilog AntennaTESEQCBL6111D3121650Ω Coaxial<br>SwitchAnritsuMP59B6200983705Horn AntennaEMEM-AH-1018<br>02011071402Broadband<br>Horn AntennaSCHWARZBE<br>CKBBHA 9170803AmplifierEMCEMC051835<br>SE980246Active Loop<br>AntennaSCHWARZBE<br>CKFMZB 1519<br>B055Power MeterDARERPR3006W15100041SN<br>O84Test Cable<br>(9KHz-30MHz)N/AR-01N/AHigh Test<br>Cable(1G-40G<br>Hz)N/AR-03N/AHigh Test<br>Cable(1G-40G<br>Hz)N/AR-04N/AFilterTRILTHIC2400MHz29temporary<br>antenna<br>connectorNTSR001N/A | AnalyzerAgilentE4407BMY451080402019.05.13Spectrum<br>AnalyzerAgilentN9020AMY491000602019.08.28Spectrum<br>AnalyzerR&SFSV401014172019.08.28Test ReceiverR&SESPI71013182019.05.13Bilog AntennaTESEQCBL6111D312162019.04.1550Ω Coaxial<br>SwitchAnritsuMP59B62009837052018.05.19Horn AntennaEMEM-AH-1018<br>02019.04.152019.04.15Broadband<br>Horn AntennaEMEMC051835<br>SE9802462019.04.15AmplifierEMCEMC051835<br>SE9802462019.08.04AttennaCKFMZB 1519<br>B0552018.12.11Power MeterDARERPR3006W15100041SN<br>O8442017.04.21Test Cable<br>(9KHz-30MHz)N/AR-01N/A2017.04.21High Test<br>Cable(1G-40G<br>Hz)N/AR-03N/A2017.04.21High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2017.04.21High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2017.04.21High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2017.04.21High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2017.04.21High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2017.04.21High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2017.04.21High Test<br>Cable(1G-40G<br>Hz)N/AR001 <td>AnalyzerAgilentE4407BM1431080402019.05.132020.05.12Spectrum<br/>AnalyzerAgilentN9020AMY491000602019.08.282020.08.27Spectrum<br/>AnalyzerR&amp;SFSV401014172019.08.282020.08.27Test ReceiverR&amp;SESPI71013182019.05.132020.05.12Bilog AntennaTESEQCBL6111D312162019.04.152020.04.1450Ω Coaxial<br/>SwitchAnritsuMP59B62009837052018.05.192020.05.18Horn AntennaEMEM-AH-1018<br/>020110714022019.04.152020.04.14Broadband<br/>Horn AntennaCKEMC051835<br/>S9802462019.08.042020.08.03Active Loop<br/>AntennaSCHWARZBE<br/>CKFMZB 1519<br/>B0552018.12.112019.12.10Power MeterDARERPR3006W15100041SN<br/>O842019.08.042020.04.20WetkIz-30MHz)N/AR-01N/A2017.04.212020.04.20High Test<br/>Cable (1G-40G<br/>Hz)N/AR-03N/A2017.04.212020.04.20High Test<br/>Cable(1G-40G<br/>Hz)N/AR-04N/A2017.04.212020.04.20High Test<br/>Cable(1G-40G<br/>Hz)N/AR-04N/A2017.04.212020.04.20High Test<br/>Cable(1G-40G<br/>Hz)N/AR-04N/A2017.04.212020.04.20High Test<br/>Cable(1G-40G<br/>Hz)N/AR-04N/A2017.04.212020.04.20FilterTRILTHIC2400MHz29<td< td=""></td<></td> | AnalyzerAgilentE4407BM1431080402019.05.132020.05.12Spectrum<br>AnalyzerAgilentN9020AMY491000602019.08.282020.08.27Spectrum<br>AnalyzerR&SFSV401014172019.08.282020.08.27Test ReceiverR&SESPI71013182019.05.132020.05.12Bilog AntennaTESEQCBL6111D312162019.04.152020.04.1450Ω Coaxial<br>SwitchAnritsuMP59B62009837052018.05.192020.05.18Horn AntennaEMEM-AH-1018<br>020110714022019.04.152020.04.14Broadband<br>Horn AntennaCKEMC051835<br>S9802462019.08.042020.08.03Active Loop<br>AntennaSCHWARZBE<br>CKFMZB 1519<br>B0552018.12.112019.12.10Power MeterDARERPR3006W15100041SN<br>O842019.08.042020.04.20WetkIz-30MHz)N/AR-01N/A2017.04.212020.04.20High Test<br>Cable (1G-40G<br>Hz)N/AR-03N/A2017.04.212020.04.20High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2017.04.212020.04.20High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2017.04.212020.04.20High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2017.04.212020.04.20High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2017.04.212020.04.20FilterTRILTHIC2400MHz29 <td< td=""></td<> |

ACC

Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list



#### AC Conduction Test equipment Kind of Calibration Last Calibrated Manufacturer Type No. Serial No. Item Equipment calibration until period Test Receiver R&S ESCI 101160 2019.05.13 2020.05.12 1 1 year 2 LISN R&S **ENV216** 101313 2019.04.15 2020.04.14 1 year SCHWARZBE LISN **NNLK 8129** 3 8129245 2019.05.13 2020.05.12 1 year CK 50Ω Coaxial ANRITSU 4 MP59B 6200983704 2018.05.19 2020.05.18 2 year Switch CORP **Test Cable** 5 (9KHz-30MH N/A C01 N/A 2017.04.21 2020.04.20 3 year Z) Test Cable 6 (9KHz-30MH N/A C02 N/A 2017.04.21 2020.04.20 3 year Z) Test Cable C03 N/A 2017.04.21 2020.04.20 7 (9KHz-30MH N/A 3 year Z)

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

# NTEKJLIM CERTIFICATE #4298.01

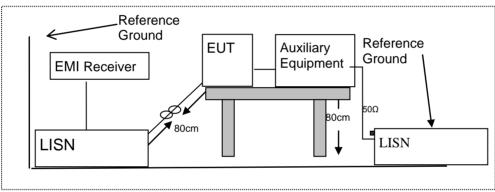
# 7 TEST REQUIREMENTS

#### 7.1 CONDUCTED EMISSIONS TEST

#### 7.1.1 Applicable Standard

According to FCC Part 15.207(a)

#### 7.1.2 Conformance Limit


| Frequency (MHz) | Conducted  | Emission Limit |
|-----------------|------------|----------------|
| Frequency(MHz)  | Quasi-peak | Average        |
| 0.15-0.5        | 66-56*     | 56-46*         |
| 0.5-5.0         | 56         | 46             |
| 5.0-30.0        | 60         | 50             |

Note: 1. \*Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

#### 7.1.3 Test Configuration



#### 7.1.4 Test Procedure

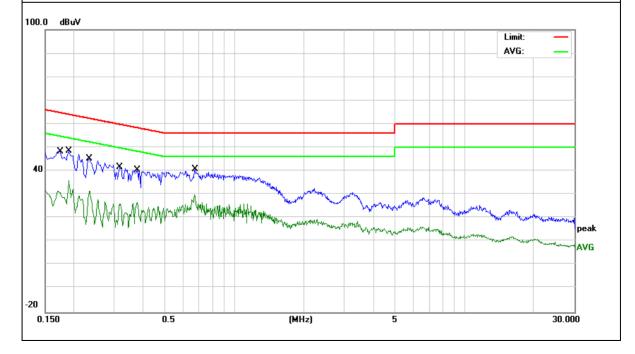
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

#### 7.1.5 Test Results

Pass




#### 7.1.6 Test Results

| EUT:           | 4G Smart phone                  | Model Name :       | CTIP401 |
|----------------|---------------------------------|--------------------|---------|
| Temperature:   | 26 °C                           | Relative Humidity: | 54%     |
| Pressure:      | 1010hPa                         | Phase :            | L       |
| Test Voltage : | DC 5V from Adapter AC 120V/60Hz | Test Mode:         | Mode 1  |

| Frequency | Reading Level | Correct Factor | Measure-ment | Limits | Margin | Demonit |
|-----------|---------------|----------------|--------------|--------|--------|---------|
| (MHz)     | (dBµV)        | (dB)           | (dBµV)       | (dBµV) | (dB)   | Remark  |
| 0.1737    | 38.56         | 9.73           | 48.29        | 64.78  | -16.49 | QP      |
| 0.1737    | 21.71         | 9.73           | 31.44        | 54.78  | -23.34 | AVG     |
| 0.1900    | 38.97         | 9.73           | 48.70        | 64.03  | -15.33 | QP      |
| 0.1900    | 26.20         | 9.73           | 35.93        | 54.03  | -18.10 | AVG     |
| 0.2340    | 35.45         | 9.74           | 45.19        | 62.30  | -17.11 | QP      |
| 0.2340    | 21.75         | 9.74           | 31.49        | 52.30  | -20.81 | AVG     |
| 0.3180    | 31.77         | 9.74           | 41.51        | 59.76  | -18.25 | QP      |
| 0.3180    | 16.41         | 9.74           | 26.15        | 49.76  | -23.61 | AVG     |
| 0.3780    | 30.59         | 9.75           | 40.34        | 58.32  | -17.98 | QP      |
| 0.3780    | 16.98         | 9.75           | 26.73        | 48.32  | -21.59 | AVG     |
| 0.6740    | 30.92         | 9.75           | 40.67        | 56.00  | -15.33 | QP      |
| 0.6740    | 20.35         | 9.75           | 30.10        | 46.00  | -15.90 | AVG     |

Remark:

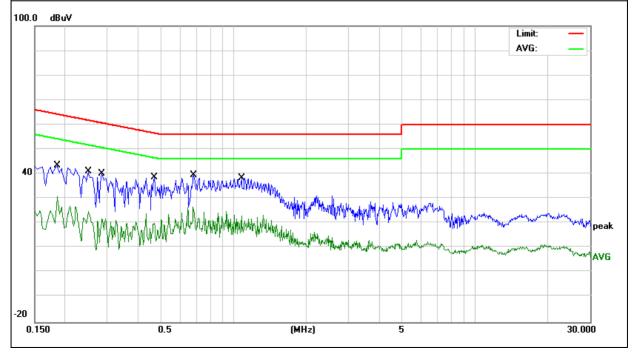
All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.





| EUT:           | 4G Smart phone                  | Model Name :       | CTIP401 |
|----------------|---------------------------------|--------------------|---------|
| Temperature:   | <b>26</b> ℃                     | Relative Humidity: | 54%     |
| Pressure:      | 1010hPa                         | Phase :            | Ν       |
| Test Voltage : | DC 5V from Adapter AC 120V/60Hz | Test Mode:         | Mode 1  |

ACCREDITED


Certificate #4298.01

| Frequency | Reading Level | Correct Factor | Measure-ment | Limits | Margin |        |
|-----------|---------------|----------------|--------------|--------|--------|--------|
| (MHz)     | (dBµV)        | (dB)           | (dBµV)       | (dBµV) | (dB)   | Remark |
| 0.1859    | 34.23         | 9.22           | 43.45        | 64.21  | -20.76 | QP     |
| 0.1859    | 21.55         | 9.22           | 30.77        | 54.21  | -23.44 | AVG    |
| 0.2500    | 31.75         | 9.23           | 40.98        | 61.75  | -20.77 | QP     |
| 0.2500    | 15.58         | 9.23           | 24.81        | 51.75  | -26.94 | AVG    |
| 0.2859    | 30.85         | 9.24           | 40.09        | 60.64  | -20.55 | QP     |
| 0.2859    | 12.66         | 9.24           | 21.90        | 50.64  | -28.74 | AVG    |
| 0.4699    | 29.17         | 9.34           | 38.51        | 56.52  | -18.01 | QP     |
| 0.4699    | 14.18         | 9.34           | 23.52        | 46.52  | -23.00 | AVG    |
| 0.6860    | 30.20         | 9.47           | 39.67        | 56.00  | -16.33 | QP     |
| 0.6860    | 17.17         | 9.47           | 26.64        | 46.00  | -19.36 | AVG    |
| 1.0820    | 28.89         | 9.43           | 38.32        | 56.00  | -17.68 | QP     |
| 1.0820    | 13.78         | 9.43           | 23.21        | 46.00  | -22.79 | AVG    |

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.





#### 7.2 RADIATED SPURIOUS EMISSION

#### 7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

#### 7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

| According to 1 00 1 alt 13.20 | coolding to 1 CO 1 artificado, restincted bands |               |             |  |  |  |  |
|-------------------------------|-------------------------------------------------|---------------|-------------|--|--|--|--|
| MHz                           | MHz                                             | MHz           | GHz         |  |  |  |  |
| 0.090-0.110                   | 16.42-16.423                                    | 399.9-410     | 4.5-5.15    |  |  |  |  |
| 0.495-0.505                   | 16.69475-16.69525                               | 608-614       | 5.35-5.46   |  |  |  |  |
| 2.1735-2.1905                 | 16.80425-16.80475                               | 960-1240      | 7.25-7.75   |  |  |  |  |
| 4.125-4.128                   | 25.5-25.67                                      | 1300-1427     | 8.025-8.5   |  |  |  |  |
| 4.17725-4.17775               | 37.5-38.25                                      | 1435-1626.5   | 9.0-9.2     |  |  |  |  |
| 4.20725-4.20775               | 73-74.6                                         | 1645.5-1646.5 | 9.3-9.5     |  |  |  |  |
| 6.215-6.218                   | 74.8-75.2                                       | 1660-1710     | 10.6-12.7   |  |  |  |  |
| 6.26775-6.26825               | 123-138                                         | 2200-2300     | 14.47-14.5  |  |  |  |  |
| 8.291-8.294                   | 149.9-150.05                                    | 2310-2390     | 15.35-16.2  |  |  |  |  |
| 8.362-8.366                   | 156.52475-156.52525                             | 2483.5-2500   | 17.7-21.4   |  |  |  |  |
| 8.37625-8.38675               | 156.7-156.9                                     | 2690-2900     | 22.01-23.12 |  |  |  |  |
| 8.41425-8.41475               | 162.0125-167.17                                 | 3260-3267     | 23.6-24.0   |  |  |  |  |
| 12.29-12.293                  | 167.72-173.2                                    | 3332-3339     | 31.2-31.8   |  |  |  |  |
| 12.51975-12.52025             | 240-285                                         | 3345.8-3358   | 36.43-36.5  |  |  |  |  |
| 12.57675-12.57725             | 322-335.4                                       | 3600-4400     | (2)         |  |  |  |  |
| 13.36-13.41                   |                                                 |               |             |  |  |  |  |

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Restricted<br>Frequency(MHz) | Field Strength (µV/m) | Field Strength (dBµV/m) | Measurement Distance |
|------------------------------|-----------------------|-------------------------|----------------------|
| 0.009~0.490                  | 2400/F(KHz)           | 20 log (uV/m)           | 300                  |
| 0.490~1.705                  | 24000/F(KHz)          | 20 log (uV/m)           | 30                   |
| 1.705~30.0                   | 30                    | 29.5                    | 30                   |
| 30-88                        | 100                   | 40                      | 3                    |
| 88-216                       | 150                   | 43.5                    | 3                    |
| 216-960                      | 200                   | 46                      | 3                    |
| Above 960                    | 500                   | 54                      | 3                    |

Limits of Radiated Emission Measurement(Above 1000MHz)

| Frequency(MHz) | Class B (dBuV/m) (at 3M) |      |         |  |  |
|----------------|--------------------------|------|---------|--|--|
|                | Frequency(Miriz)         | PEAK | AVERAGE |  |  |
|                | Above 1000               | 74   | 54      |  |  |

Remark :1. Emission level in dBuV/m=20 log (uV/m)

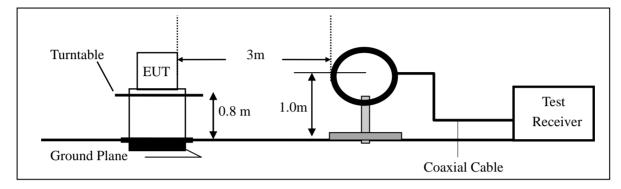
2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

- Distance extrapolation factor =40log(Specific distance/ test distance)(dB);
- Limit line=Specific limits(dBuV) + distance extrapolation factor.
- For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

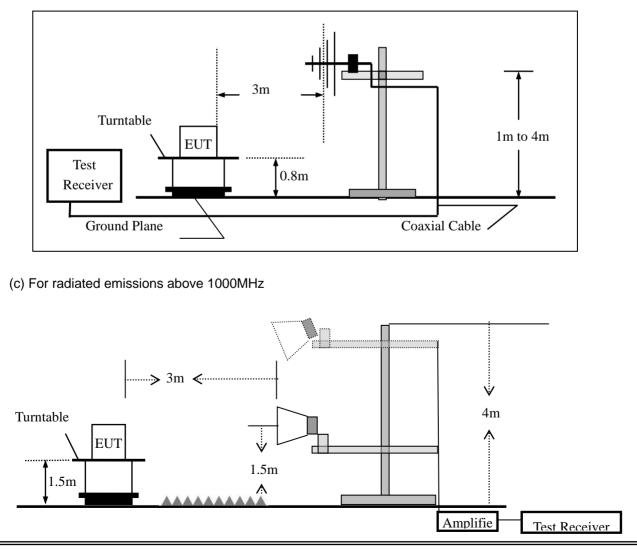
Limit line=Specific limits(dBuV) + distance extrapolation factor.




#### 7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.2.4 Test Configuration


#### (a) For radiated emissions below 30MHz



ACC

Certificate #4298.01

#### (b) For radiated emissions from 30MHz to 1000MHz





### 7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

| Spectrum Parameter                    | Setting                                          |
|---------------------------------------|--------------------------------------------------|
| Attenuation                           | Auto                                             |
| Start Frequency                       | 1000 MHz                                         |
| Stop Frequency                        | 10th carrier harmonic                            |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported



| During the radiated emission test, the | Spectrum Analyzer was set with the followin | a configurations. |
|----------------------------------------|---------------------------------------------|-------------------|
| During the radiated enhousen tool, the | speed and range of that the following       | g oornigarationo. |

| Frequency Band (MHz) | Function | Resolution bandwidth | Video Bandwidth |
|----------------------|----------|----------------------|-----------------|
| 30 to 1000           | QP       | 120 kHz              | 300 kHz         |
| Ah awa 4000          | Peak     | 1 MHz                | 1 MHz           |
| Above 1000           | Average  | 1 MHz                | 10 Hz           |

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10\*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

#### 7.2.6 Test Results

|  | Spurious | Emission | below | 30MHz | (9KHz to | 30MHz) | ) |
|--|----------|----------|-------|-------|----------|--------|---|
|--|----------|----------|-------|-------|----------|--------|---|

| EUT:         | 4G Smart phone    | Model No.:         | CTIP401 |
|--------------|-------------------|--------------------|---------|
| Temperature: | 20 °C             | Relative Humidity: | 48%     |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mary Hu |

| Freq. | Ant.Pol. | Emission Level(dBuV/m) |    | Limit 3 | m(dBuV/m) | Over(dB) |    |  |
|-------|----------|------------------------|----|---------|-----------|----------|----|--|
| (MHz) | H/V      | PK                     | AV | PK      | AV        | PK       | AV |  |
|       |          |                        |    |         |           |          |    |  |

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Report No.: S19082902506001



Spurious Emission below 1GHz (30MHz to 1GHz) 

All the modulation modes have been tested, and the worst result was report as below:

| EUT:           | 4G Smart phone | Model Name :       | CTIP401 |
|----------------|----------------|--------------------|---------|
| Temperature:   | <b>20</b> ℃    | Relative Humidity: | 48%     |
| Pressure:      | 1010hPa        | Test Mode:         | Mode 1  |
| Test Voltage : | DC 3.8V        |                    |         |

| Polar | Frequency | Meter<br>Reading | Factor | Emission<br>Level | Limits   | Margin | Remark |
|-------|-----------|------------------|--------|-------------------|----------|--------|--------|
| (H/V) | (MHz)     | (dBuV)           | (dB)   | (dBuV/m)          | (dBuV/m) | (dB)   |        |
| V     | 40.5591   | 15.53            | 13.62  | 29.15             | 40.00    | -10.85 | QP     |
| V     | 146.8877  | 19.95            | 12.03  | 31.98             | 43.50    | -11.52 | QP     |
| V     | 175.6516  | 19.15            | 9.75   | 28.90             | 43.50    | -14.60 | QP     |
| V     | 279.0436  | 12.73            | 15.59  | 28.32             | 46.00    | -17.68 | QP     |
| V     | 731.9202  | 7.05             | 24.86  | 31.91             | 46.00    | -14.09 | QP     |
| V     | 965.5421  | 6.48             | 28.24  | 34.72             | 54.00    | -19.28 | QP     |

#### Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit





| Polar        | Frequency     | ,            | Meter<br>Reading | Factor        | Emissior<br>Level  | ו          | Limits       | N       | largin             | Remark  |
|--------------|---------------|--------------|------------------|---------------|--------------------|------------|--------------|---------|--------------------|---------|
| (H/V)        | (MHz)         |              | (dBuV)           | (dB)          | (dBuV/m            | ) (        | (dBuV/m)     |         | (dB)               |         |
| Н            | 147.4036      |              | 20.46            | 11.99         | 32.45              |            | 43.50        | -       | 11.05              | QP      |
| Н            | 279.0436      |              | 12.17            | 15.59         | 27.76              |            | 46.00        | -       | 18.24              | QP      |
| Н            | 383.9318      |              | 10.67            | 17.07         | 27.74              |            | 46.00        | -       | 18.26              | QP      |
| Н            | 631.6884      |              | 8.73             | 22.36         | 31.09              |            | 46.00        | -       | 14.91              | QP      |
| Н            | 729.3582      |              | 7.76             | 24.75         | 32.51              |            | 46.00        |         | 13.49              | QP      |
| Н            | 968.9338      |              | 7.43             | 28.27         | 35.70              |            | 54.00        | -       | 18.30              | QP      |
|              | Level= Read   | lingLe       | vel+ Fa          | ctor, Margin= | = Absolute Le      | vel - Li   | mit          |         |                    |         |
|              |               |              |                  |               |                    |            |              |         | mit: –<br>argin: – |         |
|              |               |              |                  |               |                    |            |              |         |                    | f       |
| 32           | Martin Martin | www.horfy.dv |                  |               | 2<br>A market with | Mar Luckin | Marthorewood | 4<br>** | 5<br>              | 6       |
| -8<br>30.000 | 40 50 60      | ) 70         | 80               | (MH:          | z]                 | 300        | 400 500      | 600     | 700 10             | 000.000 |



| UT:                     | Model No.:    |               |                    | CTIP401          |                   |            |          |         |            |
|-------------------------|---------------|---------------|--------------------|------------------|-------------------|------------|----------|---------|------------|
| Temperature:            | Relative      | Humidity      | 4                  | 8%               |                   |            |          |         |            |
| Test Mode: Mode2/ Mode4 |               |               |                    |                  | Test By:          |            | N        | lary Hu |            |
| All the modulat         | ion modes     | s have be     | een testeo         | d, and the v     | vorst resu        | It was rep | ort as b | elow:   |            |
| Frequency               | Read<br>Level | Cable<br>loss | Antenn<br>a Factor | Preamp<br>Factor | Emission<br>Level | Limits     | Margin   | Remark  | Comment    |
| (MHz)                   | (dBµV)        | (dB)          | dB/m               | (dB)             | (dBµ              | (dBµ       | (dB)     |         |            |
|                         |               | L             | ow Chanr           | nel (2402 M      | Hz)(GFS⊧          | K)Above    | 1G       |         |            |
| 4804.68                 | 68.85         | 5.21          | 35.59              | 44.30            | 65.35             | 74.00      | -8.65    | Pk      | Vertical   |
| 4804.68                 | 43.42         | 5.21          | 35.59              | 44.30            | 39.92             | 54.00      | -14.08   | B AV    | Vertical   |
| 7206.18                 | 61.45         | 6.48          | 36.27              | 44.60            | 59.60             | 74.00      | -14.40   | ) Pk    | Vertical   |
| 7206.18                 | 42.86         | 6.48          | 36.27              | 44.60            | 41.01             | 54.00      | -12.99   | ) AV    | Vertical   |
| 4804.22                 | 64.19         | 5.21          | 35.55              | 44.30            | 60.65             | 74.00      | -13.35   | 5 Pk    | Horizontal |
| 4804.22                 | 43.04         | 5.21          | 35.55              | 44.30            | 39.50             | 54.00      | -14.50   | ) AV    | Horizontal |
| 7206.05                 | 60.60         | 6.48          | 36.27              | 44.52            | 58.83             | 74.00      | -15.17   | ' Pk    | Horizontal |
| 7206.05                 | 40.16         | 6.48          | 36.27              | 44.52            | 38.39             | 54.00      | -15.61   | AV      | Horizontal |
|                         |               | Ν             | /lid Chann         | el (2441 M       | Hz)(GFSK          | ()Above    | 1G       |         |            |
| 4882.34                 | 65.73         | 5.21          | 35.66              | 44.20            | 62.40             | 74.00      | -11.60   | ) Pk    | Vertical   |
| 4882.34                 | 43.40         | 5.21          | 35.66              | 44.20            | 40.07             | 54.00      | -13.93   | B AV    | Vertical   |
| 7323.27                 | 64.56         | 7.10          | 36.50              | 44.43            | 63.73             | 74.00      | -10.27   | ' Pk    | Vertical   |
| 7323.27                 | 43.45         | 7.10          | 36.50              | 44.43            | 42.62             | 54.00      | -11.38   | B AV    | Vertical   |
| 4882.30                 | 64.36         | 5.21          | 35.66              | 44.20            | 61.03             | 74.00      | -12.97   | ' Pk    | Horizontal |
| 4882.30                 | 41.09         | 5.21          | 35.66              | 44.20            | 37.76             | 54.00      | -16.24   | AV      | Horizontal |
| 7324.77                 | 60.13         | 7.10          | 36.50              | 44.43            | 59.30             | 74.00      | -14.70   | ) Pk    | Horizontal |
| 7324.77                 | 41.36         | 7.10          | 36.50              | 44.43            | 40.53             | 54.00      | -13.47   | Y AV    | Horizontal |
|                         |               | H             | igh Chanr          | nel (2480 M      | Hz)(GFSk          | () Above   | 1G       |         |            |
| 4959.66                 | 64.04         | 5.21          | 35.52              | 44.21            | 60.56             | 74.00      | -13.44   | l Pk    | Vertical   |
| 4959.66                 | 43.99         | 5.21          | 35.52              | 44.21            | 40.51             | 54.00      | -13.49   | ) AV    | Vertical   |
| 7439.64                 | 61.90         | 7.10          | 36.53              | 44.60            | 60.93             | 74.00      | -13.07   | ' Pk    | Vertical   |
| 7439.64                 | 43.76         | 7.10          | 36.53              | 44.60            | 42.79             | 54.00      | -11.21   | AV      | Vertical   |
| 4960.22                 | 60.10         | 5.21          | 35.52              | 44.21            | 56.62             | 74.00      | -17.38   | B Pk    | Horizontal |
| 4960.22                 | 43.98         | 5.21          | 35.52              | 44.21            | 40.50             | 54.00      | -13.50   | ) AV    | Horizontal |
| 7440.62                 | 63.86         | 7.10          | 36.53              | 44.60            | 62.89             | 74.00      | -11.11   | Pk      | Horizontal |
| 7440.62                 | 42.39         | 7.10          | 36.53              | 44.60            | 41.42             | 54.00      | -12.58   | B AV    | Horizontal |

ACCRED

Certificate #4298.01

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.



### Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHzs

| EUT:         | 4G Smart phone | Model No.:         | CTIP401 |
|--------------|----------------|--------------------|---------|
| Temperature: | 20 °C          | Relative Humidity: | 48%     |
| Test Mode:   | Mode2/ Mode4   | Test By:           | Mary Hu |

All the modulation modes have been tested, and the worst result was report as below:

| Frequenc | Meter   | Cable | Antenna | Preamp    | Emission    | Limits | Margin | Detector   |            |
|----------|---------|-------|---------|-----------|-------------|--------|--------|------------|------------|
| у        | Reading | Loss  | Factor  | Factor    | Level       |        |        | Bottoottoi | Comment    |
| (MHz)    | (dBµV)  | (dB)  | dB/m    | (dB)      | (dBµV/m)    |        | (dB)   | Туре       |            |
|          |         |       | 1M      | ops(GFSK) | - Non-hopp  | bing   |        |            |            |
| 2310.00  | 54.96   | 2.97  | 27.80   | 43.80     | 41.93       | 74     | -32.07 | Pk         | Horizontal |
| 2310.00  | 40.47   | 2.97  | 27.80   | 43.80     | 27.44       | 54     | -26.56 | AV         | Horizontal |
| 2310.00  | 51.68   | 2.97  | 27.80   | 43.80     | 38.65       | 74     | -35.35 | Pk         | Vertical   |
| 2310.00  | 40.60   | 2.97  | 27.80   | 43.80     | 27.57       | 54     | -26.43 | AV         | Vertical   |
| 2390.00  | 54.73   | 3.14  | 27.21   | 43.80     | 41.28       | 74     | -32.72 | Pk         | Vertical   |
| 2390.00  | 42.28   | 3.14  | 27.21   | 43.80     | 28.83       | 54     | -25.17 | AV         | Vertical   |
| 2390.00  | 50.54   | 3.14  | 27.21   | 43.80     | 37.09       | 74     | -36.91 | Pk         | Horizontal |
| 2390.00  | 42.34   | 3.14  | 27.21   | 43.80     | 28.89       | 54     | -25.11 | AV         | Horizontal |
| 2483.50  | 54.13   | 3.58  | 27.70   | 44.00     | 41.41       | 74     | -32.59 | Pk         | Vertical   |
| 2483.50  | 41.98   | 3.58  | 27.70   | 44.00     | 29.26       | 54     | -24.74 | AV         | Vertical   |
| 2483.50  | 51.89   | 3.58  | 27.70   | 44.00     | 39.17       | 74     | -34.83 | Pk         | Horizontal |
| 2483.50  | 41.51   | 3.58  | 27.70   | 44.00     | 28.79       | 54     | -25.21 | AV         | Horizontal |
|          |         |       | 1       | Mbps (GFS | SK)- hoppin | g      |        |            |            |
| 2310.00  | 53.89   | 2.97  | 27.80   | 43.80     | 40.86       | 74     | -33.14 | Pk         | Horizontal |
| 2310.00  | 41.85   | 2.97  | 27.80   | 43.80     | 28.82       | 54     | -25.18 | AV         | Horizontal |
| 2310.00  | 55.00   | 2.97  | 27.80   | 43.80     | 41.97       | 74     | -32.03 | Pk         | Vertical   |
| 2310.00  | 40.98   | 2.97  | 27.80   | 43.80     | 27.95       | 54     | -26.05 | AV         | Vertical   |
| 2390.00  | 54.47   | 3.14  | 27.21   | 43.80     | 41.02       | 74     | -32.98 | Pk         | Vertical   |
| 2390.00  | 42.76   | 3.14  | 27.21   | 43.80     | 29.31       | 54     | -24.69 | AV         | Vertical   |
| 2390.00  | 54.62   | 3.14  | 27.21   | 43.80     | 41.17       | 74     | -32.83 | Pk         | Horizontal |
| 2390.00  | 42.64   | 3.14  | 27.21   | 43.80     | 29.19       | 54     | -24.81 | AV         | Horizontal |
| 2483.50  | 54.55   | 3.58  | 27.70   | 44.00     | 41.83       | 74     | -32.17 | Pk         | Vertical   |
| 2483.50  | 43.61   | 3.58  | 27.70   | 44.00     | 30.89       | 54     | -23.11 | AV         | Vertical   |
| 2483.50  | 51.07   | 3.58  | 27.70   | 44.00     | 38.35       | 74     | -35.65 | Pk         | Horizontal |
| 2483.50  | 40.54   | 3.58  | 27.70   | 44.00     | 27.82       | 54     | -26.18 | AV         | Horizontal |

Note: (1) All other emissions more than 20dB below the limit.



Spurious Emission in Restricted Band 3260MHz-18000MHz

| EUT:         | 4G Smart phone | Model No.:         | CTIP401 |
|--------------|----------------|--------------------|---------|
| Temperature: | <b>20</b> ℃    | Relative Humidity: | 48%     |
| Test Mode:   | Mode2/ Mode4   | Test By:           | Mary Hu |

#### All the modulation modes have been tested, and the worst result was report as below:

| Frequenc | Readin  | Cable | Antenn | Preamp | Emission     | Limits       | Margin | Detect |            |
|----------|---------|-------|--------|--------|--------------|--------------|--------|--------|------------|
| У        | g Level | Loss  | а      | Factor | Level        | Linits       | margin | or     | Comment    |
| (MHz)    | (dBµV)  | (dB)  | dB/m   | (dB)   | (dBµ<br>V/m) | (dBµ<br>V/m) | (dB)   | Туре   | Comment    |
| 3260     | 62.87   | 4.04  | 29.57  | 44.70  | 51.78        | 74           | -22.22 | Pk     | Vertical   |
| 3260     | 48.02   | 4.04  | 29.57  | 44.70  | 36.93        | 54           | -17.07 | AV     | Vertical   |
| 3260     | 57.30   | 4.04  | 29.57  | 44.70  | 46.21        | 74           | -27.79 | Pk     | Horizontal |
| 3260     | 46.24   | 4.04  | 29.57  | 44.70  | 35.15        | 54           | -18.85 | AV     | Horizontal |
| 3332     | 62.99   | 4.26  | 29.87  | 44.40  | 52.72        | 74           | -21.28 | Pk     | Vertical   |
| 3332     | 44.90   | 4.26  | 29.87  | 44.40  | 34.63        | 54           | -19.37 | AV     | Vertical   |
| 3332     | 64.72   | 4.26  | 29.87  | 44.40  | 54.45        | 74           | -19.55 | Pk     | Horizontal |
| 3332     | 46.79   | 4.26  | 29.87  | 44.40  | 36.52        | 54           | -17.48 | AV     | Horizontal |
| 17797    | 51.61   | 10.99 | 43.95  | 43.50  | 63.05        | 74           | -10.95 | Pk     | Vertical   |
| 17797    | 34.45   | 10.99 | 43.95  | 43.50  | 45.89        | 54           | -8.11  | AV     | Vertical   |
| 17788    | 52.39   | 11.81 | 43.69  | 44.60  | 63.29        | 74           | -10.71 | Pk     | Horizontal |
| 17788    | 36.81   | 11.81 | 43.69  | 44.60  | 47.71        | 54           | -6.29  | AV     | Horizontal |

Note: (1) All other emissions more than 20dB below the limit.



#### 7.3 NUMBER OF HOPPING CHANNEL

#### 7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

#### 7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

#### 7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

#### 7.3.6 Test Results

| EUT:         | 4G Smart phone | Model No.:         | CTIP401 |
|--------------|----------------|--------------------|---------|
| Temperature: | 20 °C          | Relative Humidity: | 48%     |
| Test Mode:   | Mode 5(1Mbps)  | Test By:           | Mary Hu |



#### 7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

#### 7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

#### 7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

#### 7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

#### 7.4.6 Test Results

| EUT:         | 4G Smart phone    | Model No.:            | CTIP401 |
|--------------|-------------------|-----------------------|---------|
| Temperature: | <b>20</b> ℃       | Relative<br>Humidity: | 48%     |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:              | Mary Hu |



#### 7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

#### 7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

#### 7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

#### 7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW  $\geq$  1MHz VBW  $\geq$  RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.



#### 7.5.6 Test Results

| EUT:         | 4G Smart phone    | Model No.:         | CTIP401 |
|--------------|-------------------|--------------------|---------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%     |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mary Hu |

Test data reference attachment.

Note:

A Period Time = (channel number)\*0.4 DH1 Dwell time: Reading \* (1600/2)\*31.6/(channel number) DH3 Dwell time: Reading \* (1600/4)\*31.6/(channel number) DH5 Dwell time: Reading \* (1600/6)\*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit  $(0.4 \times 79)$  (s), Hops Over Occupancy Time comes to  $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$  hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit  $(0.4 \times 20)$  (s), Hops Over Occupancy Time comes to  $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$  hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time



#### 7.6 20DB BANDWIDTH TEST

#### 7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

#### 7.6.2 Conformance Limit

No limit requirement.

#### 7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW  $\geq$  1% of the 20 dB bandwidth VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

#### 7.6.6 Test Results

| EUT:         | 4G Smart phone    | Model No.:         | CTIP401 |
|--------------|-------------------|--------------------|---------|
| Temperature: | 20 °C             | Relative Humidity: | 48%     |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mary Hu |



### 7.7 PEAK OUTPUT POWER

#### 7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

#### 7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

#### 7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW  $\geq$  the 20 dB bandwidth of the emission being measured VBW  $\geq$  RBW

Sweep = auto

Detector function = peak Trace = max hold

#### 7.7.6 Test Results

| EUT:         | 4G Smart phone    | Model No.:         | CTIP401 |
|--------------|-------------------|--------------------|---------|
| Temperature: | 20 °C             | Relative Humidity: | 48%     |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mary Hu |



#### 7.8 CONDUCTED BAND EDGE MEASUREMENT

#### 7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

#### 7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### 7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

#### 7.8.6 Test Results

| EUT:         | 4G Smart phone       | Model No.:         | CTIP401 |
|--------------|----------------------|--------------------|---------|
| Temperature: | <b>20</b> ℃          | Relative Humidity: | 48%     |
| Test Mode:   | Mode2 /Mode4/ Mode 5 | Test By:           | Mary Hu |



#### 7.9 SPURIOUS RF CONDUCTED EMISSION

#### 7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

#### 7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Certificate #4298 01

#### 7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW  $\geq$  [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

#### 7.9.6 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.



#### **7.10 ANTENNA APPLICATION**

#### 7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

ACCREDIT

#### 7.10.2 Result

The EUT antenna is permanent attached FPC Antenna (Gain: 1dBi). It comply with the standard requirement.

# **NTEK北**测

#### 7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298 01

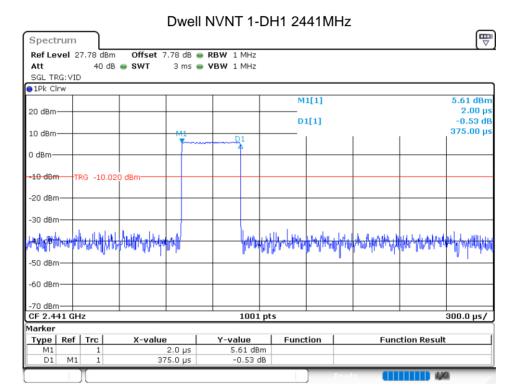
#### 7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

#### 7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.


The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



### 8 TEST RESULTS

#### 8.1 DWELL TIME

| Condition | Mode  | Frequency | Pulse Time | Total Dwell | Period Time | Limit | Verdict |
|-----------|-------|-----------|------------|-------------|-------------|-------|---------|
|           |       | (MHz)     | (ms)       | Time (ms)   | (ms)        | (ms)  |         |
| NVNT      | 1-DH1 | 2441      | 0.375      | 120         | 31600       | 400   | Pass    |
| NVNT      | 1-DH3 | 2441      | 1.63       | 260.8       | 31600       | 400   | Pass    |
| NVNT      | 1-DH5 | 2441      | 2.88       | 307.2       | 31600       | 400   | Pass    |
| NVNT      | 2-DH1 | 2441      | 0.376      | 120.32      | 31600       | 400   | Pass    |
| NVNT      | 2-DH3 | 2441      | 1.63       | 260.8       | 31600       | 400   | Pass    |
| NVNT      | 2-DH5 | 2441      | 2.872      | 306.347     | 31600       | 400   | Pass    |
| NVNT      | 3-DH1 | 2441      | 0.381      | 121.92      | 31600       | 400   | Pass    |
| NVNT      | 3-DH3 | 2441      | 1.625      | 260         | 31600       | 400   | Pass    |
| NVNT      | 3-DH5 | 2441      | 2.872      | 306.347     | 31600       | 400   | Pass    |



Dwell NVNT 1-DH3 2441MHz



Report No.: S19082902506001

| ⊖1Pk Clrw                                                                                                                                                                                         | : VID<br>/                                                                     |                 | 1                 |                                   |                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------|-------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 20 dBm—                                                                                                                                                                                           | _                                                                              |                 |                   |                                   |                                                                                                  | 11[1]            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | -3.13 dBm<br>5.00 μs                                                                                           |
| 10 dBm—                                                                                                                                                                                           |                                                                                |                 |                   | _                                 | D                                                                                                | 1[1]             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 0.15 dB<br>1.63000 ms                                                                                          |
| 0 dBm                                                                                                                                                                                             | N                                                                              | 1               |                   |                                   | - D1                                                                                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                |
| -10 dBm                                                                                                                                                                                           |                                                                                |                 | ายบายแก่งาากา     | <u>ՆԴար</u> իագրա <u>հեր գտ</u> ե | anuun                                                                                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                |
| -20 dBm-                                                                                                                                                                                          | 110 -10.02                                                                     | o dom           |                   |                                   |                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                |
|                                                                                                                                                                                                   |                                                                                |                 |                   |                                   |                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                |
| -30 dBm—                                                                                                                                                                                          | alah Milandara. Karana Mi                                                      |                 |                   |                                   | Lic data                                                                                         | Marate Deschards | un w <sup>a</sup> un duma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | In a stall deard de                      |                                                                                                                |
|                                                                                                                                                                                                   | <mark>,4944,99</mark> 10,01111,01111                                           |                 |                   |                                   | A Modulation                                                                                     | a mada adaa      | and Adia Antil Discovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an a | and and a second se |
| -50 dBm—                                                                                                                                                                                          |                                                                                |                 |                   |                                   |                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                |
| -60 dBm—                                                                                                                                                                                          |                                                                                |                 |                   |                                   | 1                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                |
| -70 dBm-<br>CF 2.441                                                                                                                                                                              | GHz                                                                            | <u> </u>        |                   | 100                               | )1 pts                                                                                           | <u> </u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                 | 500.0 μs/                                                                                                      |
| Marker<br>Type F                                                                                                                                                                                  | Ref   Trc                                                                      | X-valu          | e                 | Y-value                           | -<br>Func                                                                                        | tion             | Euro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ction Resul                              |                                                                                                                |
| M1                                                                                                                                                                                                | 1<br>M1 1                                                                      |                 | 5.0 µs<br>1.63 ms | -3.13 c<br>0.15                   | 1Bm                                                                                              |                  | Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.10/1 10/201                            |                                                                                                                |
|                                                                                                                                                                                                   |                                                                                |                 | 1.03 IIIS         | 0.15                              | ub                                                                                               | Rea              | dy 💼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | 0                                                                                                              |
| Ref Leve<br>Att<br>SGL TRG                                                                                                                                                                        |                                                                                | Offset<br>e SWT |                   | RBW 1 MH:<br>VBW 1 MH:            |                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                |
| Att                                                                                                                                                                                               | 40 dB<br>:VID                                                                  |                 |                   |                                   | 2                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                |
| Att<br>SGL TRG                                                                                                                                                                                    | 40 dB<br>:VID                                                                  |                 |                   |                                   | Z                                                                                                | 11[1]            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | -2.60 dBm<br>8.00 µs                                                                                           |
| Att<br>SGL TRG<br>1Pk Clrw                                                                                                                                                                        | 40 dB<br>:VID                                                                  |                 |                   |                                   | Z                                                                                                | 11[1]            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                |
| Att<br>SGL TRG<br>1Pk Cirw<br>20 dBm—                                                                                                                                                             | 40 dB<br>:VID                                                                  |                 | 8 ms 🖷            | VBW 1 MH:                         | Z<br>M<br>D                                                                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 8.00 μs<br>0.23 dB                                                                                             |
| Att<br>SGL TRG<br>1Pk Clrw<br>20 dBm-<br>10 dBm-                                                                                                                                                  | 40 dB<br>:VID<br>/                                                             | • SWT           | 8 ms 🖷            | VBW 1 MH:                         | Z<br>M<br>D                                                                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 8.00 μs<br>0.23 dB                                                                                             |
| Att<br>SGL TRG<br>1Pk Clrw<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                                                                                        | 40 dB<br>: VID<br>/                                                            | • SWT           | 8 ms 🖷            | VBW 1 MH:                         | Z<br>M<br>D                                                                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 8.00 μs<br>0.23 dB                                                                                             |
| Att<br>SGL TRG<br>1Pk Clrw<br>20 dBm-<br>10 dBm-<br>0 dBm-<br>-10 dBm                                                                                                                             | 40 dB<br>: VID<br>/                                                            | • SWT           | 8 ms 🖷            | vBW         1 MHz                 | 2<br>M<br>D                                                                                      | 1[1]             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 8.00 µs<br>0.23 dB<br>2.88000 ms                                                                               |
| Att<br>SGL TRG<br>1Pk Clrw<br>20 dBm-<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-                                                                                                                | 40 dB<br>:VID<br>/<br>/<br>//<br>/////////////////////////////                 | • SWT           | 8 ms 🖷            | vBW         1 MHz                 | 2<br>M<br>D                                                                                      | 1[1]             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 8.00 μs<br>0.23 dB                                                                                             |
| Att<br>SGL TRG<br>1Pk Clrw<br>20 dBm-<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-                                                                                                                | 40 dB<br>:VID<br>/<br>/<br>//<br>/////////////////////////////                 | • SWT           | 8 ms 🖷            | vBW         1 MHz                 | 2<br>M<br>D                                                                                      | 1[1]             | յուղությունը                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | 8.00 µs<br>0.23 dB<br>2.88000 ms                                                                               |
| Att<br>SGL TRG<br>● 1Pk Clrw<br>20 dBm<br>10 dBm<br>0 dBm<br>-20 dBm<br>-30 dBm                                                                                                                   | 40 dB<br>:VID<br>/<br>/<br>//<br>/////////////////////////////                 | • SWT           | 8 ms 🖷            | vBW         1 MHz                 | 2<br>M<br>D                                                                                      | 1[1]             | in the state of th |                                          | 8.00 µs<br>0.23 dB<br>2.88000 ms                                                                               |
| Att<br>SGL TRG<br>● 1Pk Clrw<br>20 dBm<br>10 dBm<br>0 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm                                                                                  | 40 dB<br>:VID<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/ | • SWT           | 8 ms 🖷            | vBW         1 MH2                 |                                                                                                  | 1[1]             | յուրը առել է է է է է է է է է է է է է է է է է է է                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 8.00 µs<br>0.23 dB<br>2.88000 ms                                                                               |
| Att<br>SGL TRG<br>● 1Pk Clrw<br>20 dBm<br>10 dBm<br>0 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm                                                                                  | 40 dB<br>:VID<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/ | • SWT           | 8 ms 🖷            | vBW         1 MH2                 | 2<br>M<br>D                                                                                      | 1[1]             | in the state of th |                                          | 8.00 µs<br>0.23 dB<br>2.88000 ms                                                                               |
| Att<br>SGL TRG<br>9 1Pk Clrw<br>20 dBm<br>10 dBm<br>0 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm<br>CF 2.441<br>Marker                                                            | 40 dB<br>:VID<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/ | • SWT           | 8 ms •            | VBW 1 MH2                         | 2<br>M<br>D<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     | 1[1]             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 8.00 μs<br>0.23 dB<br>2.88000 ms                                                                               |
| Att<br>SGL TRG<br>● 1Pk CIrw<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-60 dBm-<br><u>-70 dBm-</u><br><b>CF 2.441</b><br>Marker<br><b>Type F</b><br>M1 | 40 dB<br>VID<br>/<br>/<br>TRG -10.02<br>COLUMN                                 | • SWT           | 8 ms •            | VBW 1 MH2                         | 2<br>M<br>D<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     | 1[1]             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analangi de Deser                        | 8.00 μs<br>0.23 dB<br>2.88000 ms                                                                               |
| Att<br>SGL TRG<br>● 1Pk CIrw<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-60 dBm-<br>-70 dBm-<br><b>CF 2.441</b><br>Marker Type F<br>M1                  | 40 dB<br>VID<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/  | • SWT           | 8 ms              | VBW 1 MH2                         | 2<br>M<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | 1[1]             | Fun<br>dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analangi de Deser                        | 8.00 μs<br>0.23 dB<br>2.88000 ms                                                                               |
| Att<br>SGL TRG<br>PIPK CIrw<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-60 dBm-<br>-70 dBm-<br><b>Type F</b><br>Marker                                  | 40 dB<br>VID<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/  | • SWT           | 8 ms              | VBW 1 MH2                         | 2<br>M<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | 1[1]             | Fun<br>dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analangi de Deser                        | 8.00 μs<br>0.23 dB<br>2.88000 ms                                                                               |
| Att<br>SGL TRG<br>● 1Pk CIrw<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-60 dBm-<br><u>-70 dBm-</u><br><b>CF 2.441</b><br>Marker<br><b>Type F</b><br>M1 | 40 dB<br>VID<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/  | • SWT           | 8 ms              | VBW 1 MH2                         | 2<br>M<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | 1[1]             | Fun<br>dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analangi de Deser                        | 8.00 μs<br>0.23 dB<br>2.88000 ms                                                                               |
| Att<br>SGL TRG<br>● 1Pk CIrw<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-60 dBm-<br><u>-70 dBm-</u><br><b>CF 2.441</b><br>Marker F<br>                  | 40 dB<br>VID<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/  | • SWT           | 8 ms              | VBW 1 MH2                         | 2<br>M<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | 1[1]             | Fun<br>dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analangi de Deser                        | 8.00 μs<br>0.23 dB<br>2.88000 ms                                                                               |
| Att<br>SGL TRG<br>PIPK CIrw<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-60 dBm-<br>-70 dBm-<br><b>Type F</b><br>Marker                                  | 40 dB<br>VID<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/  | • SWT           | 8 ms              | VBW 1 MH2                         | 2<br>M<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | 1[1]             | Fun<br>dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analangi de Deser                        | 8.00 μs<br>0.23 dB<br>2.88000 ms                                                                               |



| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                               | M1[1]                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5.31 dBm                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     | 1 1                           | D1[1]                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00 μs<br>-0.67 dB                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                               |                                                                                                                  | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 376.00 μs                                                                                                       |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | MI                            |                                                                                                                  | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | <b>^</b>                      | tulli an the street                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -20 dBm TRG -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.020 dBm                                          |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| www.wep.weithub.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | how we had not seen to be the sheet                 | mand the constant of the last |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | or the date                   |                                                                                                                  | And the state of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 . I . M                                                                                                      |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| CF 2.441 GHz<br>Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     | 1001 pt                       | 5                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200.0 µs/                                                                                                       |
| Type Ref Tro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : X-value<br>1 4.0 μs                               | Y-value<br>-5.31 dBm          | Function                                                                                                         | Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| D1 M1 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 376.0 µs                                          | -0.67 dB                      |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                               | M1[1]                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4.50 dBm<br>5.00 μs<br>-2.53 dB                                                                                |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                               | D1[1]                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.53 dB<br>.63000 ms                                                                                           |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1                                                  |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -10 dBm TRG -:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | יאייאייאייאייאייאייאייאייאייאייאייאייאי             | มาตระบาษณะการให้ระจาน         | 1                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| haller of the second state | Juff Here and A |                               | Manage and a second s | allanderallander and the states of the state | white all the second |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -70 dBm<br>CF 2.441 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | 1001 pt                       | s                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500.0 µs/                                                                                                       |
| Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : X-value<br>1 5.0 μs<br>1 1.63 ms                  |                               | Function                                                                                                         | Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.03 MS                                             | -2.55 UB                      | Re                                                                                                               | sady <b>(IIIII) 4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                               |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                   |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dwe                                                 | ell NVNT 2-D                  | H5 2441MF                                                                                                        | 1Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |

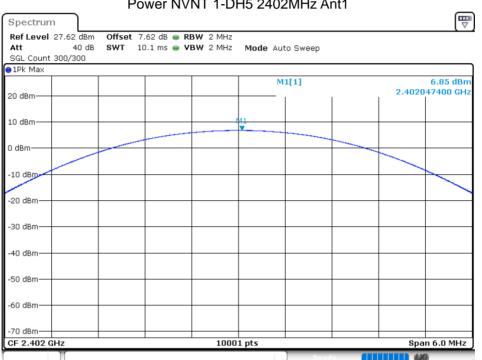


| ●1Pk Clrw                                                                                                                                                                                                                                                                                                                                                                                                     |              |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               | M                                                                                                | 1[1]                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3.78 dBm                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                        |              |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                                                                                  |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.00 µs                                      |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                        |              |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               | <sup>0</sup>                                                                                     | 1[1]                     |                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.54 dB<br>2.87200 ms                       |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                         | 1            |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D1                                                            |                                                                                                  |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                       | Lunnyang     | udstage/ghadra  | or have been a second | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r <sup>hu</sup> ryjúst                                        |                                                                                                  |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                               | G -20.020    | dD ex           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                                                                                  |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                               | 3 -20.020    | ubiii           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                                                                                  |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                               |              |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l                                                             |                                                                                                  | n Mutudas.               | Antheological and the second | dush Antartan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the state of the state of the            |
| National Contents of the second                                                                                                                                                                                                                                                                                                                                                                               |              |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - H                                                           | <del>Mullana da An</del> tori                                                                    | <mark>hu nhhrc</mark> ra | an antiliterature            | <del>le n lill av delatu</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>a sing it talationalis</del>            |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                       |              |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                                                                                  |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                       |              |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                                                                                  |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
| -70 dBm<br>CF 2.441 GHz                                                                                                                                                                                                                                                                                                                                                                                       | , – –  <br>, |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                           | 1 pts                                                                                            |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 800.0 µs/                                    |
| Marker                                                                                                                                                                                                                                                                                                                                                                                                        |              |                 |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |                                                                                                  |                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
| Type Ref                                                                                                                                                                                                                                                                                                                                                                                                      | 1            | X-value         | 8.0 µs                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>alue</b><br>3.78 dB                                        |                                                                                                  | tion                     | Fun                          | ction Resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t                                            |
| D1 M1                                                                                                                                                                                                                                                                                                                                                                                                         | 1            | 2.5             | 872 ms                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.54                                                         | dB                                                                                               | )                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>(</i> )                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                               |              |                 | Dwe                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IT 3-                                                         | -DH1 24                                                                                          | 41MH                     | Z                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                            |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 | Dwe                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IT 3-                                                         | -DH1 24                                                                                          | 41MH                     | z                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
| Spectrum<br>Ref Level 27                                                                                                                                                                                                                                                                                                                                                                                      | .78 dBm      | Offset 3        |                       | II NVN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |                                                                                                  | 41MH                     | Z                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
| Ref Level 27<br>Att                                                                                                                                                                                                                                                                                                                                                                                           |              | Offset 5<br>SWT | 7.78 dB               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 MHz                                                         | :                                                                                                | 41MH                     | Z                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
| Ref Level 27                                                                                                                                                                                                                                                                                                                                                                                                  |              |                 | 7.78 dB               | e RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 MHz                                                         | :                                                                                                |                          | Z                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
| Ref Level 27<br>Att<br>SGL TRG:VID                                                                                                                                                                                                                                                                                                                                                                            |              |                 | 7.78 dB               | e RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 MHz                                                         | M                                                                                                | 1[1]                     | Z                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.81 dBm<br>5.00 µs                          |
| Ref Level 27<br>Att<br>SGL TRG: VID<br>1Pk Clrw                                                                                                                                                                                                                                                                                                                                                               |              |                 | 7.78 dB<br>3 ms       | e RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 MHz                                                         | M                                                                                                |                          | z                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.81 dBm                                     |
| Ref Level 27<br>Att<br>SGL TRG: VID<br>1Pk Clrw<br>20 dBm                                                                                                                                                                                                                                                                                                                                                     |              |                 | 7.78 dB               | e RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 MHz<br>1 MHz                                                | M                                                                                                | 1[1]                     | z                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.81 dBm<br>5.00 μs<br>-2.58 dB              |
| Ref Level         27           Att         SGL           SGL         TRG: VID           1Pk         Clrw           20         dBm           10         dBm           0         dBm                                                                                                                                                                                                                            |              |                 | 7.78 dB<br>3 ms       | RBW     VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 MHz<br>1 MHz                                                | M                                                                                                | 1[1]                     | z                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.81 dBm<br>5.00 μs<br>-2.58 dB              |
| Ref Level         27           Att         SGL TRG: VID           • 1Pk Clrw         20 dBm           10 dBm         0 dBm           -10 dBm         -10 dBm                                                                                                                                                                                                                                                  | 40 dB (      | SWT             | 7.78 dB<br>3 ms       | RBW     VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 MHz<br>1 MHz                                                | M                                                                                                | 1[1]                     | Z                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.81 dBm<br>5.00 μs<br>-2.58 dB              |
| Ref Level         27           Att         SGL TRG: VID           SGL TRG: VID         1Pk Cirw           20 dBm         10 dBm           10 dBm         0 dBm           -10 dBm         TRG                                                                                                                                                                                                                  |              | SWT             | 7.78 dB<br>3 ms       | RBW     VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 MHz<br>1 MHz                                                | M                                                                                                | 1[1]                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.81 dBm<br>5.00 μs<br>-2.58 dB              |
| Ref Level         27           Att         SGL TRG: VID           IPk Clrw         20 dBm           10 dBm         0 dBm           -10 dBm                                                                                                                                                                                                                                                                    | 40 dB (      | dBm             | 7.78 dB<br>3 ms       | RBW     VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 MHz<br>1 MHz                                                | M                                                                                                | 1[1]                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.81 dBm<br>5.00 μs<br>-2.58 dB<br>381.00 μs |
| Ref Level         27           Att         SGL TRG: VID           IPk Clrw         20 dBm           10 dBm         0 dBm           -10 dBm                                                                                                                                                                                                                                                                    | 40 dB (      | SWT             | 7.78 dB<br>3 ms       | RBW     VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 MHz<br>1 MHz                                                | M                                                                                                | 1[1]                     |                              | aval palati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.81 dBm<br>5.00 μs<br>-2.58 dB              |
| Ref Level         27           Att         SGL TRG: VID           IPk Clrw         20 dBm           10 dBm         0 dBm           -10 dBm                                                                                                                                                                                                                                                                    | 40 dB (      | dBm             | 7.78 dB<br>3 ms       | RBW     VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 MHz<br>1 MHz                                                | M                                                                                                | 1[1]                     |                              | alouthut mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.81 dBm<br>5.00 μs<br>-2.58 dB<br>381.00 μs |
| Ref Level         27           Att         SGL TRG: VID           SGL TRG: VID         1Pk Cirw           20 dBm         10 dBm           10 dBm         0 dBm           -10 dBm         -10 dBm           -20 dBm         TR           -30 dBm         -30 dBm                                                                                                                                               | 40 dB (      | dBm             | 7.78 dB<br>3 ms       | RBW     VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 MHz<br>1 MHz                                                | M                                                                                                | 1[1]                     |                              | Drugter in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.81 dBm<br>5.00 μs<br>-2.58 dB<br>381.00 μs |
| Ref Level         27           Att         SGL TRG: VID           SGL TRG: VID         1Pk Cirw           20 dBm         10           10 dBm         0           -10 dBm         -           -20 dBm         TR           -30 dBm         -           -50 dBm         -           -60 dBm         -                                                                                                           | 40 dB (      | dBm             | 7.78 dB<br>3 ms       | RBW     VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 MHz<br>1 MHz                                                | M<br>D                                                                                           | 1[1]                     |                              | l<br>Inverting for the second sec | 4.81 dBm<br>5.00 μs<br>-2.58 dB<br>381.00 μs |
| Ref Level 27           Att           SGL TRG:VID           ● 1Pk Clrw           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -50 dBm           -60 dBm           -70 dBm           CF 2.441 GHz                                                                                                                                  | 40 dB        | dBm             | 7.78 dB<br>3 ms       | RBW     VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 MHz<br>1 MHz<br>1 MHz<br>1 001                              | D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D      | 1[1]<br>1[1]             |                              | Vr<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.81 dBm<br>5.00 µs<br>-2.58 dB<br>381.00 µs |
| Ref Level         27           Att         SGL TRG: VID           9 1Pk Clrw         20 dBm           10 dBm         0           10 dBm         0           -10 dBm         0           -20 dBm         TR           -30 dBm         -           -50 dBm         -           -60 dBm         -           -70 dBm         -           -70 dBm         -           Type         Ref           M1         -      | 40 dB (      | dBm             | 7.78 dB<br>3 ms       | RBW     VBW     VBW     VBW     VBW     VBW     VBU     VU     VU  | 1 MHz<br>1 MHz<br>1 MHz<br>1 001                              | M<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | 1[1]<br>1[1]             |                              | ction Resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.81 dBm<br>5.00 µs<br>-2.58 dB<br>381.00 µs |
| Ref Level 27           Att           SGL TRG:VID           ● 1Pk Clrw           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           CF 2.441 GHz           Type   Ref                                                                                                                               | 40 dB (      | dBm             | 7.78 dB<br>3 ms       | RBW     VBW     VBW     VBW     VBW     VBW     VBU     VU     VU  | 1 MHz<br>1 MHz<br>1 MHz<br>1 00:<br>100:                      | M<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | 1[1]<br>1[1]             |                              | Vr<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.81 dBm<br>5.00 µs<br>-2.58 dB<br>381.00 µs |
| Ref Level         27           Att         SGL TRG: VID           9 1Pk Clrw         20 dBm           10 dBm         0           10 dBm         0           -10 dBm         -           -20 dBm         TR           -30 dBm         -           -50 dBm         -           -60 dBm         -           -70 dBm         -           -70 dBm         -           Type         Ref           M1         Marker | 40 dB (      | dBm             | 7.78 dB<br>3 ms       | RBW     VBW     VBW     VBW     VBW     VBW     VBU     VU     VU  | 1 MHz<br>1 MHz<br>1 MHz<br>1 001                              | M<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | 1[1]<br>1[1]             |                              | Vr<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.81 dBm<br>5.00 µs<br>-2.58 dB<br>381.00 µs |
| Ref Level         27           Att         SGL TRG: VID           9 1Pk Clrw         20 dBm           10 dBm         0           10 dBm         0           -10 dBm         -           -20 dBm         TR           -30 dBm         -           -50 dBm         -           -60 dBm         -           -70 dBm         -           -70 dBm         -           Type         Ref           M1         Marker | 40 dB (      | dBm             | 7.78 dB<br>3 ms       | RBW     VBW     V | 1 MHz<br>1 MHz<br>1 MHz<br>1 MHz<br>1 00:<br>4.81 dt<br>-2.58 | M<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | 1[1]<br>1[1]<br>1[1]     | Fun                          | Vr<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.81 dBm<br>5.00 µs<br>-2.58 dB<br>381.00 µs |
| Ref Level         27           Att         SGL TRG: VID           9 1Pk Clrw         20 dBm           10 dBm         0           10 dBm         0           -10 dBm         -           -20 dBm         TR           -30 dBm         -           -50 dBm         -           -60 dBm         -           -70 dBm         -           -70 dBm         -           Type         Ref           M1         Marker | 40 dB (      | dBm             | 7.78 dB<br>3 ms       | RBW     VBW     V | 1 MHz<br>1 MHz<br>1 MHz<br>1 MHz<br>1 00:<br>4.81 dt<br>-2.58 | I pts                                                                                            | 1[1]<br>1[1]<br>1[1]     | Fun                          | Vr<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.81 dBm<br>5.00 µs<br>-2.58 dB<br>381.00 µs |
| Ref Level         27           Att         SGL TRG: VID           9 1Pk Clrw         20 dBm           10 dBm         0           10 dBm         0           -10 dBm         -           -20 dBm         TR           -30 dBm         -           -50 dBm         -           -60 dBm         -           -70 dBm         -           -70 dBm         -           Type         Ref           M1         Marker | 40 dB (      | dBm             | 7.78 dB<br>3 ms       | RBW     VBW     V | 1 MHz<br>1 MHz<br>1 MHz<br>1 MHz<br>1 00:<br>4.81 dt<br>-2.58 | I pts                                                                                            | 1[1]<br>1[1]<br>1[1]     | Fun                          | Vr<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.81 dBm<br>5.00 µs<br>-2.58 dB<br>381.00 µs |



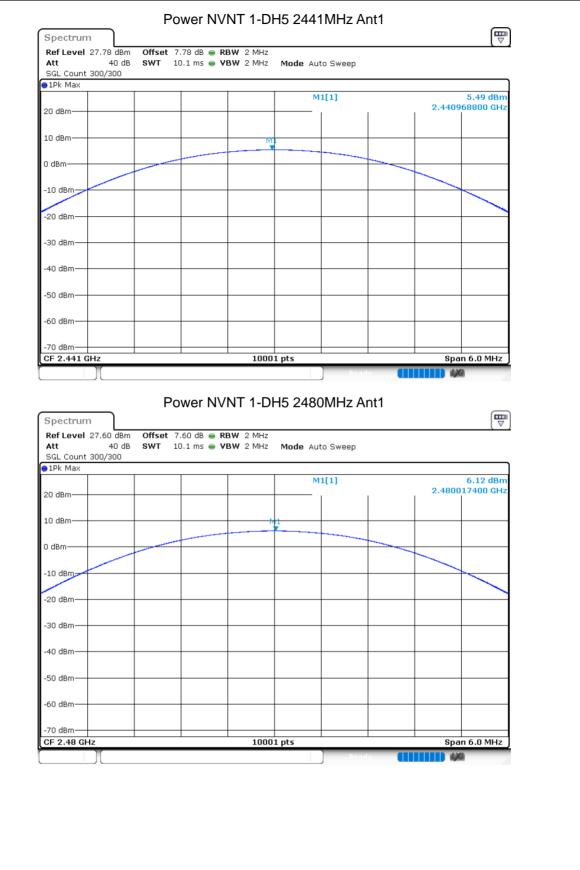
| ⊜1Pk Clrw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                          |                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 0.01.10                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|---------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------|
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                          |                                                   |                           | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -3.81 dBm<br>5.00 µs                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                          |                                                   |                           | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -2.83 dB                                       |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                          |                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1.02000 ms                                     |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M                                          | 1<br>modulaikkeudisku    | ana ina na sa | นปละเป็นในกลาย            | a <b>l/01</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                |
| -10 dBm TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G -10.020                                  |                          | anoh DOb                                          | 10 . 11 the second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                          |                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                          |                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                |
| Howeby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>Unididad</u>                            |                          |                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | handrade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Level Indeling     | March When we                                  |
| 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 1 v. 00v.01                              |                          |                                                   |                           | ., , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a. a aha     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1941 01 02 1 41 w  | 1.1. M. 1.                                     |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                          |                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                          |                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                          |                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                |
| CF 2.441 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | z                                          |                          |                                                   | 1001                      | pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 500.0 μs/                                      |
| Marker<br>Type   Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trc                                        | X-value                  | . 1                                               | Y-value                   | Func                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion         | Fund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion Result        | : 1                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                          |                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                |
| M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                          |                          | 5.0 µs                                            | -3.81 dB                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                |
| D1 M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                          |                          | 5.0 µs<br>525 ms                                  | -3.81 dB<br>-2.83 c       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                |
| D1 M1<br>Spectrum<br>Ref Level 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                          | 1.6<br>Offset 7          | Dwell N<br>7.78 dB • F                            | -2.83 c                   | IB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) Pow        | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                |
| D1 M1<br>Spectrum<br>Ref Level 27<br>Att<br>SGL TRG: VID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                          | 1.6                      | Dwell N<br>7.78 dB • F                            | -2.83 c                   | IB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) Period     | · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                                |
| D1 M1<br>Spectrum<br>Ref Level 27<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                          | 1.6<br>Offset 7          | Dwell N<br>7.78 dB • F                            | -2.83 c                   | DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                |
| D1 M1<br>Spectrum<br>Ref Level 27<br>Att<br>SGL TRG: VID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                          | 1.6<br>Offset 7          | Dwell N<br>7.78 dB • F                            | -2.83 c                   | DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1[1]         | M <b>()</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | -3.81 dBm<br>8.00 μs                           |
| D1 M1<br>Spectrum<br>Ref Level 27<br>Att<br>SGL TRG: VID<br>O 1Pk Clrw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                          | 1.6<br>Offset 7          | Dwell N<br>7.78 dB • F                            | -2.83 c                   | DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | -3.81 dBm                                      |
| D1 M1<br>Spectrum<br>Ref Level 27<br>Att<br>SGL TRG: VID<br>9 1Pk Clrw<br>20 dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                          | 1.6<br>Offset 7          | Dwell N<br>7.78 dB • F                            | -2.83 c                   | DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -3.81 dBm<br>8.00 µs<br>-0.53 dB               |
| D1 M1<br>Spectrum<br>Ref Level 27<br>Att<br>SGL TRG: VID<br>1Pk Clrw<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>7.78 dBm<br>40 dB                     | Offset 7<br>SWT          | Dwell N<br>7.78 dB • F                            | -2.83 c                   | DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -3.81 dBm<br>8.00 µs<br>-0.53 dB               |
| D1 M1<br>Spectrum<br>Ref Level 27<br>Att<br>SGL TRG: VID<br>9 1Pk Clrw<br>20 dBm<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>7.78 dBm<br>40 dB                     | Offset 7<br>SWT          | Dwell N                                           | -2.83 c                   | DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -3.81 dBm<br>8.00 µs<br>-0.53 dB               |
| D1 M1<br>Spectrum<br>Ref Level 27<br>Att<br>SGL TRG: VID<br>1Pk Clrw<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>7.78 dBm<br>40 dB                     | 0ffset 7<br>● SWT        | Dwell N                                           | -2.83 c                   | DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -3.81 dBm<br>8.00 µs<br>-0.53 dB               |
| D1 M1<br>Spectrum<br>Ref Level 27<br>Att<br>SGL TRG: VID<br>1Pk Clrw<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>7.78 dBm<br>40 dB 4                   | 0ffset 7<br>● SWT        | Dwell N                                           | -2.83 c                   | DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1[1]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -3.81 dBm<br>8.00 µs<br>-0.53 dB               |
| D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm TR -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>7.78 dBm<br>40 dB 4                   | 0ffset 7<br>● SWT        | Dwell N                                           | -2.83 c                   | DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1[1]<br>1[1] | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inthorrouthede de  | -3.81 dBm<br>8.00 µs<br>-0.53 dB               |
| D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>7.78 dBm<br>40 dB 4                   | 0ffset 7<br>● SWT        | Dwell N                                           | -2.83 c                   | DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1[1]         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | -3.81 dBm<br>8.00 µs<br>-0.53 dB<br>2.87200 ms |
| D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm TR -30 dBm -50 dBm -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>7.78 dBm<br>40 dB 4                   | 0ffset 7<br>● SWT        | Dwell N                                           | -2.83 c                   | DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1[1]<br>1[1] | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inthorrouthede de  | -3.81 dBm<br>8.00 µs<br>-0.53 dB<br>2.87200 ms |
| D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID 10 dBm 10 dBm 10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>7.78 dBm<br>40 dB 4                   | 0ffset 7<br>● SWT        | Dwell N                                           | -2.83 c                   | DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1[1]<br>1[1] | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inthorrouthede de  | -3.81 dBm<br>8.00 µs<br>-0.53 dB<br>2.87200 ms |
| D1 M1 Spectrum Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm TR -30 dBm -50 dBm -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>7.78 dBm<br>40 dB<br>40 dB            | 0ffset 7<br>● SWT        | Dwell N                                           | -2.83 c                   | в<br>DH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1[1]<br>1[1] | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | իսնվուլյումերիսյեւ | -3.81 dBm<br>8.00 µs<br>-0.53 dB<br>2.87200 ms |
| D1         M1           Ref Level 27         Att           SGL TRG: VID         P1Pk Clrw           20 dBm         10 dBm           10 dBm         P10 dBm           -10 dBm         P10 dBm           -30 dBm         P10 dBm           -50 dBm         F           -60 dBm         CF 2.441 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>7.78 dBm<br>40 dB<br>41<br>71/01/4*/y | I.€<br>Offset 7<br>■ SWT | 255 ms                                            | -2.83 c                   | BH5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1[1]<br>1[1] | Inflation of the second | իովերյաներերե      | -3.81 dBm<br>8.00 µs<br>-0.53 dB<br>2.87200 ms |
| D1 M1  Spectrum  Ref Level 27 Att SGL TRG: VID  1Pk Clrw  20 dBm  10 dBm  -10 dBm  -20 dBm  -30 dBm  -30 dBm  -50 dBm  -60 dBm  -70 dBm  -70 dBm  -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 | 1<br>7.78 dBm<br>40 dB<br>41<br>71/01/4*/y | 1.6<br>Offset 7<br>SWT   | 255 ms                                            | -2.83 c                   | B<br>DH5 24<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br><br>D:<br>D:<br>D:<br>D:<br>D:<br>D:<br>D:<br>D:<br>D:<br>D:<br>D:<br>D:<br>D: | 1[1]<br>1[1] | Inflation of the second | իսնվուլյումերիսյեւ | -3.81 dBm<br>8.00 µs<br>-0.53 dB<br>2.87200 ms |

# NTEK北测

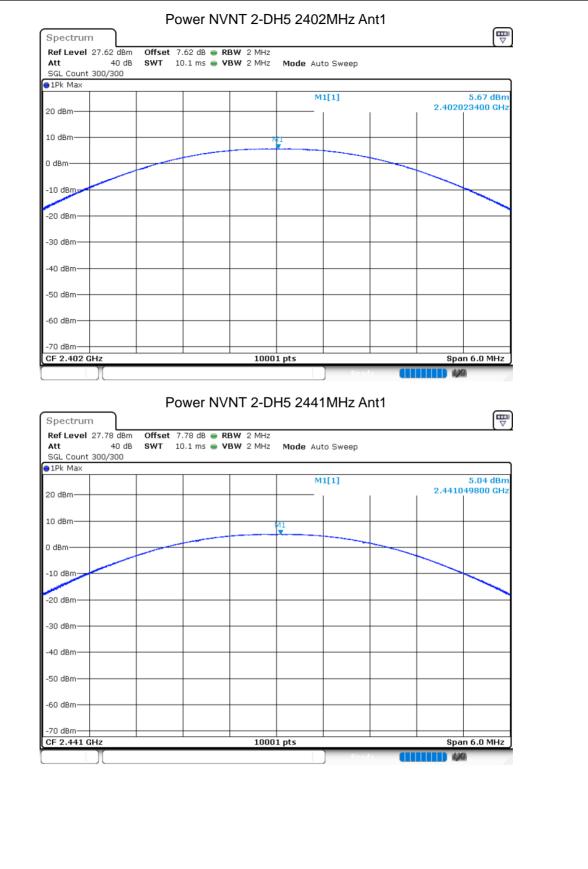

## 8.2 MAXIMUM CONDUCTED OUTPUT POWER

ilac-M

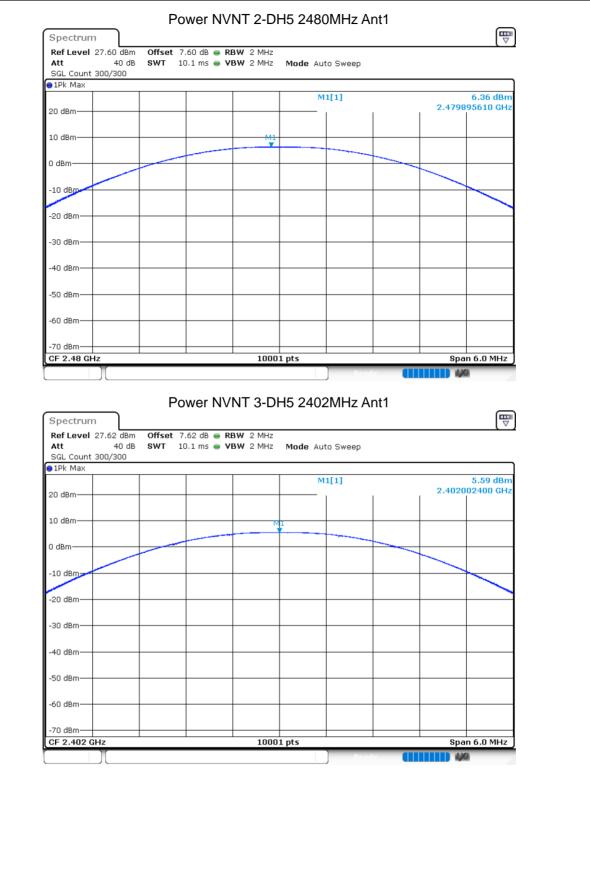
| Condition                                                                | Mode  | Frequency (MHz) | Antenna | Conducted Power (dBm) | Limit (dBm) | Verdict |
|--------------------------------------------------------------------------|-------|-----------------|---------|-----------------------|-------------|---------|
| Condition                                                                |       |                 | Antenna |                       | · · /       |         |
| NVNT                                                                     | 1-DH5 | 2402            | Ant 1   | 6.85                  | 30          | Pass    |
| NVNT                                                                     | 1-DH5 | 2441            | Ant 1   | 5.49                  | 30          | Pass    |
| NVNT                                                                     | 1-DH5 | 2480            | Ant 1   | 6.12                  | 30          | Pass    |
| NVNT                                                                     | 2-DH5 | 2402            | Ant 1   | 5.67                  | 20.97       | Pass    |
| NVNT                                                                     | 2-DH5 | 2441            | Ant 1   | 5.04                  | 20.97       | Pass    |
| NVNT                                                                     | 2-DH5 | 2480            | Ant 1   | 6.36                  | 20.97       | Pass    |
| NVNT                                                                     | 3-DH5 | 2402            | Ant 1   | 5.59                  | 20.97       | Pass    |
| Condition<br>NVNT<br>NVNT<br>NVNT<br>NVNT<br>NVNT<br>NVNT<br>NVNT<br>NVN | 3-DH5 | 2441            | Ant 1   | 4.93                  | 20.97       | Pass    |
| NVNT                                                                     | 3-DH5 | 2480            | Ant 1   | 6.69                  | 20.97       | Pass    |


ACCREDITED

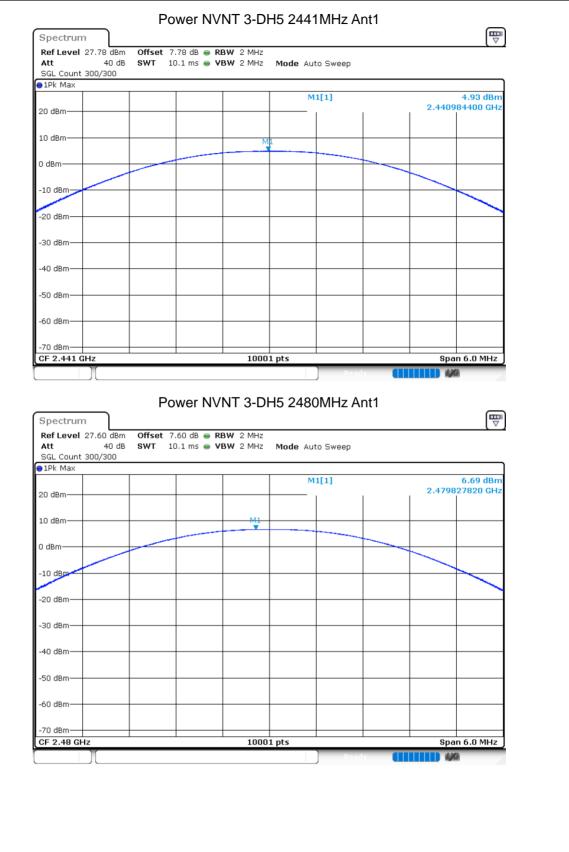
Certificate #4298.01




#### Power NVNT 1-DH5 2402MHz Ant1







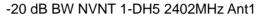


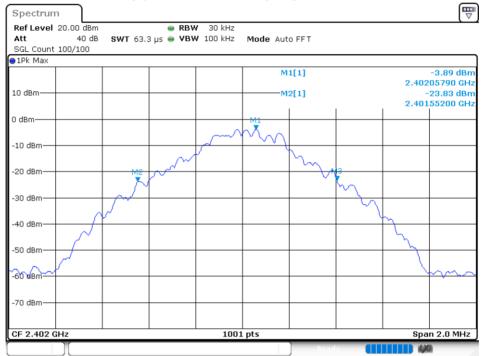




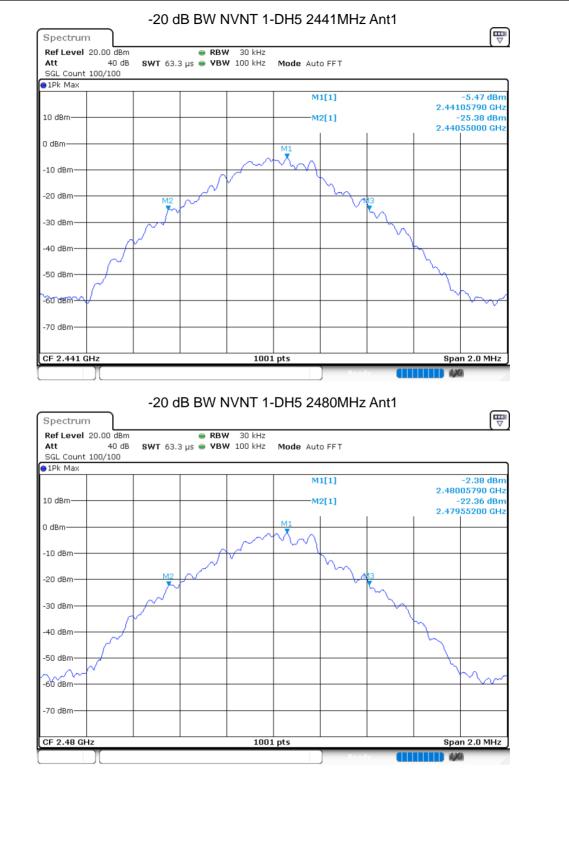






# 8.3 OCCUPIED CHANNEL BANDWIDTH


| Condition | Mode  | Frequency (MHz) | Antenna | -20 dB Bandwidth (MHz) | Verdict |
|-----------|-------|-----------------|---------|------------------------|---------|
| NVNT      | 1-DH5 | 2402            | Ant 1   | 0.852                  | Pass    |
| NVNT      | 1-DH5 | 2441            | Ant 1   | 0.86                   | Pass    |
| NVNT      | 1-DH5 | 2480            | Ant 1   | 0.858                  | Pass    |
| NVNT      | 2-DH5 | 2402            | Ant 1   | 1.286                  | Pass    |
| NVNT      | 2-DH5 | 2441            | Ant 1   | 1.246                  | Pass    |
| NVNT      | 2-DH5 | 2480            | Ant 1   | 1.268                  | Pass    |
| NVNT      | 3-DH5 | 2402            | Ant 1   | 1.252                  | Pass    |
| NVNT      | 3-DH5 | 2441            | Ant 1   | 1.26                   | Pass    |
| NVNT      | 3-DH5 | 2480            | Ant 1   | 1.28                   | Pass    |

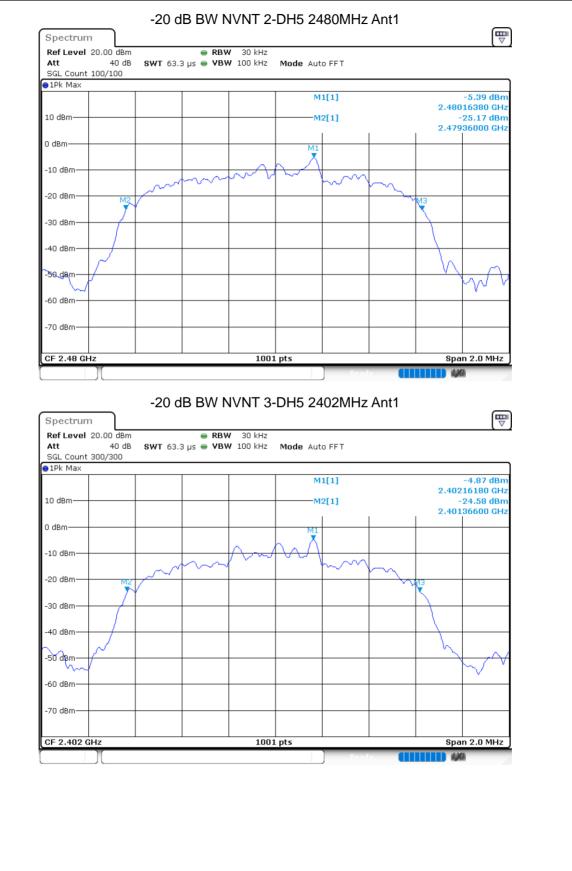
ACCREDITED


Certificate #4298.01

ilac-MR



















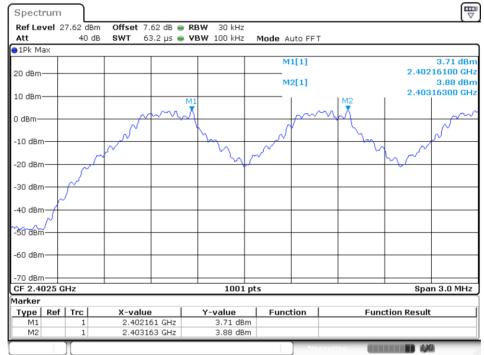








# 8.4 CARRIER FREQUENCIES SEPARATION

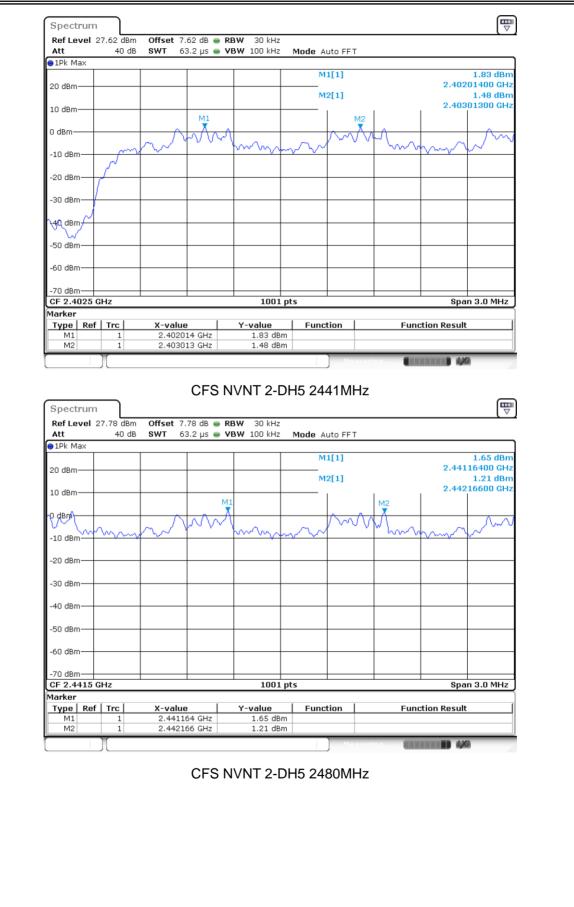

ilac-M

| Condition | Mode  | Hopping Freq1 | Hopping Freq2 | HFS   | Limit | Verdict |
|-----------|-------|---------------|---------------|-------|-------|---------|
|           |       | (MHz)         | (MHz)         | (MHz) | (MHz) |         |
| NVNT      | 1-DH5 | 2402.161      | 2403.163      | 1.002 | 0.852 | Pass    |
| NVNT      | 1-DH5 | 2441.161      | 2442.163      | 1.002 | 0.86  | Pass    |
| NVNT      | 1-DH5 | 2479.161      | 2480.163      | 1.002 | 0.858 | Pass    |
| NVNT      | 2-DH5 | 2402.014      | 2403.013      | 0.999 | 0.857 | Pass    |
| NVNT      | 2-DH5 | 2441.164      | 2442.166      | 1.002 | 0.845 | Pass    |
| NVNT      | 2-DH5 | 2479.164      | 2480.163      | 0.999 | 0.845 | Pass    |
| NVNT      | 3-DH5 | 2402.161      | 2403.163      | 1.002 | 0.835 | Pass    |
| NVNT      | 3-DH5 | 2441.161      | 2442.163      | 1.002 | 0.84  | Pass    |
| NVNT      | 3-DH5 | 2479.161      | 2480.163      | 1.002 | 0.853 | Pass    |

ACCREDITED

Certificate #4298.01

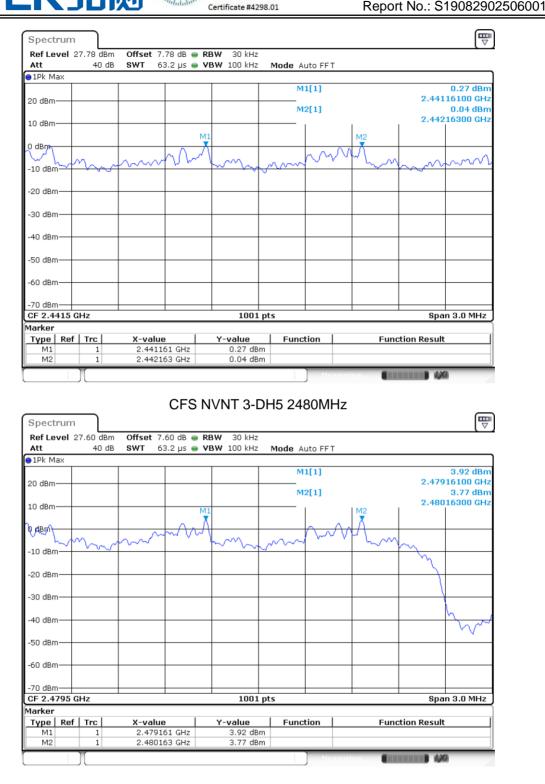
### CFS NVNT 1-DH5 2402MHz




CFS NVNT 1-DH5 2441MHz



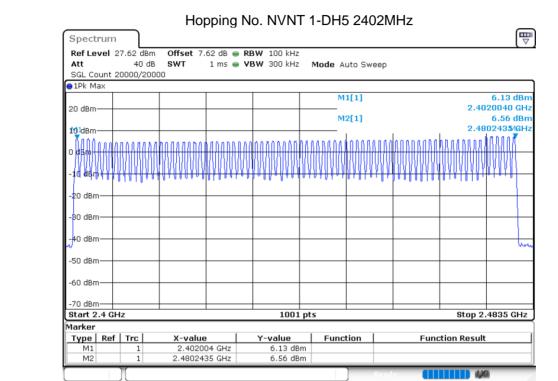












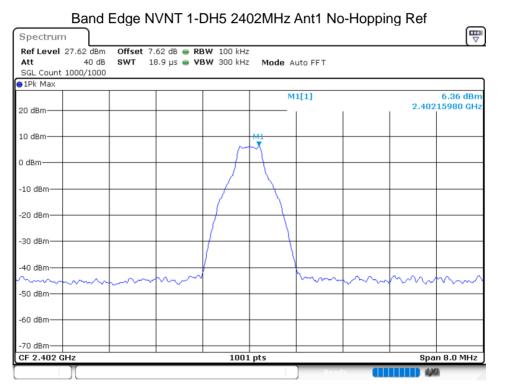



## 8.5 NUMBER OF HOPPING CHANNEL

| Condition | Mode  | Hopping Number       | Limit | Verdict |
|-----------|-------|----------------------|-------|---------|
| NVNT      | 1-DH5 | Hopping Number<br>79 | 15    | Pass    |



ACCREDITED


Certificate #4298.01



# **NTEK北**测

# 8.6 BAND EDGE

| EDGE  |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode  | Frequency                                                                             | Antenna                                                                                                                                                                                                                                                                                                                                                        | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max Value                                                                                                                                                                                                                                                                                                                           | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Verdict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | (MHz)                                                                                 |                                                                                                                                                                                                                                                                                                                                                                | Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (dBc)                                                                                                                                                                                                                                                                                                                               | (dBc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1-DH5 | 2402                                                                                  | Ant 1                                                                                                                                                                                                                                                                                                                                                          | No-Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -47.61                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1-DH5 | 2402                                                                                  | Ant 1                                                                                                                                                                                                                                                                                                                                                          | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -47.15                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1-DH5 | 2480                                                                                  | Ant 1                                                                                                                                                                                                                                                                                                                                                          | No-Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -50.71                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1-DH5 | 2480                                                                                  | Ant 1                                                                                                                                                                                                                                                                                                                                                          | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -50.04                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2-DH5 | 2402                                                                                  | Ant 1                                                                                                                                                                                                                                                                                                                                                          | No-Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -46.68                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2-DH5 | 2402                                                                                  | Ant 1                                                                                                                                                                                                                                                                                                                                                          | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -45.69                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2-DH5 | 2480                                                                                  | Ant 1                                                                                                                                                                                                                                                                                                                                                          | No-Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -48.63                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2-DH5 | 2480                                                                                  | Ant 1                                                                                                                                                                                                                                                                                                                                                          | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -47.81                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3-DH5 | 2402                                                                                  | Ant 1                                                                                                                                                                                                                                                                                                                                                          | No-Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -46.68                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3-DH5 | 2402                                                                                  | Ant 1                                                                                                                                                                                                                                                                                                                                                          | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -44.69                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3-DH5 | 2480                                                                                  | Ant 1                                                                                                                                                                                                                                                                                                                                                          | No-Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -48.46                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3-DH5 | 2480                                                                                  | Ant 1                                                                                                                                                                                                                                                                                                                                                          | Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -49.22                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | Mode<br>1-DH5<br>1-DH5<br>1-DH5<br>2-DH5<br>2-DH5<br>2-DH5<br>3-DH5<br>3-DH5<br>3-DH5 | Mode         Frequency<br>(MHz)           1-DH5         2402           1-DH5         2402           1-DH5         2480           1-DH5         2480           2-DH5         2402           2-DH5         2402           2-DH5         2402           2-DH5         2402           3-DH5         2402           3-DH5         2402           3-DH5         2480 | Mode         Frequency<br>(MHz)         Antenna           1-DH5         2402         Ant 1           1-DH5         2402         Ant 1           1-DH5         2402         Ant 1           1-DH5         2480         Ant 1           1-DH5         2480         Ant 1           1-DH5         2480         Ant 1           2-DH5         2402         Ant 1           2-DH5         2402         Ant 1           2-DH5         2480         Ant 1           2-DH5         2480         Ant 1           3-DH5         2402         Ant 1           3-DH5         2402         Ant 1           3-DH5         2402         Ant 1           3-DH5         2402         Ant 1 | ModeFrequency<br>(MHz)AntennaHopping<br>Mode1-DH52402Ant 1No-Hopping1-DH52402Ant 1Hopping1-DH52402Ant 1Hopping1-DH52480Ant 1No-Hopping2-DH52402Ant 1Hopping2-DH52402Ant 1Hopping2-DH52402Ant 1Hopping2-DH52402Ant 1Hopping2-DH52480Ant 1Hopping3-DH52402Ant 1Hopping3-DH52402Ant 1Hopping3-DH52480Ant 1Hopping3-DH52480Ant 1Hopping | Mode         Frequency<br>(MHz)         Antenna         Hopping<br>Mode         Max Value<br>(dBc)           1-DH5         2402         Ant 1         No-Hopping         -47.61           1-DH5         2402         Ant 1         Hopping         -47.61           1-DH5         2402         Ant 1         Hopping         -47.15           1-DH5         2480         Ant 1         No-Hopping         -50.71           1-DH5         2480         Ant 1         Hopping         -50.04           2-DH5         2402         Ant 1         No-Hopping         -46.68           2-DH5         2402         Ant 1         Hopping         -45.69           2-DH5         2402         Ant 1         Hopping         -46.68           2-DH5         2480         Ant 1         No-Hopping         -48.63           2-DH5         2480         Ant 1         No-Hopping         -48.63           2-DH5         2480         Ant 1         No-Hopping         -46.68           3-DH5         2402         Ant 1         No-Hopping         -46.68           3-DH5         2402         Ant 1         Hopping         -44.69           3-DH5         2480         Ant 1         No-H | Mode         Frequency<br>(MHz)         Antenna         Hopping<br>Mode         Max Value<br>(dBc)         Limit<br>(dBc)           1-DH5         2402         Ant 1         No-Hopping         -47.61         -20           1-DH5         2402         Ant 1         Hopping         -47.61         -20           1-DH5         2402         Ant 1         Hopping         -47.15         -20           1-DH5         2480         Ant 1         No-Hopping         -50.71         -20           1-DH5         2480         Ant 1         Hopping         -50.04         -20           2-DH5         2402         Ant 1         No-Hopping         -46.68         -20           2-DH5         2402         Ant 1         No-Hopping         -46.68         -20           2-DH5         2402         Ant 1         No-Hopping         -46.68         -20           2-DH5         2480         Ant 1         No-Hopping         -48.63         -20           2-DH5         2480         Ant 1         No-Hopping         -46.68         -20           3-DH5         2402         Ant 1         No-Hopping         -46.68         -20           3-DH5         2402         Ant 1         No-Hopping |



Band Edge NVNT 1-DH5 2402MHz Ant1 No-Hopping Emission



| SGL Count 100/100<br>9 1Pk Max                                                                                                                                                                                                                                                                                                          |                                                                                |                                       |                          |                     |                 |                                                                                                                 |                                                                                                                | c oc 15                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|--------------------------|---------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 20 dBm                                                                                                                                                                                                                                                                                                                                  |                                                                                |                                       |                          |                     | 1[1]            |                                                                                                                 | 2.40                                                                                                           | 6.06 dBm<br>205000 GHz                                                                   |
| 10 dBm                                                                                                                                                                                                                                                                                                                                  |                                                                                |                                       |                          | M:                  | 2[1]            |                                                                                                                 | 2.40                                                                                                           | -47.90 dBm<br>000000048Hz                                                                |
| 0 dBm                                                                                                                                                                                                                                                                                                                                   |                                                                                |                                       |                          |                     |                 |                                                                                                                 |                                                                                                                |                                                                                          |
| -10 dBm-D1 -13.6                                                                                                                                                                                                                                                                                                                        | 35 dBm                                                                         |                                       |                          |                     |                 |                                                                                                                 |                                                                                                                |                                                                                          |
| -20 dBm                                                                                                                                                                                                                                                                                                                                 |                                                                                |                                       |                          |                     |                 |                                                                                                                 |                                                                                                                |                                                                                          |
| -30 dBm                                                                                                                                                                                                                                                                                                                                 |                                                                                |                                       |                          |                     |                 |                                                                                                                 |                                                                                                                |                                                                                          |
| -40 dBm                                                                                                                                                                                                                                                                                                                                 | (กกละ (คงการเหลง (คงการเปล่าง)                                                 | L. 6 N. W. W. W.                      | M4                       | on a nhai           | nta at ab       | h. h. to a she to b                                                                                             | МЗ                                                                                                             | when we have                                                                             |
| -50 dBm                                                                                                                                                                                                                                                                                                                                 | allindaa aa andaa andaa anda an                                                | , , , , , , , , , , , , , , , , , , , | 10 - 40 U                | n althersternas das | and welling and | and and the second s | ann an the second of the second s |                                                                                          |
| -60 dBm                                                                                                                                                                                                                                                                                                                                 |                                                                                |                                       |                          |                     |                 |                                                                                                                 |                                                                                                                |                                                                                          |
| -70 dBm<br>Start 2.306 GHz                                                                                                                                                                                                                                                                                                              |                                                                                |                                       | 1001                     | pts                 |                 |                                                                                                                 | Sto                                                                                                            | 2.406 GHz                                                                                |
| Marker                                                                                                                                                                                                                                                                                                                                  |                                                                                | 1                                     |                          |                     |                 |                                                                                                                 |                                                                                                                |                                                                                          |
| Type Ref Trc                                                                                                                                                                                                                                                                                                                            | X-value<br>2.4020                                                              | 5 GHz                                 | Y-value<br>6.06 dBr      |                     |                 | Fun                                                                                                             | ction Resu                                                                                                     | ilt                                                                                      |
| M2 1<br>M3 1                                                                                                                                                                                                                                                                                                                            | 2.3                                                                            | 4 GHz<br>9 GHz                        | -47.90 dBr<br>-46.23 dBr | m                   |                 |                                                                                                                 |                                                                                                                |                                                                                          |
| M4 1                                                                                                                                                                                                                                                                                                                                    | 2.349                                                                          | 8 GHz                                 | -41.25 dBr               | m                   | <u> </u>        |                                                                                                                 |                                                                                                                |                                                                                          |
| Spectrum           Ref Level         27.62         dt           Att         40         5GL         Count         2000/20                                                                                                                                                                                                                | dB <b>SWT</b> 18                                                               | 52 dB 👄 RB                            |                          |                     |                 | ant1 Ho                                                                                                         | pping I                                                                                                        | Ref                                                                                      |
| Spectrum<br>Ref Level 27.62 dt<br>Att 40                                                                                                                                                                                                                                                                                                | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         | Mode Au             |                 | ant1 Ho                                                                                                         |                                                                                                                | €.06 dBm                                                                                 |
| Spectrum<br>Ref Level 27.62 dt<br>Att 40<br>SGL Count 2000/20                                                                                                                                                                                                                                                                           | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         | Mode Au             | uto FFT         | nt1 Ho                                                                                                          |                                                                                                                | ♥                                                                                        |
| Spectrum<br>Ref Level 27.62 dł<br>Att 40<br>SGL Count 2000/20<br>9 1Pk Max                                                                                                                                                                                                                                                              | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         | Mode Au             | uto FFT         | ant1 Ho                                                                                                         |                                                                                                                | €.06 dBm<br>0504500 GHz                                                                  |
| Spectrum<br>Ref Level 27.62 dt<br>Att 40<br>SGL Count 2000/20<br>PIPk Max<br>20 dBm                                                                                                                                                                                                                                                     | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         | Mode Au             | uto FFT         | Ant1 Ho                                                                                                         | 2.4(                                                                                                           | €.06 dBm<br>0504500 GHz                                                                  |
| Spectrum           Ref Level         27.62 dt           Att         40           SGL         Count         2000/20           ●1Pk         Max           20 dBm         10 dBm           0 dBm         0 dBm                                                                                                                             | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         | Mode Au             | uto FFT         |                                                                                                                 | 2.4(                                                                                                           | €.06 dBm<br>0504500 GHz                                                                  |
| Spectrum           Ref Level         27.62 dt           Att         40           SGL         Count         2000/20           ●1Pk         Max           20 dBm                                                                                                                                                                          | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         | Mode Au             | uto FFT         |                                                                                                                 | 2.4(                                                                                                           | €.06 dBm<br>0504500 GHz                                                                  |
| Spectrum           Ref Level         27.62 dt           Att         40           SGL         Count         2000/20           ●1Pk         Max           20 dBm         10 dBm           0 dBm         0 dBm                                                                                                                             | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         | Mode Au             | uto FFT         |                                                                                                                 | 2.4(                                                                                                           | €.06 dBm<br>0504500 GHz                                                                  |
| Spectrum           Ref Level         27.62 dt           Att         40           SGL         Count         2000/20           ● 1Pk         Max           20 dBm                                                                                                                                                                         | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         | Mode Au             | uto FFT         |                                                                                                                 | 2.4(                                                                                                           | €.06 dBm<br>0504500 GHz                                                                  |
| Spectrum           Ref Level 27.62 dt           Att 40           SGL Count 2000/20           IN Max           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                                                                                               | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         | Mode Au             | uto FFT         |                                                                                                                 | 2.4(                                                                                                           | €.06 dBm<br>0504500 GHz                                                                  |
| Spectrum           Ref Level         27.62 dl           Att         40           SGL         Count         200/20           • IPk         Max           20 dBm         10 dBm           0 dBm         -10 dBm           -20 dBm         -30 dBm           -40 dBm         -40 dBm                                                       | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         | Mode Au             | uto FFT         |                                                                                                                 | 2.4(                                                                                                           | €.06 dBm<br>0504500 GHz                                                                  |
| Spectrum           Ref Level         27.62 dl           Att         40           SGL         Count         200/20           • IPk         Max           20 dBm         10 dBm           10 dBm         -0 dBm           -10 dBm                                                                                                         | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         | Mode Au             | uto FFT         |                                                                                                                 | 2.4(                                                                                                           | €.06 dBm<br>0504500 GHz                                                                  |
| Spectrum           Ref Level         27.62 dl           Att         40           SGL         Count         200/20           • IPk         Max           20 dBm         10 dBm           0 dBm         -10 dBm           -20 dBm         -30 dBm           -40 dBm         -40 dBm                                                       | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         | Mode Au             | uto FFT         |                                                                                                                 | 2.4(                                                                                                           | €.06 dBm<br>0504500 GHz                                                                  |
| Spectrum           Ref Level         27.62 dk           Att         40           SGL         Count         2000/20           ● 1Pk         Max           20 dBm         0           10 dBm         0           -10 dBm         -0           -20 dBm         -30 dBm           -30 dBm         -50 dBm           -50 dBm         -70 dBm | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | W 100 kHz                |                     | uto FFT         |                                                                                                                 | 2.4(                                                                                                           | 6.06 dBm<br>0504500 GHz                                                                  |
| Spectrum           Ref Level 27.62 dl           Att 40           SGL Count 2000/20           • 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm                                                                                      | om <b>Offset</b> 7.6<br>dB <b>SWT</b> 18                                       | 52 dB 👄 RB                            | <b>W</b> 100 kHz         |                     | uto FFT         |                                                                                                                 | 2.4(                                                                                                           | €.06 dBm<br>0504500 GHz                                                                  |
| Spectrum           Ref Level 27.62 dk           Att 40           SGL Count 2000/20           • 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           -70 dBm                                                  | Sm         Offset         7.6           dB         SWT         18           00 | 2 dB • RB                             | W 100 kHz                | Mode Au             | uto FFT         |                                                                                                                 | 2.4(                                                                                                           | 6.06 dBm<br>1504500 GHz<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| Spectrum           Ref Level         27.62 dk           Att         40           SGL         Count         2000/20           ● 1Pk         Max           20 dBm         0           10 dBm         0           -10 dBm         -0           -20 dBm         -30 dBm           -30 dBm         -50 dBm           -50 dBm         -70 dBm | Sm         Offset         7.6           dB         SWT         18           00 | 2 dB • RB                             | W 100 kHz                | Mode Au             | uto FFT         |                                                                                                                 | 2.4(                                                                                                           | 6.06 dBm<br>1504500 GHz<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |



| Ref Level 2                                                                                                           | 7.62 dBm                                 | Offset 7                            | .62 dB 👄 R                                | <b>BW</b> 100 kH                                              | Iz                  |                 |                     |               | (``)                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------|-------------------------------------------|---------------------------------------------------------------|---------------------|-----------------|---------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
| Att                                                                                                                   | 40 dB                                    |                                     |                                           |                                                               | z Mode              | Auto FFT        |                     |               |                                                                                                                 |
| SGL Count 1                                                                                                           | 000/1000                                 |                                     |                                           |                                                               |                     |                 |                     |               |                                                                                                                 |
| 1Pk Max                                                                                                               |                                          |                                     |                                           |                                                               |                     |                 |                     |               |                                                                                                                 |
|                                                                                                                       |                                          |                                     |                                           |                                                               | M                   | 1[1]            |                     |               | 5.68 dBm                                                                                                        |
| 20 dBm                                                                                                                |                                          |                                     |                                           |                                                               |                     | 0[1]            |                     |               | 295000 GHz                                                                                                      |
| LO dBm                                                                                                                |                                          |                                     |                                           |                                                               | M                   | 2[1]            |                     |               | -43.00 dBm<br>000000 <sup>N</sup> GHz                                                                           |
|                                                                                                                       |                                          |                                     |                                           |                                                               |                     | I               | 1                   | ∠.400         | 1111                                                                                                            |
| ) dBm                                                                                                                 |                                          |                                     |                                           |                                                               |                     |                 |                     |               |                                                                                                                 |
|                                                                                                                       |                                          |                                     |                                           |                                                               |                     |                 |                     |               | I NUM                                                                                                           |
| 10 dBm                                                                                                                | 1 -13.937                                | dBm                                 |                                           |                                                               |                     |                 |                     |               |                                                                                                                 |
| 20 dBm                                                                                                                | 1 -10.907                                |                                     |                                           |                                                               |                     |                 |                     |               | 0                                                                                                               |
| LU UDIII                                                                                                              |                                          |                                     |                                           |                                                               |                     |                 |                     |               |                                                                                                                 |
| -30 dBm                                                                                                               |                                          |                                     |                                           |                                                               |                     |                 |                     |               | <b>┼──┤</b>                                                                                                     |
| 10.10                                                                                                                 |                                          |                                     | M4                                        |                                                               |                     |                 |                     |               | M2                                                                                                              |
| 40 dBm                                                                                                                | marked a set                             | and the and the                     | mapound                                   | m her Hunner                                                  | date damak -        | alon Brank      | uluhan              | MB            | In the second |
| 50 dBm                                                                                                                | Nerre                                    | and a stranger                      | ****V                                     |                                                               | and a married of    | Marrie Mar      | ater on a character | An Marthanton | - Jose no                                                                                                       |
| 00 0000                                                                                                               |                                          |                                     |                                           |                                                               |                     |                 |                     |               |                                                                                                                 |
| 60 dBm                                                                                                                |                                          |                                     |                                           |                                                               |                     |                 |                     |               | ───                                                                                                             |
|                                                                                                                       |                                          |                                     |                                           |                                                               |                     |                 |                     |               |                                                                                                                 |
| 70 dBm                                                                                                                | 011-                                     |                                     |                                           | 1000                                                          |                     |                 |                     | 01            |                                                                                                                 |
| Start 2.306 (                                                                                                         | GHZ                                      |                                     |                                           | 1001                                                          | l pts               |                 |                     | Stop          | 2.406 GHz                                                                                                       |
| larker<br>Turun langel                                                                                                | True I                                   |                                     | 1                                         |                                                               | 1 -                 | 1               | -                   |               |                                                                                                                 |
| Type Ref<br>M1                                                                                                        |                                          | X-value                             | 95 GHz                                    | <u>Y-value</u><br>5.68 dB                                     | Func                | tion            | Fun                 | tion Result   | t                                                                                                               |
|                                                                                                                       | 1                                        |                                     |                                           |                                                               |                     |                 |                     |               |                                                                                                                 |
|                                                                                                                       |                                          | 0                                   | .4 GHz                                    | -43 nn ae                                                     | lm i                |                 |                     |               |                                                                                                                 |
| M1<br>M2<br>M3                                                                                                        | 1                                        |                                     | .4 GHz<br>39 GHz                          | -43.00 dB<br>-46.23 dB                                        |                     |                 |                     |               |                                                                                                                 |
| M2                                                                                                                    | 1                                        | 2.3                                 |                                           |                                                               | 3m                  |                 |                     |               |                                                                                                                 |
| M2<br>M3                                                                                                              | 1                                        | 2.3                                 | 39 GHz                                    | -46.23 dB                                                     | 3m                  | Rea             | idy 🚺               |               |                                                                                                                 |
| M2<br>M3                                                                                                              | 1                                        | 2.3                                 | 39 GHz                                    | -46.23 dB                                                     | 3m                  | ) Rea           | ndy 🚺               |               | •                                                                                                               |
| M2<br>M3<br>M4                                                                                                        |                                          | 2.3<br>2.344                        | 39 GHz<br>19 GHz                          | -46.23 dE<br>-41.10 dE                                        | 3m<br>3m            | ) Rea           | o-Hoppi             | na Ref        | <u> </u>                                                                                                        |
| M2<br>M3<br>M4                                                                                                        |                                          | 2.3<br>2.344                        | 39 GHz<br>19 GHz                          | -46.23 dE<br>-41.10 dE                                        | 3m<br>3m            | ) Per<br>Ant1 N | o-Hoppin            | ng Ref        |                                                                                                                 |
| M2<br>M3<br>M4                                                                                                        |                                          | 2.3<br>2.344                        | 39 GHz<br>19 GHz                          | -46.23 dE<br>-41.10 dE                                        | 3m<br>3m            | ) Red<br>Ant1 N | o-Hoppin            | ng Ref        | <u>۵</u>                                                                                                        |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2                                                                             | 1<br>1<br>1<br>Band                      | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 de<br>-41.10 de<br>OH5 248                             | BOMHz .             |                 | o-Hoppin            | ng Ref        |                                                                                                                 |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att                                                                      | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 de<br>-41.10 de<br>OH5 248                             | 8m<br>8m<br>80MHz / |                 | o-Hoppi             | ng Ref        |                                                                                                                 |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 11                                                     | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 de<br>-41.10 de<br>OH5 248                             | BOMHz .             |                 | o-Hoppi             | ng Ref        |                                                                                                                 |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att                                                                      | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 de<br>-41.10 de<br>OH5 248                             | 80MHz /             | uto FFT         | o-Hoppi             | ng Ref        |                                                                                                                 |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 11                                                     | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 de<br>-41.10 de<br>OH5 248                             | 80MHz /             |                 | o-Hoppin            |               | 7.76 dBm                                                                                                        |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 11                                                     | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 de<br>-41.10 de<br>OH5 248                             | 80MHz /             | uto FFT         | o-Hoppin            |               |                                                                                                                 |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 11<br>91Pk Max                                         | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 de<br>-41.10 de<br>OH5 248                             | 80MHz /             | uto FFT         | o-Hoppin            |               | 7.76 dBm                                                                                                        |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 11<br>91Pk Max<br>20 dBm                               | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 de<br>-41.10 de<br>OH5 248                             | 80MHz /             | uto FFT         | o-Hoppin            |               | 7.76 dBm                                                                                                        |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 11<br>91Pk Max                                         | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 dE<br>-41.10 dE<br>DH5 244<br>3W 100 kHz<br>3W 300 kHz | 80MHz /             | uto FFT         | o-Hoppin            |               | 7.76 dBm                                                                                                        |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 11<br>91Pk Max<br>20 dBm<br>10 dBm                     | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 dE<br>-41.10 dE<br>DH5 244<br>3W 100 kHz<br>3W 300 kHz | BOMHZ /             | uto FFT         | o-Hoppin            |               | 7.76 dBm                                                                                                        |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 11<br>91Pk Max<br>20 dBm                               | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 dE<br>-41.10 dE<br>DH5 244<br>3W 100 kHz<br>3W 300 kHz | BOMHZ /             | uto FFT         | o-Hoppin            |               | 7.76 dBm                                                                                                        |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 1i<br>)1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm            | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 dE<br>-41.10 dE<br>DH5 244<br>3W 100 kHz<br>3W 300 kHz | BOMHZ /             | uto FFT         | o-Hoppin            |               | 7.76 dBm                                                                                                        |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 11<br>91Pk Max<br>20 dBm<br>10 dBm                     | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 dE<br>-41.10 dE<br>DH5 244<br>3W 100 kHz<br>3W 300 kHz | BOMHZ /             | uto FFT         | o-Hoppin            |               | 7.76 dBm                                                                                                        |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 1i<br>)1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm            | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 dE<br>-41.10 dE<br>DH5 244<br>3W 100 kHz<br>3W 300 kHz | BOMHZ /             | uto FFT         | dv III              |               | 7.76 dBm                                                                                                        |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 1i<br>)1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm            | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 dE<br>-41.10 dE<br>DH5 244<br>3W 100 kHz<br>3W 300 kHz | BOMHZ /             | uto FFT         | dv III              |               | 7.76 dBm                                                                                                        |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 1i<br>)1Pk Max<br>20 dBm<br>10 dBm<br>10 dBm<br>10 dBm | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 dE<br>-41.10 dE<br>DH5 244<br>3W 100 kHz<br>3W 300 kHz | BOMHZ /             | uto FFT         | dv                  |               | 7.76 dBm                                                                                                        |
| M2<br>M3<br>M4<br>Spectrum<br>Ref Level 2'<br>Att<br>SGL Count 1i<br>)1Pk Max<br>20 dBm<br>10 dBm<br>10 dBm<br>10 dBm | 1<br>1<br>1<br>Band<br>7.60 dBm<br>40 dB | 2.3<br>2.344<br>Edge N<br>Offset 7. | 89 GHZ<br>19 GHZ<br>VNT 1-I<br>60 dB • RE | -46.23 dE<br>-41.10 dE<br>DH5 244<br>3W 100 kHz<br>3W 300 kHz | BOMHZ /             | uto FFT         | o-Hoppin            |               | 7.76 dBm                                                                                                        |

Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Emission

1001 pts

-40 dBm--50 dBm--60 dBm-

CF 2.48 GHz

Span 8.0 MHz

LXI



| ●1Pk Max                                                                                                                                                                                                                                                                                                 |                                               |                                          | M1[1]       |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.88 dBm               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|-------------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 20 dBm                                                                                                                                                                                                                                                                                                   |                                               |                                          |             |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15000 GHz              |
| 10 gm                                                                                                                                                                                                                                                                                                    |                                               |                                          | M2[1]       |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.91 dBm<br>50000 GHz |
| 0 dBm                                                                                                                                                                                                                                                                                                    |                                               |                                          |             |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -10 dBmD1 -12.24                                                                                                                                                                                                                                                                                         | 10 dBm                                        |                                          |             |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -20 gBm                                                                                                                                                                                                                                                                                                  |                                               |                                          |             |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -30 dBm                                                                                                                                                                                                                                                                                                  |                                               |                                          |             |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -40 dBm                                                                                                                                                                                                                                                                                                  | M4                                            |                                          |             |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -50 dBm                                                                                                                                                                                                                                                                                                  | nophilontenterpolar                           | ruthanalation                            | moundantal  | when we | whith | wood for the former of the for | Myperaulternet         |
|                                                                                                                                                                                                                                                                                                          |                                               |                                          |             |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -60 dBm                                                                                                                                                                                                                                                                                                  |                                               |                                          |             |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| -70 dBm<br>Start 2.476 GHz                                                                                                                                                                                                                                                                               |                                               | 1001                                     | pts         |         |       | Stop 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.576 GHz              |
| Marker<br>Type Ref Trc                                                                                                                                                                                                                                                                                   | X-value                                       | Y-value                                  | Function    | 1       | Fund  | tion Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| M1 1<br>M2 1                                                                                                                                                                                                                                                                                             | 2.48015 G                                     | Hz 7.88 dBr                              | m           |         | - uno |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| M3 1                                                                                                                                                                                                                                                                                                     | 2.4835 G<br>2.5 G                             | Hz -45.20 dBr                            | m           |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| M4 1                                                                                                                                                                                                                                                                                                     | 2.4982 G                                      | iHz -42.96 dBr                           | m           |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| Band Ed<br>Spectrum<br>Ref Level 27.60 dB<br>Att 40 d<br>SGL Count 2000/200<br>P1Pk Max                                                                                                                                                                                                                  | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | g) NVNT 1-D                              |             | FF T    | 1 Hop |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩<br>7.18 dBm          |
| Spectrum           Ref Level 27.60 dBr           Att         40 d           SGL Count 2000/200                                                                                                                                                                                                           | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto F | FF T    | 1 Hop |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| Spectrum<br>Ref Level 27.60 dBi<br>Att 40 d<br>SGL Count 2000/200<br>PIPk Max                                                                                                                                                                                                                            | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto F | FF T    | 1 Hop |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩<br>7.18 dBm          |
| Spectrum<br>Ref Level 27.60 dBi<br>Att 40 d<br>SGL Count 2000/200<br>PK Max<br>20 dBm<br>10 dBm                                                                                                                                                                                                          | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto F | FF T    | 1 Hop |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩<br>7.18 dBm          |
| Spectrum Ref Level 27.60 dBi Att 40 d SGL Count 2000/200 PIPk Max 20 dBm                                                                                                                                                                                                                                 | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto P | FF T    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩<br>7.18 dBm          |
| Spectrum<br>Ref Level 27.60 dBi<br>Att 40 d<br>SGL Count 2000/200<br>PK Max<br>20 dBm<br>Ho dBm                                                                                                                                                                                                          | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto P | FF T    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩<br>7.18 dBm          |
| Spectrum           Ref Level 27.60 dBit           Att 40 d           SGL Count 2000/2000           ●1Pk Max           20 dBm           H0 dBm           0 dBm                                                                                                                                            | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto P | FF T    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩<br>7.18 dBm          |
| Spectrum           Ref Level 27.60 dBit           Att 40 d           SGL Count 2000/200           IPk Max           20 dBm           10 dBm           -10 dBm                                                                                                                                            | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto P | FF T    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩<br>7.18 dBm          |
| Spectrum<br>Ref Level 27.60 dBi<br>Att 40 d<br>SGL Count 2000/200<br>PIK Max<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                                                                                                              | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto P | FF T    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩<br>7.18 dBm          |
| Spectrum           Ref Level 27.60 dBit           Att 40 d           SGL Count 2000/200           ●1Pk Max           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                                                         | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto P | FF T    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩<br>7.18 dBm          |
| Spectrum           Ref Level 27.60 dBi           Att         40 d           SGL Count 2000/200           • IPk Max           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                                                 | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto P | FF T    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩<br>7.18 dBm          |
| Spectrum           Ref Level 27.60 dBi           Att         40 d           SGL Count 2000/2000           • 1Pk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                                                                            | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto P | FF T    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩<br>7.18 dBm          |
| Spectrum           Ref Level 27.60 dBi           Att         40 d           SGL Count 2000/200           ● 1Pk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                                             | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto P | FF T    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₩<br>7.18 dBm          |
| Spectrum           Ref Level 27.60 dBi           Att         40 d           SGL Count 2000/2000           • 1Pk Max           20 dBm           • 1Pk Max           20 dBm           • 10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | IB • RBW 100 kHz<br>IS • VBW 300 kHz     | Mode Auto F | FF T    |       | 2.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.18 dBm<br>05190 GHz  |
| Spectrum           Ref Level 27.60 dBi           Att         40 d           SGL Count 2000/2000           • 1Pk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm                                        | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | iB 🖷 RBW 100 kHz                         | Mode Auto F | FF T    |       | 2.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ₩<br>7.18 dBm          |
| Spectrum           Ref Level 27.60 dBi           Att         40 d           SGL Count 2000/2000           ● 1Pk Max           20 dBm           0 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm                         | m <b>Offset</b> 7.60 d<br>B <b>SWT</b> 18.9 µ | IB • RBW 100 kHz<br>IS • VBW 300 kHz     | Mode Auto F | FF T    |       | 2.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.18 dBm<br>05190 GHz  |
| Spectrum           Ref Level 27.60 dBi           Att         40 d           SGL Count 2000/2000           • 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           CF 2.48 GHz  | m Offset 7.60 d<br>B SWT 18.9 µ<br>0          | IB • RBW 100 kHz<br>IS • VBW 300 kHz     | Mode Auto F | FFT     |       | 2.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.18 dBm<br>05190 GHz  |
| Spectrum           Ref Level 27.60 dBi           Att         40 d           SGL Count 2000/2000           • 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           CF 2.48 GHz  | m Offset 7.60 d<br>B SWT 18.9 µ<br>0          | IB • RBW 100 kHz<br>IS • VBW 300 kHz<br> | Mode Auto F | FFT     |       | 2.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.18 dBm<br>05190 GHz  |



| Att<br>SGL Count !                                                                                                | 27.60 dBm<br>40 dB         |                                       | • VBW 300 kHz                            | Mode Auto FFT       |                    |                              |
|-------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|------------------------------------------|---------------------|--------------------|------------------------------|
| 1Pk Max                                                                                                           | 500/500                    |                                       |                                          |                     |                    |                              |
|                                                                                                                   |                            |                                       |                                          | M1[1]               |                    | 6.55 dBm                     |
| 20 dBm                                                                                                            |                            |                                       |                                          | M2[1]               |                    | 2.47795000 GHz<br>-45.36 dBm |
| 🖞 dBm —                                                                                                           |                            |                                       |                                          |                     |                    | 2.48350000 GHz               |
|                                                                                                                   |                            |                                       |                                          |                     |                    |                              |
|                                                                                                                   |                            |                                       |                                          |                     |                    |                              |
| 10 dBm                                                                                                            | 01 -12.82                  | 0 dBm                                 |                                          |                     |                    |                              |
| 20 dBm                                                                                                            | 51 -12.02                  |                                       |                                          |                     |                    |                              |
| 20 0011                                                                                                           |                            |                                       |                                          |                     |                    |                              |
| -30 dBm                                                                                                           |                            |                                       |                                          |                     |                    |                              |
| 40 dBm                                                                                                            |                            | M3 .                                  |                                          |                     |                    |                              |
| heredy                                                                                                            | how have                   | or when we have the stand of the work | how the here and the how and the stand   | lanor lange on burn | annow manufactured | and where the astronghe      |
| -50 dBm                                                                                                           |                            |                                       |                                          |                     |                    |                              |
| 60 dBm                                                                                                            |                            |                                       |                                          |                     |                    |                              |
|                                                                                                                   |                            |                                       |                                          |                     |                    |                              |
| 70 dBm                                                                                                            | CH2                        |                                       | 1001 pt:                                 |                     |                    | Stop 2.576 GHz               |
| larker                                                                                                            | 0112                       |                                       | 1001 pt                                  | 3                   |                    | 300p 2.370 GH2               |
| Type   Ref                                                                                                        | Trc                        | X-value                               | Y-value                                  | Function            | Function           | Result                       |
| M1                                                                                                                | 1                          | 2.47795 GHz                           | 6.55 dBm                                 |                     |                    |                              |
| M2<br>M3                                                                                                          | 1                          | 2.4835 GHz<br>2.5 GHz                 | -45.36 dBm<br>-44.59 dBm                 |                     |                    |                              |
|                                                                                                                   |                            |                                       |                                          |                     |                    |                              |
| M4                                                                                                                | 1                          | 2.4857 GHz                            | -42.87 dBm                               |                     |                    |                              |
|                                                                                                                   | 1                          | 2.4857 GHz                            | -42.87 dBm                               | R                   | eady <b>Caller</b> |                              |
|                                                                                                                   |                            | 2.4857 GHz                            | -42.87 dBm                               | R                   | eady (             | <b></b>                      |
|                                                                                                                   | ][                         | · · · · · ·                           |                                          | MHz Ant1 I          | ode Contra I       | Cef                          |
| M4                                                                                                                | Band                       | Edge NVNT 2                           |                                          | MHz Ant1 I          | No-Hopping I       |                              |
| M4                                                                                                                | Band                       | Edge NVNT 2                           | 2-DH5 2402                               | MHz Ant1 I          | No-Hopping I       | Ref                          |
| M4<br>Spectrum<br>Ref Level 3                                                                                     | Band                       | Edge NVNT 2                           | 2-DH5 2402<br>RBW 100 kHz                |                     | No-Hopping I       |                              |
| M4<br>Spectrum<br>Ref Level 2<br>Att                                                                              | Band<br>27.62 dBm<br>40 dB | Edge NVNT 2                           | 2-DH5 2402                               |                     | No-Hopping I       |                              |
| M4                                                                                                                | Band<br>27.62 dBm<br>40 dB | Edge NVNT 2                           | 2-DH5 2402<br>RBW 100 kHz                |                     | No-Hopping I       |                              |
| M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 3                                                               | Band<br>27.62 dBm<br>40 dB | Edge NVNT 2                           | 2-DH5 2402<br>RBW 100 kHz                |                     | No-Hopping I       | 5.32 dBm                     |
| M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 3                                                               | Band<br>27.62 dBm<br>40 dB | Edge NVNT 2                           | 2-DH5 2402<br>RBW 100 kHz                | Mode Auto FFT       | No-Hopping I       |                              |
| M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 3<br>91Pk Max                                                   | Band<br>27.62 dBm<br>40 dB | Edge NVNT 2                           | 2-DH5 2402<br>RBW 100 kHz                | Mode Auto FFT       | No-Hopping I       | 5.32 dBm                     |
| M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 3<br>91Pk Max                                                   | Band<br>27.62 dBm<br>40 dB | Edge NVNT 2                           | 2-DH5 2402<br>RBW 100 kHz<br>VBW 300 kHz | Mode Auto FFT       | No-Hopping I       | 5.32 dBm                     |
| M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>1Pk Max<br>20 dBm                                          | Band<br>27.62 dBm<br>40 dB | Edge NVNT 2                           | 2-DH5 2402<br>RBW 100 kHz<br>VBW 300 kHz | Mode Auto FFT       | No-Hopping I       | 5.32 dBm                     |
| M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>1Pk Max<br>20 dBm                                          | Band<br>27.62 dBm<br>40 dB | Edge NVNT 2                           | 2-DH5 2402<br>RBW 100 kHz<br>VBW 300 kHz | Mode Auto FFT       | No-Hopping I       | 5.32 dBm                     |
| M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>11Pk Max<br>20 dBm<br>L0 dBm                               | Band<br>27.62 dBm<br>40 dB | Edge NVNT 2                           | 2-DH5 2402<br>RBW 100 kHz<br>VBW 300 kHz | Mode Auto FFT       | No-Hopping I       | 5.32 dBm                     |
| M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>11Pk Max<br>20 dBm<br>L0 dBm                               | Band<br>27.62 dBm<br>40 dB | Edge NVNT 2                           | 2-DH5 2402<br>RBW 100 kHz<br>VBW 300 kHz | Mode Auto FFT       | No-Hopping I       | 5.32 dBm                     |
| M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>SGL Count 2<br>SGL Count 2<br>11Pk Max<br>20 dBm<br>10 dBm | Band<br>27.62 dBm<br>40 dB | Edge NVNT 2                           | 2-DH5 2402<br>RBW 100 kHz<br>VBW 300 kHz | Mode Auto FFT       | No-Hopping I       | 5.32 dBm                     |
| M4<br>Spectrum<br>Ref Level 2<br>SGL Count 2<br>IPk Max<br>0 dBm<br>0 dBm<br>dBm                                  | Band<br>27.62 dBm<br>40 dB | Edge NVNT 2                           | 2-DH5 2402<br>RBW 100 kHz<br>VBW 300 kHz | Mode Auto FFT       | No-Hopping I       | 5.32 dBm                     |

1001 pts

Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emission

-30 dBm

-40 dBm· -------50 dBm·

-60 dBm--70 dBm-

CF 2.402 GHz

Span 8.0 MHz

LXI



| 20 dBm       2.402050         10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.18 dBm<br>00004GHz                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 20 dBm     2.402050       10 dBm     M2[1]       -45.     2.400000       0 dBm     2.400000       0 dBm     0       -10 dBm     0       -10 dBm     0       -20 dBm     0       -30 dBm     0       -40 dBm     0       -50 dBm     0       -70 dBm     0                                                                                                                                                                                                                                                                          | 5000 GH:<br>5.18 dBn<br>00004GH:<br>7 |
| 10 dBm       2.400000         0 dBm       2.400000         0 dBm       2.400000         -10 dBm       2.400000         -10 dBm       2.400000         -10 dBm       2.400000         -10 dBm       2.400000         -20 dBm       2.400000         -30 dBm       2.400000         -40 dBm       3.400000         -50 dBm       3.4000000         -60 dBm       3.4000000000000000000000000000000000000 |                                       |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| D1         -14.679 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M2                                    |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| -40 dBm-<br>-40 dBm-<br>-50 dBm-<br>-60 dBm-<br>-70 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNLUI U.                              |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A. (00. A.                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| Start 2.306 GHz 1001 pts Stop 2.40<br>Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 406 GHz                               |
| Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.40205 GHz         4.26 dBm                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| M2 1 2.4 GHz -45.18 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| M3         1         2.39 GHz         -46.40 dBm           M4         1         2.35 GHz         -41.37 dBm                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| Spectrum           Ref Level 27.62 dBm         Offset 7.62 dB • RBW 100 kHz           Att         40 dB         SWT         18.9 μs • VBW 300 kHz         Mode Auto FFT           SGL Count 3000/3000         SGL Count 3000/3000         SGL Count 3000/3000         SGL Count 3000/3000                                                                                                                                                                                                                                          |                                       |
| SGL Count 3000/3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.34 dBn                              |
| M1[1] 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5880 GH:                              |
| M1[1] 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5880 GH.                              |
| M1[1] 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5880 GH:                              |
| 20 dBm M1[1] 5.<br>2.403158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5880 GH                               |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5880 GH                               |
| 20 dBm M1[1]S. 2.403156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5880 GH                               |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5880 GH                               |
| 20 dBm M1[1]5.<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5880 GH                               |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5880 GH                               |
| 20 dBm     M1[1]     5.       20 dBm     2.403158       10 dBm     M1       0 dBm     M1       -10 dBm     -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                 | 5880 GH                               |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5880 GH                               |
| 20 dBm     M1[1]     5.       10 dBm     2.403156       10 dBm     M1       -10 dBm     -10 dBm       -20 dBm     -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                          | 5880 GH                               |
| 20 dBm     M1[1]     5.       10 dBm     M1       0 dBm     M1       -10 dBm     -10 dBm       -20 dBm     -30 dBm       -30 dBm     -30 dBm       -60 dBm     -60 dBm                                                                                                                                                                                                                                                                                                                                                             | 5880 GH                               |
| 20 dBm     M1[1]     5.       10 dBm     M1       0 dBm     M1       -10 dBm     M1       -20 dBm     -20 dBm       -30 dBm     -30 dBm       -50 dBm     -50 dBm       -70 dBm     -10 dBm                                                                                                                                                                                                                                                                                                                                        | 5880 GH                               |



|                                                                                                | 40 dB<br>500/500           |             |             | RBW 100 kH<br>VBW 300 kH                    |             | uto FFT       |             |              |                                        |
|------------------------------------------------------------------------------------------------|----------------------------|-------------|-------------|---------------------------------------------|-------------|---------------|-------------|--------------|----------------------------------------|
| 1Pk Max                                                                                        |                            |             |             |                                             |             |               |             |              |                                        |
|                                                                                                |                            |             |             |                                             | MI          | [1]           |             |              | 3.00 dBm                               |
| 20 dBm                                                                                         |                            |             |             |                                             |             |               |             |              | 295000 GHz                             |
| 10 dBm                                                                                         |                            |             |             | _                                           | M2          | [1]           |             |              | -44.52 dBm<br>)00000 <sub>N</sub> GHz  |
|                                                                                                |                            |             |             |                                             |             |               | 1           | 2.400        | V0000000000000000000000000000000000000 |
| 0 dBm                                                                                          |                            |             |             |                                             |             |               |             |              | which                                  |
| -10 dBm                                                                                        |                            |             |             |                                             |             |               |             |              | 19 (M-1                                |
|                                                                                                | D1 -14.663                 | dBm         |             |                                             |             |               |             |              |                                        |
| -20 dBm                                                                                        |                            |             |             |                                             |             |               |             |              |                                        |
| -30 dBm                                                                                        |                            |             |             |                                             |             |               |             |              |                                        |
| -So ubin                                                                                       |                            |             |             | M4                                          |             |               |             |              |                                        |
| -40 dBm                                                                                        |                            |             | munichan    | <b>—</b>                                    |             |               |             | M3           | M2                                     |
| -50 dBm                                                                                        | shrewdil yound             | martenports | MUMMENT     | when we | punderation | monormal      | would prove | monteresting | un meter                               |
| -JU UBIII                                                                                      |                            |             |             |                                             |             |               |             |              |                                        |
| -60 dBm                                                                                        |                            |             |             |                                             |             |               |             |              | <u> </u>                               |
| 70 d0                                                                                          |                            |             |             |                                             |             |               |             |              |                                        |
| -70 dBm<br>Start 2.306                                                                         | GHz                        |             |             | 1001                                        | nts         |               |             | Ston         | 2.406 GHz                              |
| larker                                                                                         | GIL                        |             |             | 1001                                        |             |               |             | 0.00         | 2.1.30 GHZ                             |
| Type   Ref                                                                                     | Trc                        | X-val       | ue          | Y-value                                     | Funct       | ion           | Fun         | tion Result  | t[                                     |
| M1                                                                                             | 1                          | 2.40        | 0295 GHz    | 3.00 dB                                     |             |               |             |              |                                        |
| M2                                                                                             | 1                          |             | 2.4 GHz     | -44.52 dB                                   |             |               |             |              |                                        |
| MЗ                                                                                             | 1                          |             | 2.39 GHz    | -44.49 dB<br>-40.35 dB                      |             |               |             |              |                                        |
| M4                                                                                             | 1                          |             |             |                                             |             |               |             |              |                                        |
| M4                                                                                             | 1<br>1                     |             |             |                                             |             | Dee           | A. (11)     |              | 0                                      |
| M4                                                                                             |                            |             |             |                                             |             | Rea           | dy 🚺        |              | 0                                      |
| M4                                                                                             |                            | C dere l    |             |                                             |             | Rea           | dy 🚺        | n Dof        | ۵                                      |
| M4                                                                                             |                            | Edge I      | NVNT 2      | -DH5 248                                    | 80MHz A     | Rea<br>Ant1 N | o-Hoppin    | ng Ref       |                                        |
| M4                                                                                             | Band                       | Edge I      | NVNT 2      | -DH5 248                                    | 80MHz A     | Rea           | o-Hoppi     | ng Ref       |                                        |
|                                                                                                | Band                       |             |             | -DH5 248                                    |             | Rea<br>Ant1 N | o-Hoppin    | ng Ref       |                                        |
| Spectrum<br>Ref Level 3<br>Att                                                                 | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 |                                             | :           |               | o-Hoppin    | ng Ref       |                                        |
| Spectrum<br>Ref Level :<br>Att<br>SGL Count                                                    | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | <b>RBW</b> 100 kHz                          | :           |               | o-Hoppin    | ng Ref       |                                        |
| Spectrum<br>Ref Level :<br>Att<br>SGL Count                                                    | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | <b>RBW</b> 100 kHz                          | : Mode Au   | to FFT        | o-Hoppin    | ng Ref       |                                        |
| Spectrum<br>Ref Level :<br>Att<br>SGL Count<br>1Pk Max                                         | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | <b>RBW</b> 100 kHz                          | : Mode Au   |               | o-Hoppin    |              | 6.03 dBm                               |
| Spectrum<br>Ref Level :<br>Att<br>SGL Count<br>1Pk Max                                         | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | <b>RBW</b> 100 kHz                          | : Mode Au   | to FFT        | o-Hoppin    |              |                                        |
| Spectrum<br>Ref Level 3<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm                               | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | <b>RBW</b> 100 kHz                          | : Mode Au   | to FFT        | o-Hoppin    |              | 6.03 dBm                               |
| Spectrum<br>Ref Level 3<br>Att<br>SGL Count<br>PIPk Max<br>20 dBm                              | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | <b>RBW</b> 100 kHz                          | : Mode Au   | to FFT        | o-Hoppin    |              | 6.03 dBm                               |
| Spectrum<br>Ref Level 3<br>Att<br>SGL Count<br>1Pk Max                                         | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | RBW 100 kHz<br>VBW 300 kHz                  | : Mode Au   | to FFT        | o-Hoppin    |              | 6.03 dBm                               |
| Spectrum<br>Ref Level 3<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm                               | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | RBW 100 kHz<br>VBW 300 kHz                  | : Mode Au   | to FFT        | o-Hoppin    |              | 6.03 dBm                               |
| Spectrum<br>Ref Level 3<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm<br>10 dBm                     | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | RBW 100 kHz<br>VBW 300 kHz                  | : Mode Au   | to FFT        | o-Hoppin    |              | 6.03 dBm                               |
| Spectrum<br>Ref Level 3<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm<br>10 dBm                     | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | RBW 100 kHz<br>VBW 300 kHz                  | : Mode Au   | to FFT        | • Hoppin    |              | 6.03 dBm                               |
| Spectrum<br>Ref Level :<br>Att<br>SGL Count<br>IPk Max<br>20 dBm<br>10 dBm<br>0 dBm            | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | RBW 100 kHz<br>VBW 300 kHz                  | : Mode Au   | to FFT        | o-Hoppin    |              | 6.03 dBm                               |
| Spectrum<br>Ref Level :<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm<br>-10 dBm | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | RBW 100 kHz<br>VBW 300 kHz                  | : Mode Au   | to FFT        | o-Hoppin    |              | 6.03 dBm                               |
| Spectrum<br>Ref Level :<br>SGL Count<br>) IPk Max<br>20 dBm<br>10 dBm<br>0 dBm                 | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | RBW 100 kHz<br>VBW 300 kHz                  | : Mode Au   | to FFT        | o-Hoppin    |              | 6.03 dBm                               |
| Spectrum<br>Ref Level :<br>Att<br>SGL Count<br>IPk Max<br>20 dBm<br>10 dBm<br>0 dBm<br>-10 dBm | Band<br>27.60 dBm<br>40 dB | Offset      | 7.60 dB 👄 1 | RBW 100 kHz<br>VBW 300 kHz                  | : Mode Au   | to FFT        | o-Hoppin    |              | 6.03 dBm                               |

Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Emission

1001 pts

-40 dBm· ------50 dBm·

-60 dBm--70 dBm-

CF 2.48 GHz

Span 8.0 MHz

LXI



| SGL Count 1<br>91Pk Max                                                                                                                                                                                            |                                 |                    |                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                 |             |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|
| 20 dBm                                                                                                                                                                                                             |                                 |                    |                                                                                                                |                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1[1]<br>2[1]      |                                                                                                                 |             | 3.84 dBm<br>015000 GHz<br>-45.27 dBm |
| 10  <b>d</b> Bm                                                                                                                                                                                                    |                                 |                    |                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1                                                                                                               |             | 350000 GHz                           |
| 0 dBm                                                                                                                                                                                                              |                                 |                    |                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                 |             |                                      |
| -10 cBm                                                                                                                                                                                                            | 1 -13.968                       | dBm                |                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                 |             |                                      |
| -20 dBm                                                                                                                                                                                                            |                                 |                    |                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                 |             |                                      |
| -30 dBm                                                                                                                                                                                                            |                                 |                    |                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                 |             |                                      |
| -40 damiz                                                                                                                                                                                                          | M4                              | мз                 | Minayu                                                                                                         | hulman                                            | ale a transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                                                                                                                 | . Latura    |                                      |
| -50 dBm                                                                                                                                                                                                            | ngunnat                         | burnettyer man     | , The second | - dronwardy                                       | far an a construction of the construction of t | para and a second | Man and a start and a start and a start | www.        | . Mary days and marked and           |
| -60 dBm                                                                                                                                                                                                            |                                 |                    |                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                 |             |                                      |
| -70 dBm                                                                                                                                                                                                            | 011-                            |                    |                                                                                                                | 1001                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                 | Otan        | 0.576.011-                           |
| Start 2.476<br>Marker                                                                                                                                                                                              | GHZ                             |                    |                                                                                                                | 1001                                              | r prs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                 | stup        | 2.576 GHz                            |
| Type Ref                                                                                                                                                                                                           | Trc<br>1                        | X-value<br>2.480   | 9  <br>15 GHz                                                                                                  | Y-value<br>3.84 dB                                | Func                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion              | Fund                                                                                                            | ction Resul | t                                    |
| M2<br>M3                                                                                                                                                                                                           | 1                               |                    | 35 GHz<br>2.5 GHz                                                                                              | -45.27 dB<br>-46.36 dB                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                 |             |                                      |
|                                                                                                                                                                                                                    | 1                               |                    | 96 GHz                                                                                                         | -42.60 dB                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                 |             |                                      |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2                                                                                                                                                                      | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | VNT 2-D                                           | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uto FFT           | Ant1 Ho                                                                                                         | pping R     |                                      |
| Ba<br>Spectrum<br>Ref Level 2<br>Att                                                                                                                                                                               | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Ant1 Ho                                                                                                         |             |                                      |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>• 1Pk Max<br>20 dBm                                                                                                                                         | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uto FFT           | Ant1 Ho                                                                                                         |             | ₩<br>5.54 dBm                        |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>SGL Count 2<br>O dBm<br>10 dBm                                                                                                                              | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uto FFT           | Ant1 Ho                                                                                                         |             | ₩<br>5.54 dBm                        |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>• 1Pk Max<br>20 dBm                                                                                                                                         | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uto FFT           | Ant1 Ho                                                                                                         |             | ₩<br>5.54 dBm                        |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>SGL Count 2<br>O dBm<br>10 dBm                                                                                                                              | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uto FFT           | Ant1 Ho                                                                                                         |             | ₩<br>5.54 dBm                        |
| Ba<br>Spectrum<br>Ref Level 2<br>SGL Count 2<br>SGL Count 2<br>SGL Count 2<br>O dBm<br>10 dBm                                                                                                                      | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uto FFT           | Ant1 Ho                                                                                                         |             | ₩<br>5.54 dBm                        |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>O IPk Max<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                                    | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uto FFT           | Ant1 Ho                                                                                                         |             | ₩<br>5.54 dBm                        |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>IPk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                     | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uto FFT           |                                                                                                                 |             | ₩<br>5.54 dBm                        |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>IPk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm                                                                                                | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uto FFT           | Ant1 Ho                                                                                                         |             | ₩<br>5.54 dBm                        |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>IPk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                     | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uto FFT           |                                                                                                                 |             | ₩<br>5.54 dBm                        |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>IPk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                     | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uto FFT           |                                                                                                                 |             | ₩<br>5.54 dBm                        |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>9 1Pk Max<br>20 dBm<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm                                                              | 27.60 dBm<br>40 dB              | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                | :<br>Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uto FFT           |                                                                                                                 |             | ₩<br>5.54 dBm                        |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>IPk Max<br>20 dBm<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm                                          | 27.60 dBm<br>40 dB<br>2000/2000 | Offset 7.          | .60 dB 👄 F                                                                                                     | <b>RBW</b> 100 kHz                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uto FFT           |                                                                                                                 | 2.480       | ₩<br>5.54 dBm                        |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>IPK Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm                                                    | 27.60 dBm<br>40 dB<br>2000/2000 | Offset 7.          | .60 dB 👄 F                                                                                                     | RBW         100 kHz           VBW         300 kHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uto FFT           |                                                                                                                 | 2.480       | 5.54 dBm<br>015180 GHz               |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 2<br>SGL Count 2<br>SGL Count 2<br>ID ABM<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>-70 dBm | z<br>z<br>z<br>z                | Offset 7.<br>SWT 1 | 60 dB • F<br>8.9 μs • V                                                                                        | RBW         100 kHz           VBW         300 kHz | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uto FF T          |                                                                                                                 | 2.480       | 5.54 dBm<br>015180 GHz               |



| Att<br>SGL Cour                                                                                                                                                                                                                                                                                                                   | nt 1000/1                                               |                            | 27.5 µs (                                | ● <b>VBW</b> 300 kHz                                                                                     | Mode A            | uto FFT                   |         |              |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------|---------------------------|---------|--------------|-----------------------|
| 20 dBm—                                                                                                                                                                                                                                                                                                                           |                                                         |                            |                                          |                                                                                                          | M                 | l[1]                      |         | 2.477        | 5.74 dBr<br>15000 GH  |
| M_D dBm—                                                                                                                                                                                                                                                                                                                          |                                                         |                            |                                          |                                                                                                          | M                 | 2[1]                      |         | -            | 44.31 dBr<br>50000 GH |
| ,¢,/d₽m—                                                                                                                                                                                                                                                                                                                          |                                                         |                            |                                          |                                                                                                          |                   |                           |         |              |                       |
| -10 cBm—                                                                                                                                                                                                                                                                                                                          | D1 1/                                                   |                            |                                          |                                                                                                          |                   |                           |         |              |                       |
| -20 aBm—                                                                                                                                                                                                                                                                                                                          | -01 -14                                                 | +.457 dBm                  |                                          |                                                                                                          |                   |                           |         |              |                       |
| -30 dBm—                                                                                                                                                                                                                                                                                                                          |                                                         |                            |                                          |                                                                                                          |                   |                           |         |              |                       |
| -40 dBm12                                                                                                                                                                                                                                                                                                                         | homewal                                                 | MAB<br>White Which have    | mentur                                   | the margarentalling                                                                                      | metricontelly     | handelyen                 | المارية | plane markey | Monaument             |
| -50 dBm—                                                                                                                                                                                                                                                                                                                          |                                                         |                            |                                          |                                                                                                          | · ·               |                           | · · · · |              |                       |
| -60 dBm—                                                                                                                                                                                                                                                                                                                          |                                                         |                            |                                          |                                                                                                          |                   |                           |         |              |                       |
| -70 dBm-                                                                                                                                                                                                                                                                                                                          |                                                         |                            |                                          | 1001                                                                                                     | pts               |                           |         | Stop :       | 2.576 GHz             |
| Start 2.4                                                                                                                                                                                                                                                                                                                         | 76 GHz                                                  |                            |                                          | 1001                                                                                                     |                   |                           |         |              |                       |
| Marker                                                                                                                                                                                                                                                                                                                            |                                                         | X-valu                     | e                                        | Y-value                                                                                                  | Funct             | ion                       | Fun     | ction Result |                       |
|                                                                                                                                                                                                                                                                                                                                   |                                                         | 2.47                       | e  <br>715 GHz<br>335 GHz                |                                                                                                          | 1                 | ion                       | Fun     | ction Result |                       |
| Marker<br>Type F<br>M1                                                                                                                                                                                                                                                                                                            | ef Trc                                                  | . 2.47<br>2.48             | 715 GHz                                  | Y-value<br>5.74 dBn                                                                                      | ו<br>ו<br>ו       | ion                       | Fun     | ction Result |                       |
| Marker<br>Type F<br>M1<br>M2<br>M3<br>M4<br>Spectru<br>Ref Leve                                                                                                                                                                                                                                                                   | Bai                                                     | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | <b>Y-value</b><br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn                                                   |                   | Ant1 N                    | adv 🚺   |              | à                     |
| Marker<br>Type F<br>M1<br>M2<br>M3<br>M4<br>Spectru<br>Ref Leve                                                                                                                                                                                                                                                                   | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz                | 2MHz /            | Ant1 N                    | adv 🚺   |              | 8                     |
| Marker<br>Type F<br>M1<br>M2<br>M3<br>M4<br>Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>● 1Pk Max                                                                                                                                                                                                                                   | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz                | 2MHz A            | Ant1 N                    | adv 🚺   | ng Ref       | 5.22 dBi              |
| Marker<br>Type F<br>M1<br>M2<br>M3<br>M4<br>Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>@ 1Pk Max<br>20 dBm—                                                                                                                                                                                                                        | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz                | 2MHz A            | ) Pe<br>Ant1 N<br>uto FFT | adv 🚺   | ng Ref       | 5.22 dBi              |
| Marker<br>Type F<br>M1<br>M2<br>M3<br>M4<br>Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>● 1Pk Max                                                                                                                                                                                                                                   | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz<br>VBW 300 kHz | 2MHz A<br>Mode Au | ) Pe<br>Ant1 N<br>uto FFT | adv 🚺   | ng Ref       | 5.22 dBi              |
| Marker<br>Type F<br>M1<br>M2<br>M3<br>M4<br>Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>@ 1Pk Max<br>20 dBm—                                                                                                                                                                                                                        | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz<br>VBW 300 kHz | 2MHz A<br>Mode Au | ) Pe<br>Ant1 N<br>uto FFT | adv 🚺   | ng Ref       | 5.22 dBi<br>15980 GH  |
| Marker<br>Type F<br>M1<br>M2<br>M3<br>M4<br>Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>PIPk Max<br>20 dBm—<br>10 dBm—                                                                                                                                                                                                              | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz<br>VBW 300 kHz | 2MHz A<br>Mode Au | ) Pe<br>Ant1 N<br>uto FFT | adv 🚺   | ng Ref       | 5.22 dBi              |
| Marker<br>Type F<br>M1<br>M2<br>M3<br>M4<br>Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>P1Pk Max<br>20 dBm—<br>0 dBm—                                                                                                                                                                                                               | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz<br>VBW 300 kHz | 2MHz A<br>Mode Au | ) Pe<br>Ant1 N<br>uto FFT | adv 🚺   | ng Ref       | 5.22 dB)              |
| Marker           Type         F           M1         M2           M3         M4           Spectru         M4           Ref Leve         SGL Cour           91Pk Max         20 dBm-           10 dBm-         0 dBm-           -10 dBm-         -20 dBm-                                                                          | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz<br>VBW 300 kHz | 2MHz A<br>Mode Au | ) Pe<br>Ant1 N<br>uto FFT | adv 🚺   | ng Ref       | 5.22 dBi              |
| Marker<br>Type F<br>M1<br>M2<br>M3<br>M4<br>Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>PIPk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-<br>-10 dBm-                                                                                                                                                                                        | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz<br>VBW 300 kHz | 2MHz A<br>Mode Au | ) Pe<br>Ant1 N<br>uto FFT | adv 🚺   | ng Ref       | 5.22 dBi              |
| Marker           Type         F           M1         M2           M3         M4           Spectru         M4           Ref Leve         SGL Cour           91Pk Max         20 dBm-           10 dBm-         0 dBm-           -10 dBm-         -20 dBm-                                                                          | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz<br>VBW 300 kHz | 2MHz A<br>Mode Au | ) Pe<br>Ant1 N<br>uto FFT | adv 🚺   | ng Ref       | 5.22 dBi              |
| Marker           Type         F           M1         M2           M3         M4           Spectru         Ref Leve           Ref Leve         SGL Cour           10 dBm─         10 dBm─           0 dBm─         -10 dBm─           -20 dBm─         -30 dBm─                                                                    | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz<br>VBW 300 kHz | 2MHz A<br>Mode Au | ) Pe<br>Ant1 N<br>uto FFT | adv 🚺   | ng Ref       | 5.22 dB)              |
| Marker<br>Type F<br>M1<br>M2<br>M3<br>M4<br>Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>● 1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-40 dBm-                                                                                                                                                                         | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz<br>VBW 300 kHz | 2MHz A<br>Mode Au | ) Pe<br>Ant1 N<br>uto FFT | adv 🚺   | ng Ref       | 5.22 dBi              |
| Marker           Type         F           M1         M2           M3         M4           Spectru         Ref Leve           Att         SGL Cour           ●1Pk Max         20 dBm—           10 dBm—         0 dBm—           -10 dBm—         -30 dBm—           -30 dBm—         -50 dBm—           -60 dBm—         -60 dBm— | Bai<br>Bai<br>Bai<br>Bai<br>1<br>27.62<br>4<br>01 27.62 | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz<br>VBW 300 kHz | 2MHz A<br>Mode Au | ) Pe<br>Ant1 N<br>uto FFT | adv 🚺   | ng Ref       | 5.22 dBi              |
| Marker           Type         F           M1         M2           M3         M4           Spectru         M4           Ref Leve         Att           SGL Cour         10 dBm—           10 dBm—         0 dBm—           -10 dBm—         -30 dBm—           -30 dBm—         -50 dBm—                                           | Bai                                                     | dBm Offset 7<br>0 dB SWT 1 | 715 GHz<br>335 GHz<br>2.5 GHz<br>997 GHz | Y-value<br>5.74 dBn<br>-44.31 dBn<br>-42.36 dBn<br>-42.28 dBn<br>3-DH5 240<br>RBW 100 kHz<br>VBW 300 kHz |                   | ) Pe<br>Ant1 N<br>uto FFT | adv 🚺   | 2.402        | 5.22 dB               |



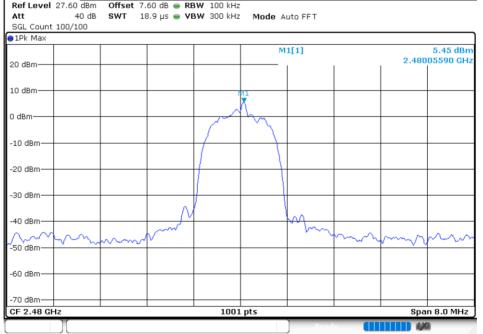
| Spectru<br>Bof Loug                                                                                                                      | m                               | m Offcot                      | 7.62 dp 🚍                                                                                                      | RBW 100 kH;                          | 7                                 |                          |                           |                          |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|--------------------------|---------------------------|--------------------------|
| Att                                                                                                                                      | 40<br>40 t 100/100              | dB SWT                        |                                                                                                                |                                      | Mode Auto F                       | FT                       |                           |                          |
| 1Pk Max                                                                                                                                  |                                 |                               |                                                                                                                |                                      |                                   |                          |                           |                          |
|                                                                                                                                          |                                 |                               |                                                                                                                |                                      | M1[1]                             |                          |                           | 0.89 dBm                 |
| 20 dBm—                                                                                                                                  |                                 |                               |                                                                                                                |                                      |                                   |                          | 2.40                      | 195000 GHz               |
| 10 dBm—                                                                                                                                  |                                 |                               |                                                                                                                |                                      | M2[1]                             |                          | 2.40                      | -47.44 dBm<br>000000 GHz |
|                                                                                                                                          |                                 |                               |                                                                                                                |                                      |                                   |                          |                           | M1                       |
| 0 dBm——                                                                                                                                  |                                 |                               |                                                                                                                |                                      |                                   |                          |                           |                          |
| -10 dBm—                                                                                                                                 |                                 |                               |                                                                                                                | _                                    |                                   |                          |                           |                          |
|                                                                                                                                          | D1 -14.3                        | 779 dBm                       |                                                                                                                |                                      |                                   |                          |                           |                          |
| -20 dBm—                                                                                                                                 |                                 |                               |                                                                                                                |                                      |                                   |                          |                           |                          |
| -30 dBm—                                                                                                                                 |                                 |                               | _                                                                                                              | _                                    |                                   |                          |                           |                          |
| -40 dBm—                                                                                                                                 |                                 |                               |                                                                                                                | M4                                   |                                   |                          |                           |                          |
| HALLON CONTEN                                                                                                                            | 1 arts Alas                     | har works as                  | with a property                                                                                                | moundation                           | non many house the                | A hubo while had we      | M3                        | Warmer Wern              |
| -50 dBm-                                                                                                                                 | Mag Nr                          | - 10 · · · 107 · • • • •      | an of the second se |                                      | Conce - Different home of a const | C & Discrete such such s | alor of a cillar ellerite | 0.00                     |
| -60 dBm—                                                                                                                                 |                                 |                               |                                                                                                                |                                      |                                   |                          |                           |                          |
| co aom                                                                                                                                   |                                 |                               |                                                                                                                |                                      |                                   |                          |                           |                          |
| -70 dBm—                                                                                                                                 |                                 |                               |                                                                                                                | 1001                                 | ntc                               |                          | 01                        | 2 406 CU-                |
| Start 2.3<br>1arker                                                                                                                      | UB GHZ                          |                               |                                                                                                                | 1001                                 | pts                               |                          | stop                      | 2.406 GHz                |
| Type   R                                                                                                                                 | ef   Trc                        | X-va                          | lue                                                                                                            | Y-value                              | Function                          | 1 6                      | unction Resu              | lt l                     |
| M1                                                                                                                                       | 1                               |                               | 0195 GHz                                                                                                       | 0.89 dB                              |                                   |                          |                           |                          |
| M2                                                                                                                                       | 1                               |                               | 2.4 GHz                                                                                                        | -47.44 dBi                           |                                   |                          |                           |                          |
| M3<br>M4                                                                                                                                 | 1                               |                               | 2.39 GHz                                                                                                       | -47.40 dB                            | m                                 |                          |                           |                          |
|                                                                                                                                          |                                 | 2.                            | 3498 GHz                                                                                                       | -41.47 dB                            |                                   | Ready                    |                           |                          |
|                                                                                                                                          | Band E                          |                               |                                                                                                                | -41.47 dB                            |                                   | Ready<br>Hz Ant1 F       | Hopping F                 |                          |
|                                                                                                                                          | Band E                          |                               |                                                                                                                | -41.47 dB                            | m                                 | Ready<br>Hz Ant1 H       | Hopping F                 | Ref                      |
| Spectru<br>Ref Leve<br>Att                                                                                                               | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | m                                 |                          | Hopping F                 |                          |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour                                                                                                   | Band E                          | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | <sup>m</sup><br>H5 2402M          |                          | Hopping F                 |                          |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour                                                                                                   | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      |                          | Hopping F                 |                          |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>1Pk Max                                                                                        | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | <sup>m</sup><br>H5 2402M          |                          |                           |                          |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>1Pk Max                                                                                        | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      |                          |                           | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>1Pk Max<br>20 dBm—                                                                             | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      |                          |                           | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>1Pk Max<br>20 dBm—                                                                             | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      |                          | 2.40                      | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>1Pk Max<br>20 dBm<br>10 dBm                                                                    | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      | -т                       | 2.40                      | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>1Pk Max<br>20 dBm<br>10 dBm                                                                    | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      | -т                       | 2.40                      | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att                                                                                                               | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      | -т                       | 2.40                      | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>J IPk Max<br>20 dBm<br>10 dBm<br>0 dBm                                                         | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      | -т                       | 2.40                      | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                        | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      | -т                       | 2.40                      | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>1Pk Max<br>20 dBm<br>10 dBm<br>10 dBm                                                          | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      | -т                       | 2.40                      | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>IPk Max<br>20 dBm                                                                              | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      | -т                       | 2.40                      | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>IPk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                              | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      | -т                       | 2.40                      | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>PIPk Max<br>20 dBm<br>10 dBm<br>10 dBm<br>-10 dBm                                              | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      | -т                       | 2.40                      | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>PIPk Max<br>20 dBm<br>10 dBm<br>10 dBm<br>-10 dBm                                              | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      | -т                       | 2.40                      | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>J IPk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                      | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      | -т                       | 2.40                      | ₩<br>3.52 dBm            |
| Spectru<br>Ref Leve<br>Att<br>SGL Cour<br>9 IPk Max<br>20 dBm<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-30 dBm | Band E<br>m<br>1 27.62 dt<br>40 | dge(Ho<br>Bm Offset<br>dB swr | pping) N                                                                                                       | -41.47 dB<br>IVNT 3-D<br>RBW 100 kHz | Mode Auto Ff                      | -т                       | 2.40                      | ₩<br>3.52 dBm            |

Band Edge(Hopping) NVNT 3-DH5 2402MHz Ant1 Hopping Emission

1001 pts

-70 dBm-

CF 2.402 GHz


Span 8.0 MHz

LXI



Report No.: S19082902506001

|                     |             |                                  |            | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | 3.10 dBm                                    |
|---------------------|-------------|----------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------|
| 0 dBm               |             |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 2.40285000 GHz                              |
| .0 dBm              |             |                                  |            | M2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | -45.14 dBm<br>2.40000000 <mark>,G</mark> Hz |
| -                   |             |                                  |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | THORSTON                                    |
| I dBm               |             |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | hhim                                        |
| 10 dBm              |             |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | - v                                         |
| 20 dBm              | 1 -16.483   | dBm                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                             |
|                     |             |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                             |
| 30 dBm              |             |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                             |
| 40 dBm              |             |                                  | M4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 3 M2                                        |
| 50 dBm              | www.        | Herelly reproved that the second | www.warana | way have been a served and a served of the s | moderal managed and | of more thank of the second                 |
| So abiii            |             |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                             |
| 60 dBm              |             |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                             |
| 70 dBm              |             |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                             |
| tart 2.306          | GHz         |                                  | 1001 pt    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | Stop 2.406 GHz                              |
| arker<br>Type   Ref | <b>T</b> ue | X-value                          | Y-value    | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Function            | Description 1                               |
| M1 M1               | 1           | 2.40285 GHz                      | 3.10 dBm   | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Function            | Result                                      |
| M2                  | 1           | 2.4 GHz                          | -45.14 dBm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                             |
| MЗ                  | 1           | 2.39 GHz                         | -45.95 dBm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                             |
| M4                  | 1           | 2.3483 GHz                       | -41.17 dBm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                             |
|                     |             |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                             |



Band Edge NVNT 3-DH5 2480MHz Ant1 No-Hopping Emission



| Ref Level 27.60 dBr                                                                                                                                                                                                                                  | m Officiat 7.00                                                    | dB 👄 RBW 100 ki                                               |                                       |                    |                   |                  |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|--------------------|-------------------|------------------|---------------------|
| Att 40 d                                                                                                                                                                                                                                             |                                                                    | ив <b>— КВ</b> ₩ 100 ki<br>µs <b>— VBW</b> 300 ki             |                                       | Auto FFT           |                   |                  |                     |
| SGL Count 200/200                                                                                                                                                                                                                                    |                                                                    |                                                               | nous                                  |                    |                   |                  |                     |
| 1Pk Max                                                                                                                                                                                                                                              |                                                                    |                                                               |                                       |                    |                   |                  |                     |
|                                                                                                                                                                                                                                                      |                                                                    |                                                               | M                                     | 1[1]               |                   |                  | 5.70 dBm            |
| 20 dBm                                                                                                                                                                                                                                               |                                                                    |                                                               | <u> </u>                              |                    |                   |                  | 15000 GHz           |
| 10 Mam                                                                                                                                                                                                                                               |                                                                    |                                                               | M                                     | 2[1]               |                   |                  | 45.99 dBm           |
| TOGBIN                                                                                                                                                                                                                                               |                                                                    |                                                               |                                       | 1                  | 1                 | 2.403            | 30000 GH2           |
| D dBm                                                                                                                                                                                                                                                |                                                                    |                                                               |                                       |                    |                   |                  |                     |
| 10 000                                                                                                                                                                                                                                               |                                                                    |                                                               |                                       |                    |                   |                  |                     |
| -10 dBm                                                                                                                                                                                                                                              | 52 dBm                                                             |                                                               |                                       |                    |                   |                  |                     |
| -20 dBm                                                                                                                                                                                                                                              |                                                                    |                                                               |                                       |                    |                   |                  |                     |
|                                                                                                                                                                                                                                                      |                                                                    |                                                               |                                       |                    |                   |                  |                     |
| -30 dBm                                                                                                                                                                                                                                              |                                                                    |                                                               |                                       |                    |                   |                  |                     |
| -40 dBm                                                                                                                                                                                                                                              | M3                                                                 |                                                               |                                       |                    |                   |                  |                     |
| 1 upter white                                                                                                                                                                                                                                        | upprovide work lie on the                                          | renoralistany war ward                                        | hourseman                             | an riper will pure | monthalde         | andfor and where | - Understander have |
| -50 dBm                                                                                                                                                                                                                                              |                                                                    |                                                               | 1                                     | -                  |                   |                  |                     |
| -60 dBm                                                                                                                                                                                                                                              |                                                                    |                                                               |                                       |                    |                   |                  |                     |
|                                                                                                                                                                                                                                                      |                                                                    |                                                               |                                       |                    |                   |                  |                     |
| -70 dBm                                                                                                                                                                                                                                              |                                                                    |                                                               |                                       |                    |                   |                  |                     |
| Start 2.476 GHz                                                                                                                                                                                                                                      |                                                                    | 100                                                           | 1 pts                                 |                    |                   | Stop             | 2.576 GHz           |
| 1arker                                                                                                                                                                                                                                               |                                                                    |                                                               |                                       |                    |                   |                  |                     |
| Type Ref Trc                                                                                                                                                                                                                                         | X-value                                                            | Y-value           Hz         5.70 d                           |                                       | tion               | Fund              | tion Result      |                     |
| M1 1                                                                                                                                                                                                                                                 | 2.48015 G<br>2.4835 G                                              |                                                               |                                       |                    |                   |                  |                     |
| M2 1                                                                                                                                                                                                                                                 |                                                                    |                                                               |                                       |                    |                   |                  |                     |
| M2 1<br>M3 1                                                                                                                                                                                                                                         | 2.4635 G<br>2.5 G                                                  |                                                               |                                       |                    |                   |                  |                     |
|                                                                                                                                                                                                                                                      |                                                                    | Hz -44.96 d                                                   | Bm                                    |                    |                   |                  |                     |
| M3 1<br>M4 1                                                                                                                                                                                                                                         | 2.5 G<br>2.4891 G                                                  | Hz -44.96 d<br>Hz -43.01 d                                    | Bm<br>Bm                              | ] Rea              | dy 🚺              |                  |                     |
| M3         1           M4         1           Band Ed           Spectrum           Ref Level 27.60 dBr           Att         40 d                                                                                                                    | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d                                                   | Bm<br>Bm<br>DH5 248                   |                    | Ant1 Ho           | oping R          | ef                  |
| M3         1           M4         1           Band Ed           Spectrum           Ref Level 27.60 dBr           Att         40 d           SGL Count 2000/200                                                                                       | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248                   |                    | Ant1 Ho           | oping R          |                     |
| M3 1<br>M4 1<br>Band Ec<br>Spectrum<br>Ref Level 27.60 dBr                                                                                                                                                                                           | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A |                    | Ant1 Ho           |                  | €.48 dBm            |
| M3         1           M4         1           Band Ed         Spectrum           Ref Level 27.60 dBr         Att           Att         40 d           SGL Count 2000/200         IPk Max                                                             | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | Ant1 Ho           |                  | ₹                   |
| M3         1           M4         1           Band Ed         Spectrum           Ref Level 27.60 dBr         Att           Att         40 d           SGL Count 2000/200         IPk Max                                                             | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | Ant1 Ho           |                  | €.48 dBm            |
| M3         1           M4         1           Band Ed         Band Ed           Spectrum         Band Ed           Ref Level 27.60 dBr         Att         40 d           SGL Count 2000/200         Pipk Max         20 dBm                         | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | Ant1 Ho           |                  | €.48 dBm            |
| M3         1           M4         1           Band Ed           Spectrum           Ref Level 27.60 dBr           Att         40 d           SGL Count 2000/200                                                                                       | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | Ant1 Ho           |                  | €.48 dBm            |
| M3         1           M4         1           Band Ed           Spectrum           Ref Level 27.60 dBr           Att         40 d           SGL Count 2000/200           PIPk Max           20 dBm                                                   | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | Ant1 Ho           |                  | €.48 dBm            |
| M3         1           M4         1           Band Ed           Spectrum           Ref Level 27.60 dBr           Att         40 d           SGL Count 2000/200           PIPk Max           20 dBm                                                   | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | 47 MI             |                  | €.48 dBm            |
| M3         1           M4         1           Band Ec           Spectrum           Ref Level 27.60 dBr           Att         40 d           SGL Count 2000/200           1Pk Max           20 dBm           In dBm                                   | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | 4v III<br>Ant1 Ho |                  | €.48 dBm            |
| M3         1           M4         1           Band Ed           Spectrum           Ref Level 27.60 dBr           Att         40 d           SGL Count 2000/200           PIPk Max           20 dBm                                                   | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | Ant1 Ho           |                  | €.48 dBm            |
| M3         1           M4         1           Band Ec           Spectrum           Ref Level 27.60 dBr           Att         40 d           SGL Count 2000/200           PIPk Max           20 dBm           Ma dBm           O dBm                  | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | Ant1 Ho           |                  | €.48 dBm            |
| M3         1           M4         1           Band Ec           Spectrum           Ref Level 27.60 dBr           Att         40 d           SGL Count 2000/200           PIPk Max           20 dBm           Ma dBm           O dBm                  | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | Ant1 Ho           |                  | €.48 dBm            |
| M3         1           M4         1           Band Ec           Spectrum           Ref Level 27.60 dBr           Att         40 d           SGL Count 2000/200           PIPk Max           20 dBm           10 dBm           20 dBm                 | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | Ant1 Ho           |                  | €.48 dBm            |
| M3         1           M4         1           M4         1           Band Ec         0           Spectrum         40 d           SGL Count 2000/200         1Pk Max           10 dBm         0           10 dBm         0           20 dBm         0 | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | Ant1 Ho           |                  | €.48 dBm            |
| M3         1           M4         1           M4         1           Band Ec           Spectrum           Carl Level 27.60 dBr           SGL Count 2000/200           IPk Max           0 dBm           0 dBm           0 dBm           0 dBm        | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | Ant1 Ho           |                  | €.48 dBm            |
| M3         1           M4         1           Band Ec           Spectrum           Ref Level 27.60 dBr           Att         40 d           SGL Count 2000/200           PIPk Max           20 dBm           M3         1                            | 2.5 G<br>2.4891 G<br>dge(Hoppin<br>m Offset 7.60 c<br>B SwT 18.9 p | Hz -44.96 d<br>Hz -43.01 d<br>g) NVNT 3-[<br>//B • RBW 100 kH | Bm<br>Bm<br>DH5 248<br>Iz<br>Z Mode A | uto FFT            | Ant1 Ho           |                  | €.48 dBm            |

1001 pts

-50 dBm·

-60 dBm--70 dBm-

CF 2.48 GHz

Span 8.0 MHz

LXI



#### Band Edge(Hopping) NVNT 3-DH5 2480MHz Ant1 Hopping Emission ₽ Spectrum Ref Level 27.60 dBm Offset 7.60 dB . RBW 100 kHz 40 dB SWT 227.5 µs 🖷 VBW 300 kHz Mode Auto FFT Att SGL Count 500/500 ●1Pk Max M1[1] 5.66 dBn 20 dBm-2.47995000 GHz -44.01 dBm 2.48350000 GHz M2[1] 10**\d**&m R de -10 dBm D1 -13.518 dBm--20 cBm· -30 dBm -40 dem -40 undringramounder in Mound which the marked marshaver amar Mohall Markoly unisim a Artes An -50 dBm -60 dBm -70 dBm· Stop 2.576 GHz Start 2.476 GHz 1001 pts Marker Type Ref Trc 2.47995 GHz Y-value 5.66 dBm Function Function Result M1 1 2.4835 GHz M2 -44.01 dBm 1 ΜЗ 1 2.5 GHz -43.23 dBm 2.4895 GHz M4 1 -42.74 dBm 4,40



# 8.7 CONDUCTED RF SPURIOUS EMISSION

| Condition | Mode  | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict |
|-----------|-------|-----------------|---------|-----------------|-------------|---------|
| NVNT      | 1-DH5 | 2402            | Ant 1   | -54.9           | -20         | Pass    |
| NVNT      | 1-DH5 | 2441            | Ant 1   | -59.01          | -20         | Pass    |
| NVNT      | 1-DH5 | 2480            | Ant 1   | -58.41          | -20         | Pass    |
| NVNT      | 2-DH5 | 2402            | Ant 1   | -59.23          | -20         | Pass    |
| NVNT      | 2-DH5 | 2441            | Ant 1   | -58.68          | -20         | Pass    |
| NVNT      | 2-DH5 | 2480            | Ant 1   | -60.87          | -20         | Pass    |
| NVNT      | 3-DH5 | 2402            | Ant 1   | -58.9           | -20         | Pass    |
| NVNT      | 3-DH5 | 2441            | Ant 1   | -58.69          | -20         | Pass    |
| NVNT      | 3-DH5 | 2480            | Ant 1   | -59.55          | -20         | Pass    |

ACCREDITED

Certificate #4298.01



#### Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Emission



| SGL Count 1<br>91Pk Max                                                                                                                                                                                                             |                                 |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                |          |               |                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|----------|---------------|--------------------------|
| 10 dBm                                                                                                                                                                                                                              |                                 |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N                                                  | 41[1]          |          | 2.4           | 6.29 dBm<br>102490 GHz   |
| 0 dBm                                                                                                                                                                                                                               |                                 |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N                                                  | 42[1]          |          |               | -48.61 dBm<br>931882 GHz |
| -10 dBm                                                                                                                                                                                                                             |                                 |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                |          | 1.5           | 51002 GH2                |
| -20 dBm                                                                                                                                                                                                                             | 1 -13.699                       | dBm              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                |          |               |                          |
|                                                                                                                                                                                                                                     |                                 |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                |          |               |                          |
| -30 dBm                                                                                                                                                                                                                             |                                 |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                |          |               |                          |
| -40 dBm                                                                                                                                                                                                                             | мз                              |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                |          |               |                          |
| -50 dBm                                                                                                                                                                                                                             | Y                               | M4               | MS                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    | ير عد م مطر ال | and shad | <b>4</b> . 1. |                          |
| -60 dBm                                                                                                                                                                                                                             |                                 |                  | and the second secon | and the second sec | alayan daga kanalari<br>Managa kanalari dan sasari |                |          |               |                          |
| -70 dem                                                                                                                                                                                                                             |                                 |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                |          |               |                          |
| -80 dBm                                                                                                                                                                                                                             | 1112                            |                  |                                                                                                                 | 30001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 ntc                                              |                |          | Stor          | 25.0 GHz                 |
| Marker                                                                                                                                                                                                                              | 1112                            |                  |                                                                                                                 | 30001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r prs                                              |                |          | 3.01          | 5 23.0 GH2               |
| Type Ref                                                                                                                                                                                                                            | 1 Trc                           | X-value<br>2.402 | 9 GHz                                                                                                           | Y-value<br>6.29 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | ction          | Fund     | tion Result   | :                        |
| M2                                                                                                                                                                                                                                  | 1                               | 1.9318           | 82 GHz                                                                                                          | -48.61 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m                                                  |                |          |               |                          |
| M3<br>M4                                                                                                                                                                                                                            | 1                               | 4.8034           | 32 GHz                                                                                                          | -52.48 dBi<br>-59.38 dBi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                |          |               |                          |
| M5                                                                                                                                                                                                                                  | 1                               |                  | 92 GHz                                                                                                          | -60.29 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |                |          |               |                          |
|                                                                                                                                                                                                                                     |                                 |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                |          |               |                          |
| Spectrum<br>Ref Level<br>Att<br>SGL Count 1                                                                                                                                                                                         | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | VNT 1-D<br>RBW 100 kH:<br>VBW 300 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | z                                                  |                | Ant1 Re  | f             | (₩)                      |
| Ref Level<br>Att                                                                                                                                                                                                                    | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 |                | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level<br>Att<br>SGL Count 1                                                                                                                                                                                                     | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               |                          |
| Ref Level<br>Att<br>SGL Count 1<br>PIPk Max<br>10 dBm                                                                                                                                                                               | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level<br>Att<br>SGL Count 1<br>91Pk Max                                                                                                                                                                                         | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level<br>Att<br>SGL Count 1<br>P1Pk Max<br>10 dBm                                                                                                                                                                               | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level<br>Att<br>SGL Count 1<br>P1Pk Max<br>10 dBm<br>0 dBm                                                                                                                                                                      | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level<br>Att<br>SGL Count 1<br>P1Pk Max<br>10 dBm<br>-10 dBm                                                                                                                                                                    | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level<br>Att<br>SGL Count 1<br>P1Pk Max<br>10 dBm<br>-10 dBm                                                                                                                                                                    | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level           Att           SGL Count 1           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm                                                                                              | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level<br>Att<br>SGL Count 1<br>PIPK Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                                          | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level<br>Att<br>SGL Count 1<br>PIPK Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                     | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level<br>Att<br>SGL Count 1<br>PIPK Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                                          | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level           Att           SGL Count 1           • IPk Max           10 dBm           • 0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                                      | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level           Att           SGL Count 1           ID dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                                                           | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level           Att           SGL Count 1           9 IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm                                        | 17.78 dBm<br>20 dB              | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z<br>z <b>Mode</b>                                 | Auto FFT       | Ant1 Re  |               | 4.88 dBm                 |
| Ref Level           Att           SGL Count 1           SGL Count 1           ID dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm           -70 dBm                   | 17.78 dBm<br>20 dB<br>.000/1000 | Offset 7         | 7.78 dB 👄                                                                                                       | <b>RBW</b> 100 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z Mode                                             | Auto FFT       | Ant1 Re  | 2.44115       | 4.88 dBm                 |
| Ref Level           Att           SGL Count 1           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           -80 dBm    | 17.78 dBm<br>20 dB<br>.000/1000 | Offset 7         | 7.78 dB 👄                                                                                                       | RBW 100 kH;<br>VBW 300 kH;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z Mode                                             | Auto FFT       | Ant1 Ret | 2.44115       | 4.88 dBm<br>91450 GHz    |
| Ref Level           Att           SGL Count 1           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           -80 dBm    | 17.78 dBm<br>20 dB<br>.000/1000 | Offset 7<br>SWT  | 7.78 dB<br>18.9 μs<br>                                                                                          | RBW 100 kH;<br>VBW 300 kH;<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z Mode                                             | Auto FFT       |          | 2.44115       | 4.88 dBm<br>91450 GHz    |
| Ref Level           Att           SGL Count 1           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           -80 dBm    | 17.78 dBm<br>20 dB<br>.000/1000 | Offset 7<br>SWT  | 7.78 dB<br>18.9 μs<br>                                                                                          | RBW 100 kH;<br>VBW 300 kH;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z Mode                                             | Auto FFT       |          | 2.44115       | 4.88 dBm<br>91450 GHz    |
| Ref Level           Att           SGL Count 1           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           -80 dBm    | 17.78 dBm<br>20 dB<br>.000/1000 | Offset 7<br>SWT  | 7.78 dB<br>18.9 μs<br>                                                                                          | RBW 100 kH;<br>VBW 300 kH;<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z Mode                                             | Auto FFT       |          | 2.44115       | 4.88 dBm<br>91450 GHz    |
| Ref Level           Att           SGL Count 1           SGL Count 1           ID dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           -80 dBm | 17.78 dBm<br>20 dB<br>.000/1000 | Offset 7<br>SWT  | 7.78 dB<br>18.9 μs<br>                                                                                          | RBW 100 kH;<br>VBW 300 kH;<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z Mode                                             | Auto FFT       |          | 2.44115       | 4.88 dBm<br>91450 GHz    |



| SGL Count                                                                                                                                                                                 | 20<br>10/10              | db SWT              | 200 1115             | • <b>VBW</b> 300 kH                             | z Mode Au                                | ilo aweep | ,    |             |                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|----------------------|-------------------------------------------------|------------------------------------------|-----------|------|-------------|----------------------------------------------------|
| 10 dBm                                                                                                                                                                                    |                          |                     |                      |                                                 | M1[                                      | 1]        |      | 24          | 4.36 dBm<br>40770 GHz                              |
| 0 dBm                                                                                                                                                                                     |                          |                     |                      |                                                 | M2[                                      | 1]        |      | -           | -54.13 dBm                                         |
| -10 dBm                                                                                                                                                                                   |                          | _                   | _                    |                                                 |                                          |           |      | 19.7        | 752138 GHz                                         |
| -20 dBm                                                                                                                                                                                   | D1 -15.1                 | 15 dBm              | _                    |                                                 |                                          |           |      |             |                                                    |
| -30 dBm                                                                                                                                                                                   |                          | _                   | _                    |                                                 |                                          |           |      |             |                                                    |
| -40 dBm                                                                                                                                                                                   |                          |                     | _                    |                                                 |                                          |           |      |             |                                                    |
| -50 dBm                                                                                                                                                                                   |                          | M3                  |                      |                                                 |                                          |           | M2   |             |                                                    |
| -60 dBm                                                                                                                                                                                   | and the second second    |                     | M4                   | M                                               | an a |           |      |             | امرينا (مريون ماريون<br>مريوز (مريون ماريون ماريون |
| -70 dBm                                                                                                                                                                                   | dia destruit de la filma |                     |                      |                                                 |                                          |           |      |             |                                                    |
| Start 30.0                                                                                                                                                                                | MLIA                     |                     | _                    | 3000                                            | 1 ptc                                    |           |      | Pto         | 25.0 GHz                                           |
| Marker                                                                                                                                                                                    |                          |                     |                      | 3000.                                           |                                          |           |      | 3.01        | 5 23.0 GH2                                         |
| Type Re<br>M1                                                                                                                                                                             | f Trc<br>1               | X-val<br>2.44       | 4077 GHz             | <u>Y-value</u><br>4.36 dB                       | Function                                 | on        | Func | tion Result | <u> </u>                                           |
| M2<br>M3                                                                                                                                                                                  | 1                        |                     | 2138 GHz<br>1671 GHz | -54.13 dB<br>-56.76 dB                          |                                          |           |      |             |                                                    |
| M4<br>M5                                                                                                                                                                                  | 1                        |                     | 192 GHz              | -59.68 dB<br>-60.26 dB                          |                                          |           |      |             |                                                    |
| Spectrun<br>Ref Leve<br>Att<br>SGL Count<br>1Pk Max                                                                                                                                       | L 17.60 di<br>20         | dB SWT              | 7.60 dB 🖷            | • RBW 100 kH                                    | z<br>z <b>Mode</b> Au                    | ito FFT   |      |             |                                                    |
| Ref Leve<br>Att                                                                                                                                                                           | L 17.60 di<br>20         | 3m Offset<br>dB SWT | 7.60 dB 🖷            | <b>RBW</b> 100 kH                               | z                                        | to FFT    |      | 2.48016     | 7.92 dBm<br>i05950 GHz                             |
| Ref Leve<br>Att<br>SGL Count<br>91Pk Max<br>10 dBm-                                                                                                                                       | L 17.60 di<br>20         | 3m Offset<br>dB SWT | 7.60 dB 🖷            | <b>RBW</b> 100 kH                               | z<br>z <b>Mode</b> Au<br>M1[             | to FFT    |      | 2.48016     | 7.92 dBm                                           |
| Ref Leve<br>Att<br>SGL Count<br>PIPk Max<br>10 dBm                                                                                                                                        | L 17.60 di<br>20         | 3m Offset<br>dB SWT | 7.60 dB 🖷            | <b>RBW</b> 100 kH                               | z<br>z <b>Mode</b> Au<br>M1[             | to FFT    |      | 2.48016     | 7.92 dBm                                           |
| Ref Leve           Att           SGL Count           1Pk Max           10 dBm           0 dBm           -10 dBm                                                                           | L 17.60 di<br>20         | 3m Offset<br>dB SWT | 7.60 dB 🖷            | <b>RBW</b> 100 kH                               | z<br>z <b>Mode</b> Au<br>M1[             | to FFT    |      | 2.48016     | 7.92 dBm                                           |
| Ref Leve<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm                                                                                                                                         | L 17.60 di<br>20         | 3m Offset<br>dB SWT | 7.60 dB 🖷            | <b>RBW</b> 100 kH                               | z<br>z <b>Mode</b> Au<br>M1[             | to FFT    |      | 2.48016     | 7.92 dBm                                           |
| Ref Leve           Att           SGL Count           1Pk Max           10 dBm           0 dBm           -10 dBm                                                                           | L 17.60 di<br>20         | 3m Offset<br>dB SWT | 7.60 dB 🖷            | <b>RBW</b> 100 kH                               | z<br>z <b>Mode</b> Au<br>M1[             | to FFT    |      | 2.48016     | 7.92 dBm                                           |
| Ref Leve<br>• Att<br>SGL Count<br>• 1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-38 dBm                                                                                                    | L 17.60 di<br>20         | 3m Offset<br>dB SWT | 7.60 dB 🖷            | <b>RBW</b> 100 kH                               | z<br>z <b>Mode</b> Au<br>M1[             | to FFT    |      | 2.48016     | 7.92 dBm                                           |
| Ref Leve           Att           SGL Count           • 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -38 dBm           -40 dBm                   | L 17.60 di<br>20         | 3m Offset<br>dB SWT | 7.60 dB 🖷            | <b>RBW</b> 100 kH                               | z<br>z <b>Mode</b> Au<br>M1[             | to FFT    |      | 2.48016     | 7.92 dBm                                           |
| Ref Leve           Att           SGL Count           • 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -38 dBm           -40 dBm           -50 dBm | L 17.60 di<br>20         | 3m Offset<br>dB SWT | 7.60 dB 🖷            | <b>RBW</b> 100 kH                               | z<br>z <b>Mode</b> Au<br>M1[             | to FFT    |      | 2.48016     | 7.92 dBm                                           |
| Ref Leve<br>Att<br>SGL Count<br>SGL Count<br>ID dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-38 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>-80 dBm                                      |                          | 3m Offset<br>dB SWT | 7.60 dB 🖷            | RBW         100 kH           VBW         300 kH | Z Mode Au                                | to FFT    |      |             | 7.92 dBm<br>505950 GHz                             |
| Ref Leve<br>Att<br>SGL Count<br>SGL Count<br>ID dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-38 dBm<br>-40 dBm<br>-50 dBm<br>-70 dBm                                                 |                          | 3m Offset<br>dB SWT | 7.60 dB 🖷            | <b>RBW</b> 100 kH                               | Z Mode Au                                | to FFT    |      |             | 7.92 dBm                                           |



| ● 1Pk Max<br>10 dBm — M                                                            | 1                                                                                                                |                    |                                                                                                                |                          | м                                | 1[1]      |      | _           | 7.73 dBm                 |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|-----------|------|-------------|--------------------------|
| 10 dBm                                                                             |                                                                                                                  |                    |                                                                                                                |                          | м                                | 2[1]      |      |             | 479890 GHz<br>-50.50 dBm |
| -10 dBm-                                                                           |                                                                                                                  |                    |                                                                                                                |                          |                                  |           |      | 4.9         | 959910 GHz               |
| -20 dBm-                                                                           | D1 -12.076                                                                                                       | dBm                |                                                                                                                |                          |                                  |           |      |             |                          |
| -30 dBm                                                                            |                                                                                                                  |                    |                                                                                                                |                          |                                  |           |      |             |                          |
| -40 dBm                                                                            |                                                                                                                  |                    |                                                                                                                |                          |                                  |           |      |             |                          |
| -50 dBm                                                                            | M                                                                                                                | f                  |                                                                                                                | 40                       |                                  |           |      |             |                          |
| -60 dBm                                                                            | and the state of the second                                                                                      | M                  | 17<br>17 17 19 19 19 19 19                                                                                     |                          | المنافية الألبية في المرابعة الم | dan barra | -    |             |                          |
| -70 dem                                                                            | and the second |                    | na fan de fan de fan de ferste fan de fe |                          |                                  |           |      | 1.00        |                          |
| -80 dBm                                                                            | MH2                                                                                                              |                    |                                                                                                                | 30001                    | nts                              |           |      | Stor        | p 25.0 GHz               |
| Marker                                                                             |                                                                                                                  |                    |                                                                                                                |                          |                                  |           |      |             |                          |
| Type Re                                                                            | 1                                                                                                                |                    | 89 GHz                                                                                                         | Y-value<br>7.73 dBr      |                                  | tion      | Fund | ction Resul | t                        |
| M2<br>M3                                                                           | 1                                                                                                                | 4.959              | 91 GHz<br>91 GHz                                                                                               | -50.50 dBr<br>-50.50 dBr | n                                |           |      |             |                          |
| M4<br>M5                                                                           | 1                                                                                                                | 7.4469:<br>9.8049: |                                                                                                                | -59.36 dBr<br>-58.53 dBr |                                  |           |      |             |                          |
|                                                                                    |                                                                                                                  |                    |                                                                                                                |                          |                                  | Rea       | dy 🚺 |             | 6                        |
| ●1Pk Max                                                                           |                                                                                                                  |                    |                                                                                                                |                          | M                                | 1111      |      |             |                          |
| 10 dBm                                                                             |                                                                                                                  |                    |                                                                                                                | M                        |                                  | 1[1]      | 1    | 2.40184     | 5.12 dBm<br>429550 GHz   |
| 10 dBm                                                                             |                                                                                                                  |                    |                                                                                                                | MI                       |                                  |           |      | 2.40184     |                          |
| 10 dBm                                                                             |                                                                                                                  |                    |                                                                                                                | ML                       |                                  |           |      | 2.40184     |                          |
|                                                                                    |                                                                                                                  |                    |                                                                                                                |                          |                                  |           |      | 2.40184     |                          |
| 0 dBm                                                                              |                                                                                                                  |                    |                                                                                                                | M.                       |                                  |           |      | 2.40184     |                          |
| 0 dBm                                                                              |                                                                                                                  |                    |                                                                                                                |                          |                                  |           |      | 2.40184     |                          |
| 0 dBm                                                                              |                                                                                                                  |                    |                                                                                                                |                          |                                  |           |      | 2.40184     |                          |
| 0 dBm                                                                              |                                                                                                                  |                    |                                                                                                                |                          |                                  |           |      | 2.40184     |                          |
| 0 dBm                                                                              |                                                                                                                  |                    |                                                                                                                |                          |                                  |           |      | 2.40184     |                          |
| 0 dBm                                                                              |                                                                                                                  |                    |                                                                                                                |                          |                                  |           |      | 2.40184     |                          |
| 0 dBm                                                                              |                                                                                                                  |                    |                                                                                                                |                          |                                  |           |      | 2.40184     |                          |
| 0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm |                                                                                                                  |                    |                                                                                                                |                          |                                  |           |      | 2.40184     |                          |
| 0 dBm                                                                              | 3Hz                                                                                                              |                    |                                                                                                                |                          |                                  |           |      |             | 429550 GHz               |



| ●1Pk Max                                                                                                                                                                                                                        |                                |                         |                       |                                                                | м                     | 1[1]     |                      |                           | 3.11 dBm                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|-----------------------|----------------------------------------------------------------|-----------------------|----------|----------------------|---------------------------|------------------------------------------|
| 10 dBm M                                                                                                                                                                                                                        |                                |                         |                       |                                                                |                       |          |                      |                           | 101650 GHz                               |
| 0 dBm                                                                                                                                                                                                                           |                                |                         |                       |                                                                | M                     | 2[1]     |                      |                           | -54.11 dBm<br>15036 GHz                  |
| -10 dBm                                                                                                                                                                                                                         |                                |                         |                       |                                                                |                       |          |                      |                           |                                          |
| -20 dBm                                                                                                                                                                                                                         | 1 -14.881                      | dBm                     |                       |                                                                |                       |          |                      |                           |                                          |
| -30 dBm                                                                                                                                                                                                                         |                                |                         |                       |                                                                |                       |          |                      |                           |                                          |
| -40 dBm                                                                                                                                                                                                                         |                                |                         |                       |                                                                |                       |          |                      |                           |                                          |
| -50 dBm                                                                                                                                                                                                                         |                                |                         |                       |                                                                |                       |          |                      | 12                        |                                          |
| -60 dBm                                                                                                                                                                                                                         | Ma                             | M4                      |                       | 15                                                             | والمتلية وأسروا ويرجع |          | and the second state | le<br>Malana andrewski de | وريار فيرود فرافعه                       |
| -70 dBm                                                                                                                                                                                                                         | one of the second second       | No. of Concession, Name | Soldiers of the State | and protection of the second second                            | -to all attractions   |          |                      |                           | an a |
| -80 dBm                                                                                                                                                                                                                         |                                |                         |                       |                                                                |                       |          |                      |                           |                                          |
| Start 30.0 M                                                                                                                                                                                                                    | Hz                             |                         |                       | 3000:                                                          | L pts                 |          |                      | Stop                      | 25.0 GHz                                 |
| Marker<br>Type Ref                                                                                                                                                                                                              | Trc                            | X-value                 | .                     | Y-value                                                        | Func                  | tion     | Fund                 | tion Result               | t                                        |
| M1<br>M2                                                                                                                                                                                                                        | 1                              |                         | 65 GHz                | 3.11 dB<br>-54.11 dB                                           | m                     |          |                      |                           |                                          |
| M3                                                                                                                                                                                                                              | 1                              | 4.80343                 | 32 GHz                | -58.91 dB                                                      | m                     |          |                      |                           |                                          |
| M4<br>M5                                                                                                                                                                                                                        | 1                              | 7.1139<br>9.7358        |                       | -58.30 dB<br>-60.11 dB                                         |                       |          |                      |                           |                                          |
|                                                                                                                                                                                                                                 | )[]                            |                         |                       |                                                                |                       | ) Rea    | dy 🔛                 | •                         | 0                                        |
| Spectrum<br>Ref Level :<br>Att<br>SGL Count 11                                                                                                                                                                                  | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH:<br>VBW 300 kH:                                     | z                     |          | Ant1 Re              | f                         |                                          |
| Ref Level                                                                                                                                                                                                                       | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | <b>RBW</b> 100 kH:                                             | z<br>z Mode /         |          | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level :<br>Att<br>SGL Count 10                                                                                                                                                                                              | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | <b>RBW</b> 100 kH:                                             | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           |                                          |
| Ref Level 3<br>Att<br>SGL Count 10<br>1Pk Max                                                                                                                                                                                   | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level 3<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>0 dBm                                                                                                                                                                | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level 3<br>Att<br>SGL Count 11<br>PIPK Max<br>10 dBm                                                                                                                                                                        | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level 3<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>0 dBm                                                                                                                                                                | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level 3<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>0 dBm<br>-10 dBm                                                                                                                                                     | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level           Att           SGL Count 11           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                                                         | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level 3<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                                   | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level           Att           SGL Count 11           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                                                         | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level :           Att           SGL Count 11           • IPk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                                                 | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level           Att           SGL Count 11           ID dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                                         | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level           Att           SGL Count 11           ID dBm           0 dBm           -10 dBm           -10 dBm           -30 dBm           -30 dBm           -50 dBm                                                       | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level           Att           SGL Count 11           • IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm                 | 17.78 dBm<br>20 dB             | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | z<br>z Mode /         | Auto FFT | Ant1 Re              |                           | 4.04 dBm                                 |
| Ref Level           Att           SGL Count 11           • IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm                 | 17.78 dBm<br>20 dB<br>000/1000 | Offset 7                | 7.78 dB 👄             | RBW 100 kH<br>VBW 300 kH                                       | Z Mode /              | Auto FFT | Ant1 Re              | 2.44084                   | 4.04 dBm                                 |
| Ref Level           Att           SGL Count 11           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm | 17.78 dBm<br>20 dB<br>000/1000 | Offset 7                | 7.78 dB 👄             | RBW         100 kH;           VBW         300 kH;              | Z Mode /              | Auto FFT | Ant1 Re              | 2.44084                   | 4.04 dBm<br>IS54050 GHz                  |
| Ref Level           Att           SGL Count 11           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm | I7.78 dBm<br>20 dB<br>000/1000 | Offset 7<br>SWT 2       | 7.78 dB<br>18.9 µs    | RBW         100 kH;           VBW         300 kH;              | Z Mode /              | Auto FFT |                      | 2.44084                   | 4.04 dBm<br>IS54050 GHz                  |
| Ref Level           Att           SGL Count 11           9 IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm                 | I7.78 dBm<br>20 dB<br>000/1000 | Offset 7<br>SWT 2       | 7.78 dB<br>18.9 µs    | RBW         100 kH;           VBW         300 kH;              | Z Mode /              | Auto FFT |                      | 2.44084                   | 4.04 dBm<br>IS54050 GHz                  |
| Ref Level           Att           SGL Count 11           9 IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm                 | I7.78 dBm<br>20 dB<br>000/1000 | Offset 7<br>SWT 2       | 7.78 dB<br>18.9 µs    | RBW         100 kH;           VBW         300 kH;           M1 | Z Mode /              | Auto FFT |                      | 2.44084                   | 4.04 dBm<br>IS54050 GHz                  |



| ●1Pk Max                                                                                                                                                                                                                    |                                 |          |                  |                                                                                                                  | M1        | [1]       |                    |                                                                                                                | 1.72 dBm                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------|------------------|------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 10 dBm M                                                                                                                                                                                                                    | 1                               |          |                  |                                                                                                                  |           |           |                    |                                                                                                                | 40770 GHz                           |
| 0 dBm                                                                                                                                                                                                                       |                                 |          |                  |                                                                                                                  | M2        | [1]       |                    |                                                                                                                | 54.65 dBm<br>13657 GHz              |
| -10 dBm—                                                                                                                                                                                                                    |                                 |          |                  |                                                                                                                  |           |           |                    |                                                                                                                |                                     |
| -20 dBm—                                                                                                                                                                                                                    | D1 -15.959                      | dBm      |                  |                                                                                                                  |           |           |                    |                                                                                                                |                                     |
| -30 dBm                                                                                                                                                                                                                     |                                 |          |                  |                                                                                                                  |           |           |                    |                                                                                                                |                                     |
|                                                                                                                                                                                                                             |                                 |          |                  |                                                                                                                  |           |           |                    |                                                                                                                |                                     |
| -40 dBm                                                                                                                                                                                                                     |                                 |          |                  |                                                                                                                  |           |           |                    |                                                                                                                |                                     |
| -50 dBm                                                                                                                                                                                                                     | M3                              | M4       | M                | 5                                                                                                                |           | The later | a here a here here |                                                                                                                |                                     |
| -60 dBm                                                                                                                                                                                                                     |                                 |          |                  | and a second s |           |           |                    | a subsection of the second | a finanda ya kawa<br>Manada ya Jawa |
| -70 dBm                                                                                                                                                                                                                     |                                 |          |                  |                                                                                                                  |           |           |                    |                                                                                                                |                                     |
| Start 30.0                                                                                                                                                                                                                  | MLIA                            |          |                  | 3000                                                                                                             | 1 ptc     |           |                    | Pton                                                                                                           | 25.0 GHz                            |
| Marker                                                                                                                                                                                                                      |                                 |          |                  | 3000.                                                                                                            | i pis     |           |                    | 3104                                                                                                           | 1 23.0 GH2                          |
| Type Re                                                                                                                                                                                                                     |                                 | X-value  |                  | Y-value                                                                                                          | Functi    | on        | Func               | tion Result                                                                                                    | :l                                  |
| M1<br>M2                                                                                                                                                                                                                    | 1                               | 15.71365 | 77 GHz<br>57 GHz | 1.72 dB<br>-54.65 dB                                                                                             |           |           |                    |                                                                                                                |                                     |
| M3                                                                                                                                                                                                                          | 1                               | 4.88167  |                  | -59.03 dB                                                                                                        |           |           |                    |                                                                                                                |                                     |
| M4<br>M5                                                                                                                                                                                                                    | 1                               | 7.16642  |                  | -59.62 dB<br>-59.84 dB                                                                                           |           |           |                    |                                                                                                                |                                     |
|                                                                                                                                                                                                                             | 1                               |          |                  |                                                                                                                  |           | Rear      |                    |                                                                                                                | 1                                   |
| Att<br>SGL Count                                                                                                                                                                                                            | 17.60 dBm<br>20 dB<br>1000/1000 |          |                  | RBW 100 kH<br>VBW 300 kH                                                                                         |           | ito FFT   |                    |                                                                                                                |                                     |
| Ref Leve<br>Att<br>SGL Count<br>PIPk Max                                                                                                                                                                                    | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  |           |           |                    | 2 49016                                                                                                        | 6.12 dBm                            |
| Ref Leve<br>Att<br>SGL Count                                                                                                                                                                                                | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | z Mode Au | [1]       |                    | 2.48016                                                                                                        |                                     |
| Ref Leve<br>Att<br>SGL Count<br>PIPk Max                                                                                                                                                                                    | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | 2.48016                                                                                                        | 6.12 dBm                            |
| Ref Leve<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm                                                                                                                                                                           | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | 2.48016                                                                                                        | 6.12 dBm                            |
| Ref Leve<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm-                                                                                                                                                                          | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | 2.48016                                                                                                        | 6.12 dBm                            |
| Ref Leve<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm                                                                                                                                                                           | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | 2.48016                                                                                                        | 6.12 dBm                            |
| Ref Leve<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                                     | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | 2.48016                                                                                                        | 6.12 dBm                            |
| Ref Leve<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm<br>0 dBm<br>-10 dBm                                                                                                                                                       | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | 2.48016                                                                                                        | 6.12 dBm                            |
| Ref Leve<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                                     | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | 2.48016                                                                                                        | 6.12 dBm                            |
| Ref Leve<br>• Att<br>SGL Count<br>• 1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                      | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | 2.48016                                                                                                        | 6.12 dBm                            |
| Ref Leve           Att           SGL Count           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                       | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | 2.48016                                                                                                        | 6.12 dBm                            |
| Ref Leve           Att           SGL Count           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                       | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | 2.48016                                                                                                        | 6.12 dBm                            |
| Ref Leve           Att           SGL Count           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                                     | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | 2.48016                                                                                                        | 6.12 dBm                            |
| Ref Leve           Att           SGL Count           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm                   | 17.60 dBm<br>20 dB              |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | 2.48016                                                                                                        | 6.12 dBm                            |
| Ref Leve           Att           SGL Count           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm | 17.60 dBm<br>20 dB<br>1000/1000 |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    |                                                                                                                | 6.12 dBm<br>01450 GHz               |
| Ref Leve           Att           SGL Count           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm                   | 17.60 dBm<br>20 dB<br>1000/1000 |          |                  |                                                                                                                  | Z Mode Au | [1]       |                    | Spa                                                                                                            | 6.12 dBm                            |



| 10 dBm M1[1]<br>0 dBm M2[1]<br>-10 dBm D1 -13.879 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.54 dB<br>2.479890 Gł<br>-54.76 dB<br>15.703669 Gł                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| -10 dBm D1 -13.879 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |
| -20 dBm20 dBm20 dBm20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second second                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |
| -80 dBm Stort 30.0 MHz 30001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stop 25.0 GH                                                                                                     |
| Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |
| Type         Ref         Trc         X-value         Y-value         Function         Function           M1         1         2.47989 GHz         0.54 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on Result                                                                                                        |
| M2         1         15.703669 GHz         -54.76 dBm           M3         1         4.95991 GHz         -58.99 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
| M3         1         4.95991 GHz         -58.99 dBm           M4         1         7.392821 GHz         -58.39 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |
| M5 1 10.109557 GHz -60.45 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 μs         VBW         300 kHz         Mode         Auto FFT           SGL         Count         1000/1000                  20 dB         SWT         18.9 μs            Mode         Auto FFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 μs         ● VBW         300 kHz         Mode         Auto FFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.14 dB                                                                                                          |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 μs         VBW         300 kHz         Mode         Auto FFT           SGL Count         1000/1000         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 µs         VBW         300 kHz         Mode         Auto FFT           SGL Count         1000/1000         Image: state s          | 5.14 dB                                                                                                          |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 μs         VBW         300 kHz         Mode         Auto FFT           SGL Count         1000/1000            M1[1]           10. dBm            M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.14 dB                                                                                                          |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 µs         VBW         300 kHz         Mode         Auto FFT           SGL Count         1000/1000         Image: state s          | 5.14 dB                                                                                                          |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 µs         VBW         300 kHz         Mode         Auto FFT           SGL Count         1000/1000         M1[1]         M1         M1         M1         M1           10 dBm         -0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.14 dB                                                                                                          |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 µs         VBW         300 kHz         Mode         Auto FFT           SGL Count         1000/1000         M1[1]         M1         M1         M1         M1           10 dBm         0 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.14 dB                                                                                                          |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 µs         VBW         300 kHz         Mode         Auto FFT           SGL Count         1000/1000         M1[1]         M1         M1         M1         M1           10 dBm         -0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.14 dB                                                                                                          |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 µs         VBW         300 kHz         Mode         Auto FFT           SGL Count         1000/1000         M1[1]         M1         M1         M1           10 dBm         0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.14 dB                                                                                                          |
| Note         Note         Nutree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.14 dB                                                                                                          |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 µs         VBW         300 kHz         Mode         Auto FFT           SGL         Count         1000/1000         Image: SWT         18.9 µs         VBW         300 kHz         Mode         Auto FFT           10 dBm         M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.14 dB                                                                                                          |
| Note         Note         Nutree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.14 dB                                                                                                          |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 µs         VBW         300 kHz         Mode         Auto FFT           SGL Count 1000/1000         Image: second secon | 5.14 dB                                                                                                          |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 µs         VBW         300 kHz         Mode         Auto FFT           SGL         Count 1000/1000         Image: second se          | 5.14 dB                                                                                                          |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 µs         VBW         300 kHz         Mode         Auto FFT           SGL Count 1000/1000         Image: second secon | 5.14 dB                                                                                                          |
| Ref Level         17.62 dBm         Offset         7.62 dB         RBW         100 kHz           Att         20 dB         SWT         18.9 µs         VBW         300 kHz         Mode         Auto FFT           SGL         Count 1000/1000         Image: second se          | 5.14 dB                                                                                                          |



|                                                                                                                                                   | ×                                          |                                    |                  |                                                     | M1[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |         |                     | -0.03 dBm                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------|------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------------------|---------------------------|
| 10 dBm—                                                                                                                                           | м                                          |                                    |                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         | 2                   | .402490 GHz               |
| 0 dBm—                                                                                                                                            |                                            |                                    |                  |                                                     | M2[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |         | 20                  | -53.76 dBm<br>.151658 GHz |
| -10 dBm-                                                                                                                                          | D1 -14                                     | 364.dBm                            |                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |                     |                           |
| -20 dBm-                                                                                                                                          |                                            |                                    |                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |                     |                           |
| -30 dBm-                                                                                                                                          |                                            |                                    |                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |                     |                           |
| -40 dBm-                                                                                                                                          |                                            |                                    |                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |                     |                           |
| -50 dBm-                                                                                                                                          |                                            | MB                                 | M4               | M5                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         | <u>42</u>           |                           |
| -60 dBm-                                                                                                                                          | all an |                                    |                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         | In the formation of |                           |
| -70 asm-                                                                                                                                          |                                            |                                    |                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |                     |                           |
| -80 dBm-<br>Start 30                                                                                                                              | .0 MHz                                     | _                                  | _                | 30001                                               | L pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         | Sto                 | op 25.0 GHz               |
| Marker                                                                                                                                            |                                            |                                    |                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        |         |                     |                           |
| M1                                                                                                                                                | Ref Trc                                    | X-va<br>2.4                        | lue<br>10249 GHz | Y-value<br>-0.03 dBr                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>ו</u> | Fun     | ction Resu          | ilt                       |
| M2<br>M3                                                                                                                                          | 1                                          |                                    | 31658 GHz        | -53.76 dBr<br>-59.18 dBr                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |                     |                           |
|                                                                                                                                                   |                                            | 1.00                               |                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |                     |                           |
| M4                                                                                                                                                | 1                                          |                                    | 95678 GHz        | -59.56 dBr                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |                     |                           |
| M5<br>Spectre<br>Ref Lee<br>Att<br>SGL Cou                                                                                                        | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -59.56 dBr<br>-60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz | m<br>0H5 2441I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | Ant1 Re | f                   |                           |
| Spectro<br>Ref Lee<br>Att                                                                                                                         | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>0H5 24411<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>4<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>1<br>1<br>1<br>1 | D FFT    | Ant1 Re | f                   |                           |
| M5<br>Spectre<br>Ref Lee<br>Att<br>SGL Cou                                                                                                        | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>PH5 24411<br><sup>2</sup> Mode Auto<br>M1[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re |                     | 4.67 dBm<br>1596450 GHz   |
| M5<br>Spectru<br>Ref Le<br>Att<br>SGL Cou<br>10 dBm-                                                                                              | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>0H5 24411<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>4<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>1<br>1<br>3<br>4<br>1<br>1<br>1<br>1 | D FFT    | Ant1 Re |                     | 4.67 dBm                  |
| M5<br>Spectro<br>Ref Leo<br>Att<br>SGL Cou                                                                                                        | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>PH5 24411<br><sup>2</sup> Mode Auto<br>M1[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re |                     | 4.67 dBm                  |
| M5<br>Spectru<br>Ref Le<br>Att<br>SGL Cou<br>10 dBm-                                                                                              | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>PH5 24411<br><sup>2</sup> Mode Auto<br>M1[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re |                     | 4.67 dBm                  |
| M5<br>Spectri<br>Ref Le<br>Att<br>SGL Cou<br>1Pk Ma:<br>10 dBm-<br>0 dBm-                                                                         | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>PH5 24411<br><sup>2</sup> Mode Auto<br>M1[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re |                     | 4.67 dBm                  |
| M5<br>Spectri<br>Ref Le<br>SGL Cou<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-                                                                   | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>PH5 24411<br><sup>2</sup> Mode Auto<br>M1[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re |                     | 4.67 dBm                  |
| M5<br>Spectri<br>Ref Le<br>Att<br>SGL Cou<br>10 dBm-<br>0 dBm-<br>-10 dBm-                                                                        | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>PH5 24411<br><sup>2</sup> Mode Auto<br>M1[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re |                     | 4.67 dBm                  |
| M5<br>Spectri<br>Ref Le<br>SGL Cou<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-                                                                   | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>PH5 24411<br><sup>2</sup> Mode Auto<br>M1[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re |                     | 4.67 dBm                  |
| M5<br>Spectri<br>Ref Le<br>Att<br>SGL Cou<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-                                                | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>PH5 24411<br><sup>2</sup> Mode Auto<br>M1[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re |                     | 4.67 dBm                  |
| M5<br>Spectri<br>Ref Le'<br>SGL Cou<br>9 1Pk Mai<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-                 | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>PH5 24411<br><sup>2</sup> Mode Auto<br>M1[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re |                     | 4.67 dBm                  |
| M5<br>Spectri<br>Ref Le<br>Att<br>SGL Cou<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-40 dBm-                                    | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>PH5 24411<br><sup>2</sup> Mode Auto<br>M1[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re |                     | 4.67 dBm                  |
| M5<br>Spectri<br>Ref Le'<br>SGL Cou<br>9 1Pk Mai<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-                 | um<br>vel 17.78<br>21<br>nnt 1000/10       | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>PH5 24411<br><sup>2</sup> Mode Auto<br>M1[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re |                     | 4.67 dBm                  |
| M5<br>Spectr<br>Ref Le<br>Att<br>SGL Cou<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-20 dBm-<br>-30 dBm-<br>-50 dBm-<br>-60 dBm-<br>-70 dBm- | 1 vel 17.78 2 int 1000/10 x                | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr                                          | m<br>PH5 2441I<br>2<br>Mode Autr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re | 2.4411              | 4.67 dBm<br>1596450 GHz   |
| M5<br>Spectr<br>Ref Le<br>Att<br>SGL Cou<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-<br>-60 dBm-             | 1 vel 17.78 2 int 1000/10 x                | 9<br>Tx. Sp<br>dBm Offse<br>db swt | 7683 GHz         | -60.53 dBr<br>NVNT 3-D<br>RBW 100 kHz               | m<br>PH5 2441I<br>2<br>Mode Autr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D FFT    | Ant1 Re | 2.4411              | 4.67 dBm                  |



| SGL Count 10<br>91Pk Max                                                                                                                                                                                       | /10               |           |                       |                            | MI                  | [1]     |       |            | 0.72 dBm                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|-----------------------|----------------------------|---------------------|---------|-------|------------|----------------------------------|
| 10 dBm<br>0 dBm                                                                                                                                                                                                |                   |           |                       |                            | M2                  | 2[1]    |       | -5         | 0770 GHz<br>4.03 dBm<br>8341 GHz |
| -10 dBm                                                                                                                                                                                                        |                   |           |                       |                            |                     |         |       |            |                                  |
| -20 dBm-01                                                                                                                                                                                                     | -15.328           | dBm       |                       |                            |                     |         |       |            |                                  |
| -30 dBm                                                                                                                                                                                                        |                   |           |                       |                            |                     |         |       |            |                                  |
| -40 dBm                                                                                                                                                                                                        |                   |           |                       |                            |                     |         |       |            |                                  |
| -50 dBm                                                                                                                                                                                                        | M                 | M4        | N                     | 15                         |                     |         |       | 2          |                                  |
| -60 dBm                                                                                                                                                                                                        |                   |           | and the supervised of |                            |                     |         |       |            |                                  |
| -70 asm                                                                                                                                                                                                        |                   |           |                       |                            |                     |         |       |            |                                  |
| Start 30.0 MF                                                                                                                                                                                                  |                   |           |                       | 30001                      | pts                 |         |       | Stop 2     | 25.0 GHz                         |
| Marker<br>Type   Ref                                                                                                                                                                                           | Tre               | X-value   | 1                     | Y-value                    | Funct               | ion     | Funct | ion Result |                                  |
| M1<br>M2                                                                                                                                                                                                       | 1                 | 2.4407    |                       | -0.72 dBr<br>-54.03 dBr    | n                   |         | Func  | Ion Result |                                  |
| M3                                                                                                                                                                                                             | 1                 | 4.88167   | 1 GHz                 | -57.14 dBr                 | n                   |         |       |            |                                  |
| M4<br>M5                                                                                                                                                                                                       | 1                 | 7.382833  |                       | -58.73 dBr<br>-59.82 dBr   |                     |         |       |            |                                  |
| Spectrum<br>Ref Level 1<br>Att<br>SGL Count 10<br>1Pk Max                                                                                                                                                      | 7.60 dBm<br>20 dB |           | 60 dB 👄               | RBW 100 kHz<br>VBW 300 kHz | :<br>Mode A         | uto FFT |       |            | .44 dBm                          |
| Ref Level 1<br>Att<br>SGL Count 10                                                                                                                                                                             | 7.60 dBm<br>20 dB | Offset 7. | 60 dB 👄               | <b>RBW</b> 100 kHz         | 2<br>2 Mode A<br>M1 |         |       |            |                                  |
| Ref Level 1<br>Att<br>SGL Count 10<br>1Pk Max                                                                                                                                                                  | 7.60 dBm<br>20 dB | Offset 7. | 60 dB 👄               | <b>RBW</b> 100 kHz         | 2<br>2 Mode A<br>M1 | uto FFT |       |            | 6.44 dBm                         |
| Ref Level 1<br>Att<br>SGL Count 10<br>P1Pk Max<br>10 dBm                                                                                                                                                       | 7.60 dBm<br>20 dB | Offset 7. | 60 dB 👄               | <b>RBW</b> 100 kHz         | 2<br>2 Mode A<br>M1 | uto FFT |       |            | 6.44 dBm                         |
| Ref Level 1<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>-10 dBm                                                                                                                                             | 7.60 dBm<br>20 dB | Offset 7. | 60 dB 👄               | <b>RBW</b> 100 kHz         | 2<br>2 Mode A<br>M1 | uto FFT |       |            | 6.44 dBm                         |
| Ref Level 1<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>0 dBm                                                                                                                                               | 7.60 dBm<br>20 dB | Offset 7. | 60 dB 👄               | <b>RBW</b> 100 kHz         | 2<br>2 Mode A<br>M1 | uto FFT |       |            | 6.44 dBm                         |
| Ref Level 1<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>-10 dBm                                                                                                                                             | 7.60 dBm<br>20 dB | Offset 7. | 60 dB 👄               | <b>RBW</b> 100 kHz         | 2<br>2 Mode A<br>M1 | uto FFT |       |            | 6.44 dBm                         |
| Ref Level 1           Att           SGL Count 10           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm                                                                        | 7.60 dBm<br>20 dB | Offset 7. | 60 dB 👄               | <b>RBW</b> 100 kHz         | 2<br>2 Mode A<br>M1 | uto FFT |       |            | 6.44 dBm                         |
| Ref Level 1<br>Att<br>SGL Count 10<br>PIPK Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                             | 7.60 dBm<br>20 dB | Offset 7. | 60 dB 👄               | <b>RBW</b> 100 kHz         | 2<br>2 Mode A<br>M1 | uto FFT |       |            | 6.44 dBm                         |
| Ref Level 1           Att           SGL Count 10           ID dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                      | 7.60 dBm<br>20 dB | Offset 7. | 60 dB 👄               | <b>RBW</b> 100 kHz         | 2<br>2 Mode A<br>M1 | uto FFT |       |            | 6.44 dBm                         |
| Ref Level 1           Att           SGL Count 10           ID dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                                                      | 7.60 dBm<br>20 dB | Offset 7. | 60 dB 👄               | <b>RBW</b> 100 kHz         | 2<br>2 Mode A<br>M1 | uto FFT |       |            | 6.44 dBm                         |
| Ref Level 1           Att           SGL Count 10           ID dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm | 7.60 dBm<br>20 dB | Offset 7. | 60 dB 👄               | RBW 100 kHz                | Mode A              | uto FFT |       | 2.480159   | 6.44 dBm<br>1450 GHz             |
| Ref Level 1           Att           SGL Count 10           ID dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm                  | 7.60 dBm<br>20 dB | Offset 7. | 60 dB 👄               | <b>RBW</b> 100 kHz         | Mode A              | uto FFT |       | 2.480159   | 6.44 dBm                         |



| Ref Level    | 17.60 dB                         | m Offset 7.60 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🔵 RBW 100 kHz                                                                                                  |        |              |                        |             |           |
|--------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------|--------------|------------------------|-------------|-----------|
| Att 🛛        | 20 d                             | IB <b>SWT</b> 250 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 🔵 <b>VBW</b> 300 kHz                                                                                           | Mode A | uto Sweep    | 1                      |             |           |
| SGL Count 1  | .0/10                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        |             |           |
| ⊖1Pk Max     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        |             | 1         |
|              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | M1     | [1]          |                        |             | 2.25 dBm  |
| 10 dBm       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        | 2.4         | 79890 GHz |
| 0 dBm        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | M      | 2[1]         |                        |             | 53.12 dBm |
| U dBm        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        | . 4.9       | 59910 GHz |
| -10 dBm      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        |             |           |
| tC           | 1 -13.55                         | 8 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |        |              | 1                      |             |           |
| -20 dBm      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        |             |           |
|              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        |             |           |
| -30 dBm——    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        |             |           |
| -40 dBm      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        |             |           |
| io abiii     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        |             |           |
| -50 dBm —    | 1                                | MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |        |              |                        |             |           |
|              |                                  | M <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M5                                                                                                             |        | and Managers | ملابق الدرج الاراد     | 14          |           |
| -60 dBm      | مىلايىرا <sup>لىرار</sup> مالىرى | The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Company on the new particular the                                                                              |        | A Marine     | and the second product |             |           |
| -70 dBm      | and the state of the second      | of photo and a start of the sta | and so the second s |        |              |                        |             |           |
| , o ubiii    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        |             |           |
| -80 dBm      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        |             |           |
| Start 30.0 M | 1Hz                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30001 p                                                                                                        | ts     |              |                        | Stop        | 25.0 GHz  |
| Marker       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |        |              |                        |             |           |
| Type   Ref   | Trc                              | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-value                                                                                                        | Funct  | ion          | Fund                   | tion Result |           |
| M1           | 1                                | 2.47989 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.25 dBm                                                                                                       |        |              |                        |             |           |
| M2           | 1                                | 4.95991 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -53.12 dBm                                                                                                     |        |              |                        |             |           |
| MЗ           | 1                                | 4.95991 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -53.12 dBm                                                                                                     |        |              |                        |             |           |
| M4           | 1                                | 7.46024 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -59.51 dBm                                                                                                     |        |              |                        |             |           |
| M5           | 1                                | 10.064611 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -59.56 dBm                                                                                                     |        |              |                        |             |           |

END OF REPORT