

210 Cougar Court Hillsborough, NJ 08844 Tel: (908) 927 9288 Fax: (908) 927 0728

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

of

MULTIMEDIA READER MODEL: MMR2.0 FCC ID: 2AUGM-MMR2.0

January 11, 2021

This report concerns (check one): Original grant Class II change _x Equipment type: Low Power Intentional Radiator
Deferred grant requested per 47 CF $0.457(d)(1)(ii)$? yes nox If yes, defer until: (date) Company agrees to notify the Commission by (date) of the intended date of announcement of the product so that the grant can be issued on that date.
Transition Rules Request per 15.37? yes no If no, assumed Part 15, Subpart B for unintentional radiators - the new 47 CFR [10-1-90 Edition] provision.
Report prepared for:PARABIT SYSTEM, INC.Report prepared by:Advanced Compliance LabReport number:0048-201211-01-FCC-LF-15B

NVLAD

Lab Code: 200101

The test result in this report IS supported and covered by the NVLAP accreditation

Table of Contents

Report Cover Page	1
Table of Contents	2
Figures	3
1. GENERAL INFORMATION	4
1.1 Verification of Compliance	4
1.2 Equipment Modifications	
1.3 Product Information	6
1.4 Test Methodology	6
1.5 Test Facility	6
1.6 Test Equipment	6
1.7 Statement for the Document Use	7
2. PRODUCT LABELING	8
3. SYSTEM TEST CONFIGURATION	9
3.1 Justification	9
3.2 Special Accessories	9
3.3 Configuration of Tested System	9
4. SYSTEM SCHEMATICS	12
5. CONDUCTED EMISSION DATA	13
5.1 Test Methods and Conditions	13
5.2 Test Data	13
6. RADIATED EMISSION DATA	15
6.1 Field Strength Calculation	15
6.2 Test Methods and Conditions	15
6.3 Test Data	15
6.4 Occupied Bandwidth	18
7. FREQUENCY TOLERANCE	19
8. MAXIMUM PERMISSIBLE EXPOSURE	21
9. PHOTOS OF TESTED EUT	Error!
Bookmark not defined.	

Advanced Compliance Lab, 210 Cougar Court, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

Figures

Figure 2.1 FCC ID Label	8
Figure 2.2 Location of Label on Back of the EUT	8
Figure 3.1 Radiated Test Setup	10
Figure 3.2 Conducted Test Setup	11
Figure 3.3 Frequency Tolerance Test Setup	11
Figure 4.1 EUT Schematics	12
Figure 5.1 Line Conducted	14
Figure 5.2 Neutral Conducted	14
Figure 6.1 Bandwidth Plot	18
Figure 9.x EUT Photos	23+

Advanced Compliance Lab, 210 Cougar Court, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

1. GENERAL INFORMATION

1.1 Verification of Compliance

EUT:	Multimedia READER
Model:	MMR2.0
Applicant:	PARABIT SYSTEM, INC.
Test Type:	FCC Part 15C CERTIFICATION FCC Part 15B, Class A (for digital circuitry)
Result:	PASS
Tested by:	ADVANCED COMPLIANCE LABORATORY
Test Date:	December 11, 2020 - January 11, 2021
Report Number:	0048-201211-01-FCC-LF-15B

The above equipment was tested by Compliance Laboratory, Advanced Technologies, Inc. for compliance with the requirement set forth in the FCC rules and regulations Part 15 subpart C. This said equipment in the configuration described in the report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	±2.36	±2.99	±1.83

Wei Li Lab Manager Advanced Compliance Lab

Date: January 11, 2021

1.2 Equipment Modifications

N/A

Advanced Compliance Lab, 210 Cougar Court, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

1.3 Product Information

System Configuration DESCRIPTION FCC ID

ITEM	DESCRIPTION	FCC ID	CABLE
Product	READER MMR2.0 ⁽¹⁾	2AUGM-MMR2	
Housing	Plastic		
Power Supply	8.5Vdc		
Operation Freq.	13.56MHz		
Device Type	Sec. 15.225 Operation		

(1) EUT submitted for grant.

1.4 Test Methodology

Radiated tests were performed according to the procedures in ANSI C63.4-2014 & ANSI C63.10-2013 at an antenna to EUT distance of 30 &3 meters.

1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated and conducted data are located at Hillsborough, New Jersey. This site is accepted by FCC to perform measurements under Part 15 or 18 (US5347) and also designated by IC as "site IC 3130A". ACL is recognized by ISED as a wirless testing laboratory (CAB ID: US0100). The NVLAP Lab code for accreditation of FCC EMC Test Method is: 200101-0.

1.6 Test Equipment

Manufacture	Model	Serial No.	Description	Cal Due dd/mm/yy
Hewlett-Packard	HP8546A	3448A00290	EMI Receiver	25/09/21
Agilent	E4440A	US40420700	3Hz-26.5GHz Spectrum Analyzer	17/06/21
R &S	ESPI	100018	9KHz-7GHz EMI Receiver	25/08/21
ЕМСО	3104C	9307-4396	20-300MHz Biconical Antenna	12/11/21
EMCO	3146	9008-2860	200-1000MHz Log-Periodic Antenna	13/11/21
ARA	MWH- 1826/B	1013	18-26GHZ Horn Antena	10/02/21
EMCO	3115	49225	Double Ridge Guide Horn Antenna	28/11/21

Electro-Meterics	ALR- 25M/30	289	10KHz-30MHz Active Loop Antenna	28/05/21
ARA	MWH- 1826/B	1013	18-26GHZ Horn Antena	10/02/21
COM-POWER	L1215A	191994	Line Impedance Stabilization Networks	24/03/21
Fischer Custom	LISN-2	900-4-0009	Line Impedance Stabilization Networks	18/03/21

All Test Equipment Used are Calibrated Traceable to NIST Standards.

1.7 Statement for the Document Use

This report shall not be reproduced except in full, without the written approval of the laboratory. And this report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Advanced Compliance Lab, 210 Cougar Court, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

2. PRODUCT LABELING

Parabit Systems, Inc. Model No.: MMR2.0 FCC ID: 2AUGM-MMR2

This device complies with part 15 of the FCC Rules. Operating is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Contains FCC ID:2AA9B05 IC:12208A-05

Multimedia Reader

Figure 2.1 FCC ID Label

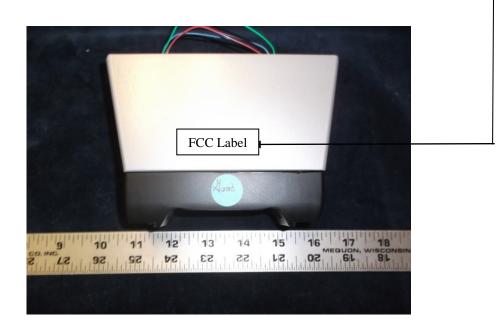


Figure 2.2 FCC ID Label Location

Advanced Compliance Lab, 210 Cougar Court, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). Testing was performed as EUT was operated continuously.

3.2 Special Accessories

N/A

3.3 Configuration of Tested System

Figure 3.X illustrate the system setup for testing.

Advanced Compliance Lab, 210 Cougar Court, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

Figure 3.1 Radiated Test Setup

Advanced Compliance Lab, 210 Cougar Court, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

N/A

Figure 3.2 Conducted Emission Test Setup

Figure 3.3 Frequency Tolerance Test Setup

4. SYSTEM SCHEMATICS

See Attachment.

Figure 4.1 System Schematics

5. CONDUCTED EMISSION DATA

5.1 Test Methods and Conditions

The EUT was under normal operational mode during the conducted emission test. EMI Receiver was scanned from 150KHz to 30MHz with maximum hold mode for maximum emission. Recorded data was sent to the plotter to generate output in linear format. At the input of the spectrum analyzer, a HP transient limiter is inserted for protective purpose. This limiter has a 10 dB attenuation in the range of 150KHZ to 30MHZ. That factor was automatically compensated by the receiver, so the readings are the corrected readings. The reference of the plot is the CISPR 22 Class A limit in Figure 5.1 through Figure 5.2.

Conducted Emission Technical Requirements							
	Cla	ss A	Cla	ss A			
Frequency Range	Quasi-Peak dBuV	Average dBuV	Quasi-Peak DBuV	Average dBuV			
150kHz –0.5MHz	79 (8912uV)	66 (1995uV)	66-56	56-46			
0.5MHz-30MHz	73 (4467uV)	60 (1000uV)					
0.5MHz- 5MHz			56	46 (250uV)			
5MHz-30MHz			60	50			

Emissions that have peak values close to the specification limit (if any) may be also measured in the quasi-peak mode to determine compliance.

5.2 Test Data

Figure 5.1-5.2 show the neutral and line conducted emissions for the standard operation with antenna output attenuated.

Highest I	Highest Data for AC Line Conducted Emissions, 120Vac Battery Charging Mode							
Frequency (MHz)	(Line)	(Line)	(Line)	(Neutral)	(Neutral)	(Neutral)		
Peak/QP Reading								
(dBuV)*								
Average Reading	N/A	N/A	N/A	N/A	N/A	N/A		
(dBuV)*								
Under FCC Part 15								
Limit								

Test Personnel:

Tester Signature: _____ Date: _____

Typed/Printed Name:_____

Line Conducted Emission 150kHz-30MHz

N/A

Fig. 5.1 Conducted Emission-Line

Neutral Conducted Emission 150kHz-30MHz

N/A

Fig. 5.2 Conducted Emission- Neutral

----- Section 5 is not applicable to this EUT .

Advanced Compliance Lab, 210 Cougar Court, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

6. RADIATED EMISSION DATA

6.1 Field Strength Calculation

The corrected field strength is automatically calculated by EMI Receiver using following:

FS = RA + AF + CF + AG

where FS: Corrected Field Strength in dBµV/m
RA: Amplitude of EMI Receiver before correction in dBµV
AF: Antenna Factor in dB/m
CF: Cable Attenuation Factor in dB
AG: Built-in Preamplifier Gain in dB (Stored in receiver as part of the calibration data)

6.2 Test Methods and Conditions

The initial step in collecting radiated data is a EMI Receiver scan of the measurement range below 30MHz using peak/quasi-peak detector and 9KHz IF bandwidth / 30KHz video bandwidth with loop antenna. For the range 30MHz - 1GHz, 120KHz IF bandwidth / 120KHz video bandwidth are used. Both bandwidths are 1MHz for above 1GHz measurement. Frequency range from EUT's lowest crystal frequency to 10th harmonics of fundamental was investigated.

EUT was rotated all around and cables and equipment were placed and moved within the range of positions likely to find their maximum emissions. Antenna must be rotated about its Horizontal and Vertical positions to maximize emissions.

6.3 Test Data

The following data lists the significant emission frequencies, polarity and position, peak reading of the EMI Receiver, the FCC limit, and the difference between the peak reading and the limit. Explanation of the correction and calculation are given in section 6.1.

Test Personnel: David Tu

Typed/Printed Name: <u>David Tu</u>

Date: January 11, 2021

Advanced Compliance Lab, 210 Cougar Court, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

Radiated Test Data

Emissions from 13.56MHz Transmitter for Part 15C

Emissions from 15:500miz fransmitter for fart 15C							
Frequenc	Polarity	Height	Azimuth	Quasi-	FCC	Difference	
у	[H or V]			Peak	30m &3m	from limit	
		(m)	(Degree)	Reading	Limit	(dB)	
(MHz)				$(dB\mu V/m)$	$(dB\mu V/m)$		
13.56	H/V	1.0	000	55.1	84.0(1)	-28.9	
27.20	H/V	1.0	000	26.4(3)	29.5(2)	-3.1	
40.67	Н	1.8	090	32.2*	40.0	-7.8	
40.66	V	1.2	045	33.9*	40.0	-6.1	

Emissions from 13.56MHz Transmitter for Part 15C

(1) Per 15.225(a): The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter (84dBuV/m) at 30 meters.

(2) Per 15.225(d): The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in 15.209.

(3) The distance factor 19.1dB was applied to the this testing value as the measurement was adjusted from 30m to 10m distance in order to obtain the significant reading per 15.31(f).

Advanced Compliance Lab, 210 Cougar Court, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

Emissions from Digital Circuitry for Part 15B, Class A								
Frequenc	Polarity	Height	Peak/QP	FCC	Difference			
У	[H or V]		Reading	10m Limit	from limit			
		(m)	@10m	$(dB\mu V/m)$	(dB)			
(MHz)			$(dB\mu V/m)$					
163.7	Н	1.8	34.0	43.5	-9.5			
172.7	Н	1.8	26.4	43.5	-17.1			
177.4	Н	1.8	28.1	43.5	-15.4			
190	Н	1.8	23.5	43.5	-20			
408	Н	1.0	39.0	46.4	-7.4			
420	Н	1.0	42.0*	46.4	-4.4			
434	Н	1.0	39.2	46.4	-7.2			
705	Н	1.0	39.6	46.4	-6.8			
748	Н	1.0	42.1*	46.4	-4.3			
774	Н	1.0	40.6	46.4	-5.8			
1058	Н	1.1	30.1	49.5	-19.4			
39.6	V	1.1	24.8	39.1	-14.3			
135.8	V	1.1	28.0	43.5	-15.5			
163.9	V	1.1	28.8	43.5	-14.7			
177.5	V	1.1	27.4	43.5	-16.1			
189.8	V	1.1	29.7	43.5	-13.8			
420	V	1.1	39.0	46.4	-7.4			
434	V	1.1	37.4	46.4	-9.0			
448	V	1.1	31.7	46.4	-14.7			
460	V	1.1	31.9	46.4	-14.5			
612	V	1.1	33.9	46.4	-12.5			
638	V	1.1	32.0	46.4	-14.4			
746	V	1.1	32.2	46.4	-14.2			
1030	V	1.1	35.0	49.5	-14.5			
1058	V	1.1	34.6	49.5	-14.9			

Emissions from	n Digital Circuit	ry for Part 15B, Class A

 1038
 V
 1.1
 34.0
 49.3
 -14.9

 *Peak /Quasi-peak /Average reading. For emissions that have peak values close to (or over) the specification limit (if

 any) will be also measured in the quasi-peak or average mode to determine the compliance. No other significant emissions were found in the rest frequency band.

** Radiated field Strength at 10m distance = Radiated field Strength at 3m distance - 10.5 dBµV/m used for low level signals with high level ambient.

6.4 Occupied Bandwidth

Bandwidth is determined at the points 20dB down from the modulated carrier. Figure 6.1 shows the occupied bandwidth plot.

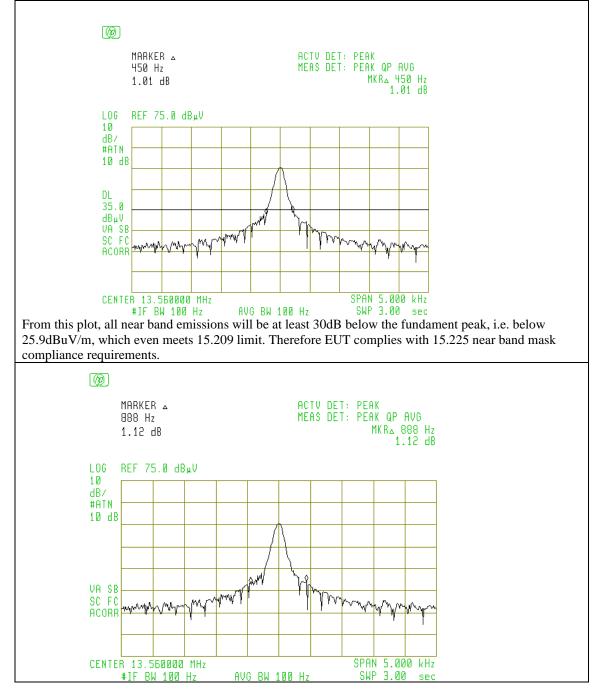


Figure 6.1 Occupied Bandwidth

Advanced Compliance Lab, 210 Cougar Court, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

7. FREQUENCY TOLERANCE

Name of Test:	Frequency Tolerance	Test Standard:	15.225
Tested By:		Test Date:	

Minimum Standard:	Para 15.225(e) The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.
Method of	Frequency Stability With Voltage Variation:
Measurement:	The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. Set SA resolution bandwidth low enough (30Hz) to obtain the desired frequency resolution. (Using frequency counter method: The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10MHz ref, in of the signal generator). With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.
	The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied from -20 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

Advanced Compliance Lab, 210 Cougar Court, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

Test Result:	Complies	
Test Data:	See Attached Table(s)	

- temperature variation: -20°C to +50°C
- voltage variation: 7.26 Vdc to 9.78 Vdc
- frequency tolerance: +/- 1.356 kHz (+/- 0.01%)

Frequency Stability versus Environmental Temperature

Reference Frequency @ 8.5V & +20°C				
Temperature & Direction Frequency Deviation				
(°C)	(Hz)			
-20	13.560136			
+20	13.560053			
+50	13.560102			

Frequency Stability versus DC Voltage

Reference Frequency @ 115VAC & +20°C				
Voltage & Direction	Frequency	Deviation		
(VDC) (MHz) (Hz)				
7.26	13.560036			
8.5	13.560354			
9.78	13.560035			

8. MAXIMUM PERMISSIBLE EXPOSURE

Name of Test:	Radio Frequency Exposure	Test Standard:	FCC OET Bulletin 65 &RSS-GEN& RSS-102
Tested By:		Test Date:	

Minimum Standard:	<i>For FCC</i> , per Public Exposure to Radio Frequency Energy Levels (1.1307 (b)(1)) Limits:		
	From §1.1310 Table 1 (B), for Public S = 1.0 mW/cm^2 ; for Professional, S = 5.0 mW/cm^2 .		
	<i>For IC</i> : per RSS-102, Sec. 2.5.2, Exemption Limits for Routine Eval formula of $1.31 \times 10^{-2} f^{0.6834}$ W, more restricted EIRP limit valuat 902MHz, 2.67W at 2400MHz, 4.52W at 5180MHz.	uation, with ue are 1.37W	
Method of Measurement:	$d = 0.282 * 10 \land ((P + G) / 20) / \sqrt{S}$ $S = 0.0795 * 10 \land ((P + G)/10) / d^{2}$ where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power \text{ Density Limit in } mW/cm^{2}$	Equation (1) Equation (2)	
	Equation (1) and the measured peak power is used to calculate distance. Equation (2) and the measured peak power is used to calculate density.		

Test Result:

Complied with MPE limit

Calculation:

For FCC MPE compliance:

With co-location of EUT Tx and pre-certified RF module, the following calculation shows total RF exposure is still under the MPE limit:

For EUT Tx, max. level measured at 30m distance: 55.1 dB μ V/m, i.e. P+G= -0.1dBm

Plug all three items into equation (2), yielding,

Power Density Limit (mW/cm ²)	Output Power (dBm)	Antenna] Gain (dBi)	Power Density at 20cm (mW/ cm ²⁾	Max. EIRP (W)
0.2			2.1E-4	0.001

For RF module, made by Rigado LLC, BT Module, Model # BMD-350. (FCC ID:2AA9B05, IC:12208A-05). Worst case MPE per report #CGZ3161014-01896-EFI:

Power Density Limit (mW/cm ²)	Output Power (dBm)	Antenna] Gain (dBi)	Power Density at 20cm (mW/ cm ²⁾	Max. EIRP (W)
1.0	-3.87	1.0	1.0E-4	0.0005

Thus, co-location calculations:

 Σ MPE = 2.1E-4 *mW/cm*²+ 1.0E-4 *mW/cm*² = 3.1E-4 *mW/cm*² which is less than the limit 1.0 *mW/cm*²

Additionally,

 Σ SeqnSlimn=Seq1Slim1+Seq2Slim2 ≤ 1

Herein $\Sigma_{SeqnSlimn} = 2.1E - 4/0.2 + 1.0E - 4/1.0 = 2.05E - 4 \le 1$