Maximum Public Exposure to RF (MPE) CFR 15.247 (i), CFR 1.1310 (e)

The maximum exposure level to the public from the RF power of the EUT shall not exceed a power density, **S** as per the respective limits in Table 1 below, at a distance, d, of 20 cm from the EUT.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

f = frequency in MHz * = Plane-wave equivalent power density

Therefore, for:

MPE for 2400 MHz – 2483.5 MHz

Limit: 1 mW/cm² Peak Power (dBm) = 21.2 dBm Peak Power (Watts) = 0.132 W Gain of Transmit Antenna = 2.8 dB_i = 1.91, numeric d = Distance = 20 cm = 0.2 m

> **S** = (**PG**/ $4\pi d^2$) = EIRP/4A = 0.132*(1.91)/4* π *0.2*0.2 =0.2515/0.5030 = 0.5000 W/m² = (0.5000 W/m²) (1m²/W) (0.1 mW/cm²) = 0.05000 mW/cm²

which is << less than S = 1 mW/cm²

Therefore, for:

MPE for 4410.5 MHz (UWB Radio #1)

Limit: 1 mW/cm² Peak Power (dBuV/m) = 72.89 dBuV/m @ 3 Peak Power (dBm) = 72.89 dBuV/m + 20 log(3) – 104.8 = -22.31 dBm Peak Power (Watts) = 0.000006 W Gain of Transmit Antenna = 2.7 dB_i = 1.86, numeric d = Distance = 20 cm = 0.2 m

S = (**PG**/ $4\pi d^2$) = EIRP/4A = 0.006*(1.86)/4* π *0.2*0.2 =0.0110/0.5030 = 0.0218 W/m² = (0.0218 W/m²) (1m²/W) (0.1 mW/cm²) = 0.00218 mW/cm²

which is << less than S = 1 mW/cm²

MPE for 4410.5 MHz (UWB Radio #2)

Limit: 1 mW/cm² Peak Power (dBuV/m) = 72.89 dBuV/m @ 3 Peak Power (dBm) = 72.89 dBuV/m + 20 log(3) – 104.8 = -22.31 dBm Peak Power (Watts) = 0.000006 W Gain of Transmit Antenna = 2.7 dB_i = 1.86, numeric d = Distance = 20 cm = 0.2 m

S = (**PG**/ $4\pi d^2$) = EIRP/4A = 0.006*(1.86)/4* π *0.2*0.2 =0.0110/0.5030 = 0.0218 W/m² = (0.0218 W/m²) (1m²/W) (0.1 mW/cm²) = 0.00218 mW/cm²

which is << less than S = 1 mW/cm²

Summation:

 $0.00218 \text{ mW/cm}^2 + 0.00218 \text{ mW/cm}^2 = 0.0435 \text{ mW/cm}^2$

which is << less than S = 1 mW/cm²