

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202305-0271-191

Page: 1 of 25

Radio Test Report

FCC ID: 2AUDF-CG62X

Change II

Report No. TBR-C-202305-0271-191

Applicant Shenzhen ADDX Innovation Technology co., LTD.

Equipment Under Test (EUT)

EUT Name Smart Battery Camera

Model No. CG6

Series Model No. CG3A

Brand Name

Sample ID RW-C-202305-0271-11-1#&RW-C-202305-0271-11-2#

Receipt Date 2023-05-25

Test Date 2023-05-25 to 2023-06-09

Issue Date 2023-06-09

Standards FCC Part 15 Subpart C 15.247

Test Method ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer

Engineer Supervisor

LNAN SV foughai. **Engineer Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202305-0271-191 Page: 2 of 25

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST SOFTWARE	9
4.	TEST EQUIPMENT	10
5.	CONDUCTED EMISSION TEST	12
1	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	13
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	15
	6.3 Test Procedure	16
	6.4 Deviation From Test Standard	16
	6.5 EUT Operating Mode	16
	6.6 Test Data	17
ΑТТ	FACHMENT A CONDUCTED EMISSION TEST DATA	18
АТТ	FACHMENT BUNWANTED EMISSIONS DATA	22

Report No.: TBR-C-202305-0271-191 Page: 3 of 25

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202305-0271-191	Rev.01	Initial issue of report	2023-06-09
(103)	Ellin		4031
	THE REAL PROPERTY.		033
		33	S Division
1001	033		1001
	The same		
	TOTAL STATE		(10)
UNI LUI			
	All Division of the Control of the C	000	
	may w		
	000		

Page: 4 of 25

1. General Information about EUT

1.1 Client Information

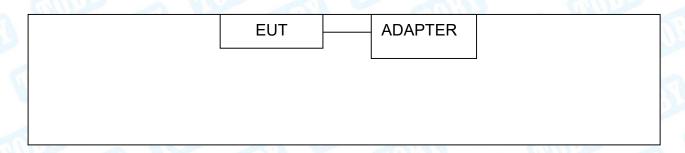
Applicant : Shenzhen ADDX Innovation Technology co., LTD.		
Address	Address : NO. 2902, Building 9A-1. Shenzhen Bay Technology and Ecological Park, Nanshan District, Shenzhen, China	
Manufacturer : Shenzhen ADDX Innovation Technology co.,		Shenzhen ADDX Innovation Technology co., LTD.
Address : NO. 2902, Building 9A-1		NO. 2902, Building 9A-1. Shenzhen Bay Technology and Ecological Park, Nanshan District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

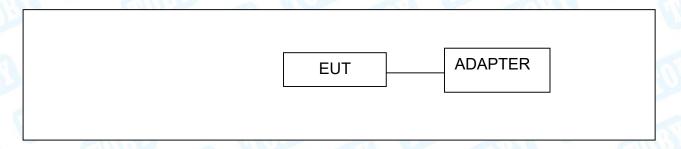
):	Smart Battery Camera				
÷	CG6, CG3A				
	All these models are identical in the same PCB, layout and electrical circuit, the only difference is appearance.				
N	Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz			
	Number of Channel:	802.11b/g/n(HT20):11 channels			
	Antenna Gain:	-2.48dBi Internal Antenna			
	Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n:OFDM(BPSK,QPSK,16QAM,6 QAM)			
	Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps			
:					
	V0.6.1 CG623B_C02_V2				
i					
		: CG6, CG3A : All these models are idelectrical circuit, the or Operation Frequency: Number of Channel: Antenna Gain: : Modulation Type: Bit Rate of Transmitter: : Input: DC 5V DC 3.7V by 5000mAh DC 3.7V by 5200mAh : V0.6.1			

Remark:

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.


Report No.: TBR-C-202305-0271-191 Page: 5 of 25

(4) Channel List:


Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
01	2412	05	2432	09	2452		
02	2417	06	2437	10	2457		
03	2422	07	2442	11	2462		
04	2427	08	2447				
Note: CH 01~CH 11 for 802.11b/g/n(HT20)							

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

Page: 6 of 25

1.4 Description of Support Units

Equipment Information							
Name Model FCC ID/SDOC Manufacturer Used "√"							
Adapter HUAWEI √							
Cable Information							
Number Shielded Type Ferrite Core Length Note							
Cable 1 Yes NO 1.0M Accessory							
Note: The adapter provided by the laboratory.							

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Emission Test						
Final Test Mode Description						
Mode 1	TX b Mode Channel 01					
For Radiated and RF Conducted Test						
Final Test Mode	Final Test Mode Description					
Mode 2	TX Mode b Mode Channel 01/06/11					
Mode 3	TX Mode g Mode Channel 01/06/11					
Mode 4 TX Mode n(HT20) Mode Channel 01/06/11						

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK 802.11g Mode: OFDM

802.11n (HT20) Mode: MCS 0

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 7 of 25

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software: SecureCRT.exe							
Test Mode: Continuously transmitting							
Mode	Data Rate	Channel	Parameters				
	CCK/ 1Mbps	01	DEF				
802.11b	CCK/ 1Mbps	06	DEF				
0.572	CCK/ 1Mbps	11	DEF				
	OFDM/ 6Mbps	01	DEF				
802.11g	OFDM/ 6Mbps	06	DEF				
	OFDM/ 6Mbps	11	DEF				
COUNTY OF	MCS 0	01	DEF				
302.11n(HT20)	MCS 0	06	DEF				
	MCS 0	11	DEF				

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 25

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Page: 9 of 25

2. Test Summary

Standard Section	Test Item	Test Sample(s)	Judgment	Remark
FCC	rest item	rest Sample(s)	Judgment	Remark
FCC 15.207(a)	Conducted Emission	RW-C-202305-0271-11-1#	PASS	N/A
CC 15.209 & 15.247(d)	Radiated Unwanted Emissions	RW-C-202305-0271-11-1#	PASS	N/A
FCC 15.203	Antenna Requirement	1083	N/A	N/A
FCC 15.247(a)(2)	6dB Bandwidth		N/A	N/A
	99% Occupied bandwidth	Om I (Eg)	N/A	N/A
FCC 15.247(b)(3)	Peak Output Power and E.I.R.P		N/A	N/A
FCC 15.247(e)	Power Spectral Density	1 1	N/A	N/A
FCC 15.247(d)	Band Edge Measurements		N/A	N/A
FCC 15.207	Conducted Unwanted Emissions	1	N/A	N/A
FCC 15.247(d)	Emissions in Restricted Bands	1	N/A	N/A
	On Time and Duty Cycle		1	N/A

Note:

- (1) N/A is an abbreviation for Not Applicable.
- (2) This report is Class II change report for the original equipment have changed, the transmitter module itself has not changed. More information about the test data please refer to the original test report.
- (3) As there is no change regard RF transmitter portion and Antenna assembly, the change will not have effect on Radiated emission above 1GHz by judging for experience, thus testing is performed up to 1GHz only.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

Report No.: TBR-C-202305-0271-191 Page: 10 of 25

4. Test Equipment

Conducted Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	NTFM 8131	8131-193	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	CAT3 8158	cat3 5158-0094	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	NTFM5158	NTFM5158 0145	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	CAT 8158	cat5 8158-179	Jun. 22, 2022	Jun. 21, 2023
Radiation Emission	n Test (A Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jun. 23, 2022	Jun. 22, 2023
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb.26, 2024
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Feb. 26, 2022	Feb.25, 2024
Pre-amplifier	SONOMA	310N	185903	Feb. 23, 2023	Feb.22, 2024
Pre-amplifier	HP	8449B	3008A00849	Feb. 23, 2023	Feb.22, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023
Radiation Emission	n Test (B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023

Report No.: TBR-C-202305-0271-191 Page: 11 of 25

Antenna Conducted I	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 23, 2022	Jun. 22, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 01, 2022	Aug. 31, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	KEYSIGT	N5182B	MY59101429	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Dec. 15, 2022	Dec. 14, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 01, 2022	Aug. 31, 2023
DE D 0	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 01, 2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 01, 2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 01, 2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 01, 2022	Aug. 31, 2023
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 23, 2022	Jun. 22, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep. 01, 2022	Aug. 31, 2023
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Jun. 23, 2022	Jun. 22, 2023
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 22, 2022	Jun. 21, 2023

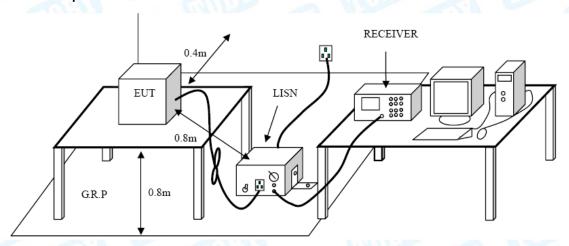
Page: 12 of 25

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- ●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 13 of 25

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 14 of 25

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz					
Frequency (MHz)	Field Strength (microvolt/meter)**	Measurement Distance (meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			

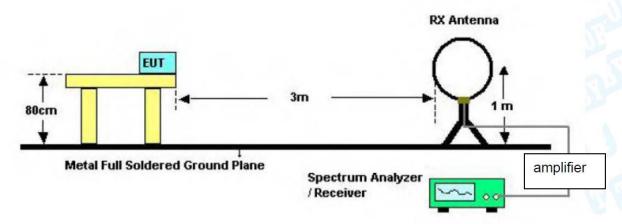
Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

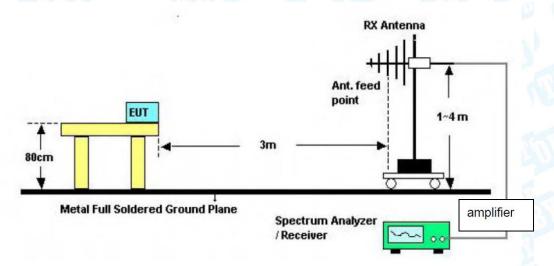
General field strength limits at frequencies above 30 MHz							
Frequency	Field strength	Measurement Distance					
(MHz)	(µV/m at 3 m)	(meters)					
30~88	100	3					
88~216	150	3					
216~960	200	3					
Above 960	500	3					

General field strength limits at frequencies Above 1000MHz					
Distance of 3m (dBuV/m)					
Peak	Average				
74	54				
	Distance of S				

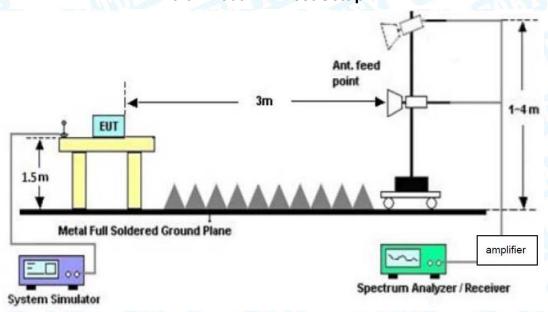
Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

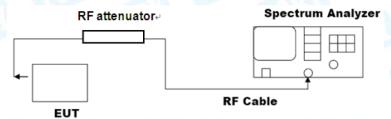

Page: 15 of 25

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Page: 16 of 25

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

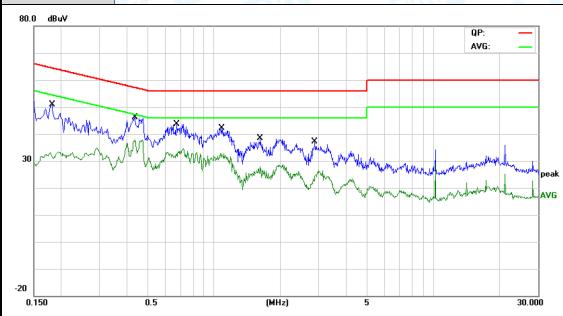
6.5 EUT Operating Mode

Please refer to the description of test mode.

Report No.: TBR-C-202305-0271-191 Page: 17 of 25

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.



Page: 18 of 25

Attachment A-- Conducted Emission Test Data

Temperature:	24.5℃	Relative Humidity:	45%
Test Voltage:	AC 120V/60Hz		mus s
Terminal:	Line	The same of the sa	
Test Mode:	Mode 1(FXN Battery)	COUNTY OF	
Remark:	Only worse case is reporte	ed.	

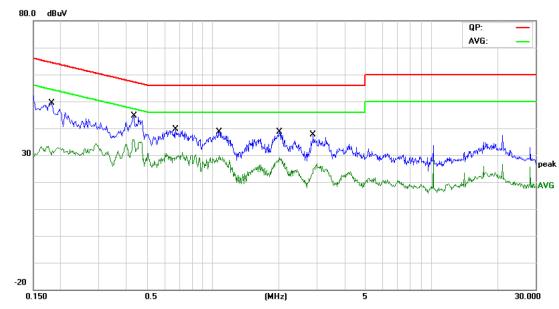
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1819	26.63	11.04	37.67	64.39	-26.72	QP
2	0.1819	18.33	11.04	29.37	54.39	-25.02	AVG
3	0.4340	30.44	10.91	41.35	57.18	-15.83	QP
4 *	0.4340	25.78	10.91	36.69	47.18	-10.49	AVG
5	0.6740	24.72	10.89	35.61	56.00	-20.39	QP
6	0.6740	19.53	10.89	30.42	46.00	-15.58	AVG
7	1.0859	25.78	10.67	36.45	56.00	-19.55	QP
8	1.0859	20.37	10.67	31.04	46.00	-14.96	AVG
9	1.6220	22.16	10.56	32.72	56.00	-23.28	QP
10	1.6220	16.50	10.56	27.06	46.00	-18.94	AVG
11	2.8820	20.84	10.23	31.07	56.00	-24.93	QP
12	2.8820	14.35	10.23	24.58	46.00	-21.42	AVG

Remark

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TBR-C-202305-0271-191 Page: 19 of 25

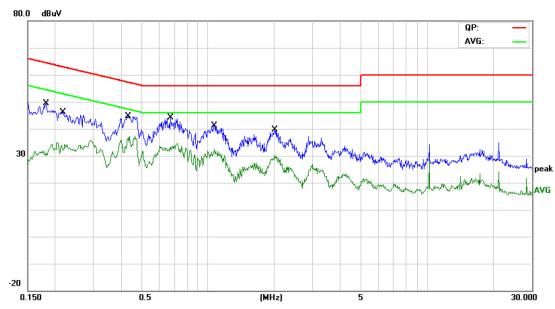
Temperature:	: 24.5 ℃		a W	Relative H	umidity:	45%	
Test Voltage:		20V/60Hz		THIS THE	11/2		Allo
Terminal:	Neutra	al		11 6	6	MB	
Test Mode:	Mode	1(FXN Batt	tery)		J 6		
Remark:	Only v	vorse case	is reported	. 61110			THU .
30.0 dBuV		MAN	White the same	Application of the state of the		QP AV	
-20 0.150	0.5	Reading	(MHz)	5 Measure-			30.000
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1819	26.98	11.04	38.02	64.39	-26.37	QP
2	0.1819	18.48	11.04	29.52	54.39	-24.87	AVG
3	0.4340	30.30	10.91	41.21	57.18	-15.97	QP
4 *	0.4340	25.46	10.91	36.37	47.18	-10.81	AVG
5	0.6740	24.79	10.89	35.68	56.00	-20.32	QP
6	0.6740	19.55	10.89	30.44	46.00	-15.56	AVG
7	1.0700	25.95	10.67	36.62	56.00	-19.38	QP
8	1.0700	20.78	10.67	31.45	46.00	-14.55	AVG
9	1.6220	21.98	10.56	32.54	56.00	-23.46	QP
10	1.6220	16.54	10.56	27.10	46.00	-18.90	AVG
11	2.0500	24.85	10.47	35.32	56.00	-20.68	QP
12	2.0500	19.32	10.47	29.79	46.00	-16.21	AVG


- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TBR-C-202305-0271-191 Page: 20 of 25

Temperature:	24.5℃ Relative Humidity: 45%
Test Voltage:	AC 120V/60Hz
Terminal:	Line
Test Mode:	Mode 1(PX Battery)
Remark:	Only worse case is reported.

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1819	27.31	11.04	38.35	64.39	-26.04	QP
2	0.1819	18.29	11.04	29.33	54.39	-25.06	AVG
3	0.4340	29.93	10.91	40.84	57.18	-16.34	QP
4 *	0.4340	25.47	10.91	36.38	47.18	-10.80	AVG
5	0.6740	24.69	10.89	35.58	56.00	-20.42	QP
6	0.6740	19.54	10.89	30.43	46.00	-15.57	AVG
7	1.0700	26.06	10.67	36.73	56.00	-19.27	QP
8	1.0700	20.77	10.67	31.44	46.00	-14.56	AVG
9	2.0220	24.44	10.48	34.92	56.00	-21.08	QP
10	2.0220	19.09	10.48	29.57	46.00	-16.43	AVG
11	2.8820	20.64	10.23	30.87	56.00	-25.13	QP
12	2.8820	14.37	10.23	24.60	46.00	-21.40	AVG


- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TBR-C-202305-0271-191 Page: 21 of 25

Temperature:	24.5℃	Relative Humidity:	45%			
Test Voltage:	AC 120V/60Hz					
Terminal:	Neutral					
Test Mode:	Mode 1(PX Battery)					
Remark:	Only worse case is reported	. (1)	a library			

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1819	27.66	11.04	38.70	64.39	-25.69	QP
2	0.1819	18.35	11.04	29.39	54.39	-25.00	AVG
3	0.2180	24.80	10.97	35.77	62.89	-27.12	QP
4	0.2180	17.49	10.97	28.46	52.89	-24.43	AVG
5	0.4305	29.53	10.91	40.44	57.24	-16.80	QP
6 *	0.4305	24.70	10.91	35.61	47.24	-11.63	AVG
7	0.6740	24.85	10.89	35.74	56.00	-20.26	QP
8	0.6740	19.74	10.89	30.63	46.00	-15.37	AVG
9	1.0700	25.97	10.67	36.64	56.00	-19.36	QP
10	1.0700	20.71	10.67	31.38	46.00	-14.62	AVG
11	2.0220	24.32	10.48	34.80	56.00	-21.20	QP
12	2.0220	18.85	10.48	29.33	46.00	-16.67	AVG

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 22 of 25

Attachment B--Unwanted Emissions Data

---Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

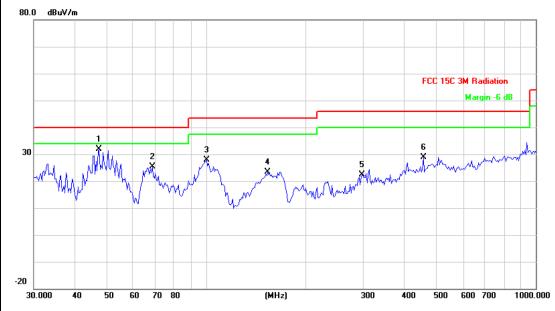
Below the permissible value has no need to be reported.

30MHz~1GHz

Ten	nperat	ure:		23.5	$^{\circ}$ C	-					Relati	ive H	lum	idit	y:	46	3%		7	
Tes	t Volta		AC 120V/60Hz																	
Ant. Pol.				Horizontal																
Tes	t Mod	e:		Mode 2 TX Mode b Mode Channel 01(FXN Battery)																
Ren	nark:			Only	wc	rse	ca	se is	repor	rted.	ATT	1	10			M	M	36		
80.0) dBuV	/m																		
					+										FC	C 15C	3M Ra	adiatio	n	
																	Mar	gin -6	dB	-[
											+-									
						┰						4								
30											3 7					; {m_m	6 \X.	1-14	a Van	W
							1		2	!		1	Minn	M	yw	ehr-w	h^t v	_		
							X		Ž			1 41000711								
	WANNA TO	الألمال	Li			and plants	Žή	بهالمس		Mayor	Manny	Milhu.	'	W .						
	MANAN		Ly.	deposit de	May	apa para	/ [*] \	N	~ _{\\} \^*\	Mary Mary	Morrowal	Mykku.		W						
	WANTED THE STREET	Mark	L.,().	mundo	MayM	appy proving	<i>γ</i> [∦] Υ		rww [*]	Many Marri	Mond	MAKA		W V .						
	manufa M	www	hyph.	day work	MayM	the same	<i>γ</i> *\	n/m	~\v~ [*]		Mond	Mylin.								
-20		w AM	L _W VIII.	day work	MayM		<i>γ</i> *\	all May	rww [*]		Mayera									
-20	0.000	40	50	60	70	80	<i>γ</i> **\	n May	~ _\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MHz)	Mond	Willia.	300		00	500	600	700	10)00 .
-20	0.000	40	50			80	У ТЪ	ling	Cori		Mea	Willia.	300	4	00			700	10	000.
-20	0.000		50		70	80 Re	У ТЪ		Cor				300		00		600 /er	700	10	000 .
-20	0.000	40	50	60	70	80 Re L	ead	el	Cor	rect ctor	m	asure	300	4	oo it	Ov			10	_
-20	0.000	40	50	60 Freq	70	80 Re L	ead ev	el V	Cor	rect ctor	dBi	nsure ent	300	Lim	oo it v/m	Ov d	/er	De		or
-20	0.000 No.	40	50	Freq MHz	70	80 Re L	ead ev	el V 57	Cori Fac	rect ctor m	dBi	asure ent uV/m	300	Lim dBu	it	Ov d	/er	De	tect	or k
-20	No.	40	94	Freq MHz	70	80 Re	ead ev dBu	el v 57 51	Corr Fac dB/	rect ctor /m .90	18 17	asure ent uV/m	300	Lim	it 50	Ov d -24	/er IB 4.83	De p	tect	or k
-20	No.	40	94 154 240	Freq MHz .760	70	80 Re L	ead Lev dBu	el 57 51 30	Corr Fac dB/ -14.	rect ctor /m .90 .87	18 17 27	asure ent uV/m 3.67 7.64	300	Lim dBu 43.	it //m 50 50 00	Ov d -24 -25	/er IB 4.83 5.86	De p	tecto eal	or k k
-20	No. 1 2 3	40 Mk.	94 154 240 263	Freq MHz .760 4.820	70	80 Re L	ead ev dBu 33.5 31.5	el v 57 51 30 111	Corr Fac dB/ -14. -13.	rect ctor 90 87 51	18 17 27 30	asure ent uV/m 3.67 7.64 7.29	300	Lim dBu 43.	iit 50 50 00 00	Ov d -24 -25 -18	/er IB 4.83 5.86 3.71	De p	tecto eal eal	or k k k

^{*:}Maximum data x:Over limit !:over margin

Remark

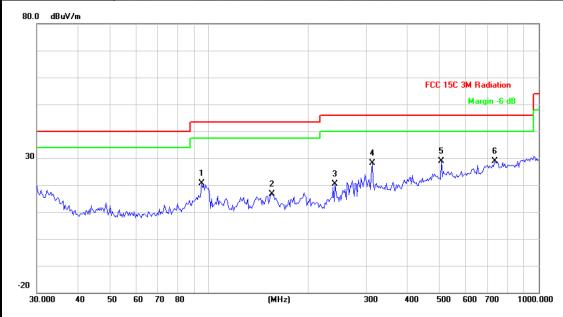

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

23 of 25 Page:

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz	CHILD SE	
Ant. Pol.	Vertical		
Test Mode:	Mode 2 TX Mode b Mode	Channel 01(FXN Battery	')
Remark:	Only worse case is reported	ed.	

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	47.3255	48.59	-16.62	31.97	40.00	-8.03	peak
2		68.6310	41.65	-16.22	25.43	40.00	-14.57	peak
3		100.2286	42.74	-14.95	27.79	43.50	-15.71	peak
4		153.7385	37.22	-13.91	23.31	43.50	-20.19	peak
5		297.2241	30.34	-7.95	22.39	46.00	-23.61	peak
6		455.9058	33.18	-4.41	28.77	46.00	-17.23	peak

^{*:}Maximum data x:Over limit !:over margin


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

24 of 25 Page:

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal	CHO.	
Test Mode:	Mode 2 TX Mode b Mode	Channel 01(PX Battery)	
Remark:	Only worse case is reporte	ed.	CEIDS

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		94.7601	35.42	-14.90	20.52	43.50	-22.98	peak
2		154.8204	30.62	-13.87	16.75	43.50	-26.75	peak
3		240.8304	31.80	-11.51	20.29	46.00	-25.71	peak
4		312.1794	35.78	-7.73	28.05	46.00	-17.95	peak
5		506.4791	32.65	-3.85	28.80	46.00	-17.20	peak
6	*	734.4913	28.36	0.64	29.00	46.00	-17.00	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

43.50

43.50

46.00

46.00

28.14

23.19

26.90

32.83

-15.36

-20.31

-19.10

-13.17

peak

peak

peak

peak

Temperature:					3.5	$^{\circ}$ C				R	4	46%							
Гes	t Volt	age:		AC 120V/60Hz															
٩nt	. Pol.			٧	Vertical														
Test Mode: Mode 2 TX Mode b Mode Channel 01(PX Battery)																			
Rer	nark:			С	Only worse case is reported.														
80.0) dBuV	//m																	
													F	CC 15	C 3M R	adiatio	n		
			+												Mai	gin -6	dB		
							Ш											4	
30			1 X				٢	3				5		6 X				W	
	ulmu.	ال ال	MM	M	2 M			Ž	W	4 X		X	. ms	M	www	how	Jews/		
	~* *\\	MNW		A	W	Yan	W		1	w w	mMm	Muser	VV-						
					ľ					M								\dashv	
																		4	
20																			
30	0.000	40	50	(60	70	80			(MHz)		300	400	500	600	700	10	100.000	
									ing	Correct	Meas				_				
No. Mk. F			Freq.			req. Level		Factor	ment		Limit		Over						
				МН	Z		dBuV		V	dB/m	dBu\	dBuV/m		//m	dB		De	Detecto	
1 * 46.			99	9948 48.			8.5	9	-16.61	31.	31.98		40.00		02	peak			
2			68.	.15	1514 40.82				32	-16.25	24.	40.0	40.00 -15.43			B peak			

97.4560

155.9101

312.1794

506.4791

3

4

5

6

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

43.06

37.01

34.63

36.68

-14.92

-13.82

-7.73

-3.85

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

-----END OF THE REPORT-----

^{*:}Maximum data x:Over limit !:over margin