FCC TEST REPORT

Test report
On Behalf of
Shenzhen Itian Technology Co.,LTD
For
Wireless Charger
Model No.: M5, M6
FCC ID: 2AUDO-M5

Prepared for: Shenzhen Itian Technology Co.,LTD
5F,Bld. C, Hongde Ind. Park, Shiguan, Lianrun Rd.Dalang St., Longhua District Shenzhen, China

Prepared By : Shenzhen HUAK Testing Technology Co., Ltd.
1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

TEST RESULT CERTIFICATION

Testing Engineer: Gary Dian $\frac{\text { (Gary Dian) }}{\text { : }}$

Technical Manager: Eden tHu
(Eden Mu)
Authorized Signatory :

Table of Contents

Page

1. TEST SUMMARY 5
1.1 TEST PROCEDURES AND RESULTS 5
1.2 TEST FACILITY 5
1.3 MEASUREMENT UNCERTAINTY 5
2. GENERAL INFORMATION 6
2.1 General Description of EUT 6
2.3 Operation of EUT during testing 7
2.4 Description of Test Setup 7
3.1 Block Diagram of Test Setup 9
3.2 Conducted Power Line Emission Limit 9
3.3 Test Procedure 9
3. Occupied Bandwidth 12
4.1 Block Diagram of Test Setup 12
4.2 Rules and specifications 12
4.3 Test Procedure 12
4.4 Test Result 13
4. RADIA TED EMISSIONS 14
5.1 Block Diagram of Test Setup 14
5.2 Rules and specifications 15
5.3 Test Procedure 16
5.4 Test Result 16
5. ANTENNA REQUIREMENT 19
6. PHOTOGRAPH OF TEST 20
7.1 Radiated Emission 20
7. PHOTOS OF THE EUT 22

** Modifited History **

Revison	Description	Issued Data	Remark
Revsion 1.0	Initial Test Report Release	Dec. 14, 2020	Jason Zhou

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST	section number	RESULT
CONDUCTED EMISSIONS TEST	15.207	COMPLIANT
RADIATED EMISSION TEST	15.209	COMPLIANT
OCCUPIED BANDWIDTH	15.215	COMPLIANT
MEASUREMENT	15.203	
ANTENNA REQUIREMENT		COMPLIANT

Note:

1. PASS: Test item meets the requirement.
2. Fail: Test item does not meet the requirement.
3. N/A: Test case does not apply to the test object.
4. The test result judgment is decided by the limit of test standard.

1.2 TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty
Conducted Emission Expanded Uncertainty $=2.71 \mathrm{~dB}, \mathrm{k}=2$
Radiated emission expanded uncertainty $(9 \mathrm{kHz}-30 \mathrm{MHz})=4.26 \mathrm{~dB}, \mathrm{k}=2$
Radiated emission expanded uncertainty $(30 \mathrm{MHz}-1000 \mathrm{MHz})=3.90 \mathrm{~dB}, \mathrm{k}=2$
Radiated emission expanded uncertainty(Above 1 GHz) $=4.28 \mathrm{~dB}, \mathrm{k}=2$

2. GENERAL INFORMATION

2.1 General Description of EUT

Equipment	Wireless Charger
Model Name	M5
Serial No.	M6
Model Difference	All model's the function, software and electric circuit are the same, only with a product model named different. Test sample model: M5
Trade Mark	N/A
FCC ID	2AUDO-M5
Antenna Type	Coil Antenna
Antenna Gain	$0 d B i$
Operation frequency	125 KHz
Number of Channels	1
Modulation Type	ASK
Power Source	Input: $5 \mathrm{~V} / 2 \mathrm{~A}, 9 \mathrm{~V} / 1.67 \mathrm{~A}, 12 \mathrm{~V} / 1.5 \mathrm{~A}$ Output: $5 \mathrm{~V} / 1.0 \mathrm{~A}, 9 \mathrm{~V} / 1.2 \mathrm{~A}$
Power Rating	Input: $5 \mathrm{~V} / 2 \mathrm{~A}, 9 \mathrm{~V} / 1.67 \mathrm{~A}, 12 \mathrm{~V} / 1.5 \mathrm{~A}$ Output: $5 \mathrm{~V} / 1.0 \mathrm{~A}, 9 \mathrm{~V} / 1.2 \mathrm{~A}$

2.2. Carrier Frequency of Channels

Operation Frequency each of channel	
Channel	Frequency
1	125 KHz

2.3 Operation of EUT during testing
 Operating Mode
 The mode is used: Transmitting mode

2.4 Description of Test Setup

Operation of EUT during testing:

Adapter information
Model: HW-059200CHQ
Input: 100-240V, $50-60 \mathrm{~Hz}, 0.5 \mathrm{~A}$
Output: 5VDC, 2A
Mobile phone information
Model: Samsung S6

The sample was placed ($0.8 \mathrm{~m}(30 \mathrm{MHz} \sim 1 \mathrm{GHz}), 0.8 \mathrm{~m}$ above the ground plane of 3 m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis ($\mathrm{X}, \mathrm{Y} \& \mathrm{Z}$) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1 m to 4 m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.
2.5 Measurement Instruments List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R\&S	ENV216	HKE-002	Jun. 18, 2020	1 Year
2.	Receiver	R\&S	ESCI 7	HKE-010	Jun. 18, 2020	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Jun. 18, 2020	1 Year
4.	Spectrum analyzer	R\&S	FSP40	HKE-025	Jun. 18, 2020	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Jun. 18, 2020	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Jun. 18, 2020	1 Year
7.	EMI Test Receiver	Rohde \& Schwarz	ESCI 7	HKE-010	Jun. 18, 2020	1 Year
8.	Bilog Broadband	Schwarzbeck	VULB9163	HKE-012	Jun. 18, 2020	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519	HKE-014	Jun. 18, 2020	1 Year
10.	Horn Antenna	Schewarzbeck	$9120 D$	HKE-013	Jun. 18, 2020	1 Year
11.	Pre-amplifier	EMCI	EMC051845	HKE-015	Jun. 18, 2020	1 Year
12.	Pre-amplifier	Agilent	$83051 A$	HKE-016	Jun. 18, 2020	1 Year
13.	EMI Test Software	Tonscend	JS1120-B Version	HKE-083	Jun. 18, 2020	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Jun. 18, 2020	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Jun. 18, 2020	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Jun. 18, 2020	1 Year
17.	Signal Generator	Agilent	$83630 A$	HKE-028	Jun. 18, 2020	1 Year
18.	Shielded room	Shiel Hong	$4 * 3 * 3$	HKE-039	Dec. 28, 2017	3 Year

3. CONDUCTED EMISSION TEST

3.1 Block Diagram of Test Setup

3.2 Conducted Power Line Emission Limit

According to FCC Part 15.207(a)

Frequency (MHz)	Maximum RF Line Voltage (dB $\mu \mathrm{V})$			
	CLASS A		CLASS B	
	Q.P.	Ave.	Q.P.	Ave.
$0.15-0.50$	79	66	$66-56^{*}$	$56-46^{*}$
$0.50-5.00$	73	60	56	46
$5.00-30.0$	73	60	60	50

* Decreasing linearly with the logarithm of the frequency

For intentional device, according to $\$ 15.207$ Line Conducted Emission Limit is same as above table.

3.3 Test Procedure

1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
2, Support equipment, if needed, was placed as per ANSI C63.10.
3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
5, All support equipments received AC power from a second LISN, if any.
6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
7, Analyzer / Receiver scanned from 150 KHz to 30 MHz for emissions in each of the test modes

Page 10 of 22

3.4 Test Result

PASS
All the test modes completed for test. only the worst result was reported as below:
Test Specification: Line

- QP Detector

AV Detector

Suspected List								
NO.	Freq. $[\mathrm{MHz}]$	Level $[\mathrm{dB} \mu \mathrm{V}]$	Factor $[\mathrm{dB}]$	Limit $[\mathrm{dB} \mu \mathrm{V}]$	Margin $[\mathrm{dB}]$	Reading $[\mathrm{dB} \mu \mathrm{V}]$	Detector	Type
1	0.2085	56.73	20.04	63.26	6.53	36.69	PK	L
2	0.2760	53.15	20.04	60.94	7.79	33.11	PK	L
3	0.3570	49.56	20.03	58.80	9.24	29.53	PK	L
4	1.1175	45.04	20.08	56.00	10.96	24.96	PK	L
5	4.4160	43.64	20.25	56.00	12.36	23.39	PK	L
6	8.8305	46.93	20.11	60.00	13.07	26.82	PK	L

Final Data List

NO.	Freq. [MHz]	Correction factor[dB]	QP Value [$\mathrm{dB} \mu \mathrm{V}$]	$\begin{gathered} \text { QP } \\ \text { Limit } \\ {[\mathrm{dB} \mu \mathrm{~V}]} \\ \hline \end{gathered}$	QP Margin [dB]	QP Reading [$\mathrm{dB} \mu \mathrm{V}$]	AV Value [$\mathrm{dB} \mu \mathrm{V}$]	$\begin{gathered} \text { AV } \\ \text { Limit } \\ {[\mathrm{dB} \mu \mathrm{~V}]} \\ \hline \end{gathered}$	AV Margin [dB]	AV Reading [$\mathrm{dB} \mu \mathrm{V}$]	Type
1	0.2064	20.04	44.31	63.35	19.04	24.27	36.48	53.35	16.87	16.44	L
2	0.2754	20.04	41.85	60.95	19.10	21.81	24.81	50.95	26.14	4.77	L
3	0.3606	20.04	38.65	58.72	20.07	18.61	22.49	48.72	26.23	2.45	L
4	1.1264	20.08	36.33	56.00	19.67	16.25	23.14	46.00	22.86	3.06	L

Remark: Margin $=$ Limit - Level
Correction factor $=$ Cable lose + LISN insertion loss
Level=Test receiver reading + correction factor

Test Specification: Neutral

Final Data List

NO.	Freq. [MHz]	Correction factor[dB]	QP Value [$\mathrm{dB} \mu \mathrm{V}$]	$\begin{gathered} \text { QP } \\ \text { Limit } \\ {[\mathrm{dB} \mu \mathrm{~V}]} \\ \hline \end{gathered}$	QP Margin [dB]	QP Reading [$\mathrm{dB} \mu \mathrm{V}$]	AV Value [$\mathrm{dB} \mu \mathrm{V}$]	$\begin{gathered} \text { AV } \\ \text { Limit } \\ {[\mathrm{dB} \mu \mathrm{~V}]} \\ \hline \end{gathered}$	AV Margin [dB]	AV Reading [dB $\mu \mathrm{V}$]	Type
1	0.9691	20.06	44.61	56.00	11.39	24.55	30.37	46.00	15.63	10.31	N
2	1.3447	20.10	37.34	56.00	18.66	17.24	25.06	46.00	20.94	4.96	N
3	3.2776	20.24	39.95	56.00	16.05	19.71	22.93	46.00	23.07	2.69	N

Remark: Margin $=$ Limit - Level
Correction factor $=$ Cable lose + LISN insertion loss
Level=Test receiver reading + correction factor

4. Occupied Bandwidth

4.1 Block Diagram of Test Setup

4.2 Rules and specifications

CFR 47 Part 15.215(c)
ANSI C63.10-2013

4.3 Test Procedure

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in $\S \S 15.217$ through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20 dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.

4.4 Test Result
 PASS

Mode	Freq (KHz)	20dB Bandwidth (KHz)	Limit (kHz)	Conclusion
Tx Mode	125	2.850	$/$	PASS

5. RADIA TED EMISSIONS

5.1 Block Diagram of Test Setup

5.2 Rules and specifications

CFR 47 Part 15, section 15.205
Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections.

MHz	MHz	MHz	GHz
$0.090-0.110$	$16.42-16.423$	$399.9-410$	$4.5-5.15$
$\backslash 1 \backslash 0.495-0.505$	$16.69475-16.69525$	$608-614$	$5.35-5.46$
$2.1735-2.1905$	$16.80425-16.80475$	$960-1240$	$7.25-7.75$
$4.125-4.128$	$25.5-25.67$	$1300-1427$	$8.025-8.5$
$4.17725-4.17775$	$37.5-38.25$	$1435-1626.5$	$9.0-9.2$
$4.20725-4.20775$	$73-74.6$	$1645.5-1646.5$	$9.3-9.5$
$6.215-6.218$	$74.8-75.2$	$1660-1710$	$10.6-12.7$
$6.26775-6.26825$	$108-121.94$	$1718.8-1722.2$	$13.25-13.4$
$6.31175-6.31225$	$123-138$	$2200-2300$	$14.47-14.5$
$8.291-8.294$	$149.9-150.05$	$2310-2390$	$15.35-16.2$
$8.362-8.366$	$156.52475-156.52525$	$2483.5-2500$	$17.7-21.4$
$8.37625-8.38675$	$156.7-156.9$	$2690-2900$	$22.01-23.12$
$8.41425-8.41475$	$162.0125-167.17$	$3260-3267$	$23.6-24.0$
$12.29-12.293$.	$167.72-173.2$	$3332-3339$	$31.2-31.8$
$12.51975-12.52025$	$240-285$	$3345.8-3358$	$36.43-36.5$
$12.57675-12.57725$	$322-335.4$	$3600-4400$	(121)
$13.36-13.41$			

CFR 47 Part 15, section 15.209
The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector

Frequency $(M H z)$	Field strength (microvolts/meter)	Measurement distance (meters)
$0.009-0.490$	$2400 / F(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / F(\mathrm{kHz})$	30
$1.705-30.0$	30	$100^{* *}$
$30-88$	$150^{* *}$	30
$88-216$	$200^{* *}$	3
$216-960$	500	3
$A b 0 v e 960$		3

Limit calculation and transfer to 3 m distance as showed in the following table:

Frequency $(\mathbf{M H z})$	Limit $(\mathbf{d B u V} / \mathbf{m})$	Distance (\mathbf{m})
$0.009-0.490$	$20 \log (2400 / \mathrm{F}(\mathrm{KHz}))+40 \log (300 / 3)$	3
$0.490-1.705$	$20 \log (24000 / \mathrm{F}(\mathrm{KHz}))+40 \log (30 / 3)$	3
$1.705-30.0$	69.5	3
$30-88$	40.0	3
$88-216$	43.5	3
$216-960$	46.0	3
Above 960	54.0	3

CFR 47 Part 15, section 15.35
When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20 dB above the maximum permitted average emission limit.

Transmitter Spurious Emissions 9KHz-30MHz			
	$9-150 \mathrm{KHz}$	$150-490 \mathrm{KHz}$	$490 \mathrm{KHz}-30 \mathrm{MHz}$
Resolution Bandwidth	200 Hz	9 KHz	9 KHz
Video Bandwidth	600 Hz	30 KHz	30 KHz
Detector	Peak	Peak	Peak
Trace Mode	Max Hold	Max Hold	Max Hold
Sweep Time	Auto	Auto	Auto

5.3 Test Procedure

Measurement distance 3 m

For the measurement range up to 30 MHz in the following plots the field strength result from 3 m
Distance measurement are extrapolated to 300 m and 30 m distance respectively, by $40 \mathrm{~dB} / \mathrm{decade}$, According to part 15.31(f)(2), per antenna factor scaling.
Measurements below 1000 MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.
Note:
For battery operated equipment, the equipment tests shall be performed using a new battery.

5.4 Test Result

PASS

Note: this EUT was tested for all models and the worst case model (DC5V) data was reported.

For $9 \mathrm{KHz}-30 \mathrm{MHz}$

Freq. (MHz)	Detector Mode (PK/QP/AV)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m) $)$	Margin (dBuV/m)
0.110	AV	22.75	24.8	47.55	106.78	59.23
0.125	AV	45.26	24.8	70.06	105.67	35.61
0.486	AV	26.07	25.03	51.1	93.87	42.77
0.500	Peak	27.15	25.03	52.18	73.62	21.44

For $30 \mathrm{MHz}-1 \mathrm{GHz}$

Antenna polarity: H

Suspected List									
NO.	Freq. $[\mathrm{MHz}]$	Factor $[\mathrm{dB}]$	Reading $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$	Level $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$	Limit $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Height $[\mathrm{cm}]$	Angle $\left[{ }^{\circ}\right]$	Polarity
1	160.1101	-18.21	43.53	25.32	43.50	18.18	100	47	Horizontal
2	193.1231	-15.71	39.57	23.86	43.50	19.64	100	243	Horizontal
3	249.4394	-13.42	39.33	25.91	46.00	20.09	100	269	Horizontal
4	291.1912	-12.83	39.58	26.75	46.00	19.25	100	95	Horizontal
5	371.7818	-10.97	35.50	24.53	46.00	21.47	100	76	Horizontal
6	681.5215	-4.93	29.69	24.76	46.00	21.24	100	50	Horizontal

Remark: Factor $=$ Cable loss + Antenna factor - Preamplifier; Level $=$ Reading + Factor; Margin $=$ Limit - Level;

Antenna polarity: V

Suspected List

NO.	Freq. $[\mathrm{MHz}]$	Factor $[\mathrm{dB}]$	Reading $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$	Level $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$	Limit $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$	Margin $[\mathrm{dB}]$	Height $[\mathrm{cm}]$	Angle $\left[{ }^{\circ}\right]$	Polarity
1	58.1582	-14.88	41.26	26.38	40.00	13.62	100	175	Vertical
2	65.9259	-16.65	42.29	25.64	40.00	14.36	100	133	Vertical
3	89.2292	-17.25	46.53	29.28	43.50	14.22	100	30	Vertical
4	161.0811	-18.12	48.06	29.94	43.50	13.56	100	200	Vertical
5	192.1522	-15.81	42.43	26.62	43.50	16.88	100	159	Vertical
6	251.3814	-13.41	41.51	28.10	46.00	17.90	100	303	Vertical

Remark: Factor $=$ Cable loss + Antenna factor - Preamplifier; Level $=$ Reading + Factor; Margin $=$ Limit - Level;

6. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Coil Antenna which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 0 dBi .

7. PHOTOGRAPH OF TEST

7.1 Radiated Emission

8. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

