

FCC RF Test Report

APPLICANT	:	vivo Mobile Communication Co., Ltd.
EQUIPMENT	:	Mobile Phone
BRAND NAME	:	vivo
MODEL NAME	:	V2158
FCC ID	:	2AUCY-V2158
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DSS) Spread Spectrum Transmitter
TEST DATE(S)	:	Jul. 07, 2022 ~ Jul. 30, 2022

We, Sporton International Inc. (ShenZhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (ShenZhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	
SU	MMAR	Y OF TEST RESULT	.4
1	GENE	ERAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	.5
	1.3	Product Feature of Equipment Under Test	.5
	1.4	Product Specification of Equipment Under Test	.5
	1.5	Modification of EUT	.5
	1.6	Testing Location	.6
	1.7	Test Software	.6
	1.8	Applicable Standards	.6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.7
	2.1	Carrier Frequency Channel	.7
	2.2	Test Mode	.8
	2.3	Connection Diagram of Test System	.9
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TEST	RESULT	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	13
	3.3	Dwell Time Measurement	19
	3.4	20dB Bandwidth Measurement	21
	3.5	Output Power Measurement	27
	3.6	Conducted Band Edges Measurement	28
	3.7	Conducted Spurious Emission Measurement	35
	3.8	Radiated Band Edges and Spurious Emission Measurement	45
	3.9	AC Conducted Emission Measurement	49
	3.10	Antenna Requirements	51
4	LIST	OF MEASURING EQUIPMENT	52
5	UNCE	ERTAINTY OF EVALUATION	53
AP	PENDI	X A. CONDUCTED TEST RESULTS	
AP	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
AP	PENDI	X C. RADIATED SPURIOUS EMISSION	
AP	PENDI	X D. DUTY CYCLE PLOTS	
AP	PENDI	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR260201A	Rev. 01	Initial issue of report	Aug. 08, 2022

SUMMARY OF	TEST RESULT
------------	-------------

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	-	Report only	-
3.4	-	99% Bandwidth	-	Report only	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
		Radiated Band Edges			Under limit
3.8	15.247(d)	and Radiated Spurious	15.209(a) & 15.247(d)	Pass	12.66 dB at
		Emission			953.440 MHz
		AC Conducted		Pass	Under limit
3.9	15.207	Emission	15.207(a)		13.84 dB at
		EIIIISSIUII			0.150 MHz
3.10	15.203 &	Antonno Poquiromont	15 202 8 15 247(b)	Pass	
3.10	15.247(b)	Antenna Requirement	15.203 & 15.247(b)	F d 3 3	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

vivo Mobile Communication Co., Ltd. No.1, vivo Road, Chang'an, Dongguan,Guangdong,China

1.2 Manufacturer

vivo Mobile Communication Co., Ltd.

No.1, vivo Road, Chang'an, Dongguan, Guangdong, China

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Phone			
Brand Name vivo				
Model Name V2158				
FCC ID 2AUCY-V2158				
	Conducted: 861185069997473			
IMEI Code	Conduction: 861185069997911/861185069997903			
	Radiation: 861185069998653/861185069998646			
HW Version	MP_0.1			
SW Version PD2204CF_EX_A_12.0.5.2.W30.V000L1				
EUT Stage	Production Unit			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 14.10 dBm (0.0257 W) Bluetooth EDR (2Mbps) : 13.70 dBm (0.0234 W) Bluetooth EDR (3Mbps) : 14.10 dBm (0.0257 W)			
Antenna Type / Gain	PIFA Antenna type with gain -3.0 dBi			
Type of Modulation Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK				

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for

Test Firm	Sporton International Inc. (Shenzhen)						
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595						
	Sporton Site No.	FCC Designation No.	FCC Test Firm				
Test Site No.	Sporton Sile No.	FCC Designation No.	Registration No.				
	CO01-SZ TH01-SZ	CN1256	421272				
Test Firm	Sporton International Inc.	(Shenzhen)					
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Province China 518103 TEL: +86-755-33202398						
	Sporton Site No.	FCC Designation No.	FCC Test Firm				
Test Site No.	Sporton Site NO.	i co designation No.	Registration No.				
	03CH04-SZ	421272					

Laboratory Accreditation with Certificate Number 5145.01.

1.7 Test Software

Ī	Item Site		Manufacturer	Name	Version
	1.	03CH04-SZ	AUDIX	E3	6.2009-8-24
	2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

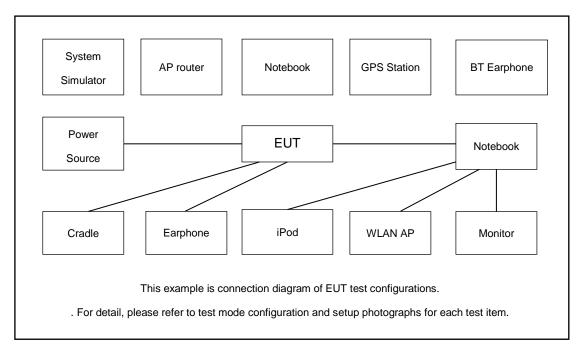
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases							
		Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 3Mbps					
	GFSK	π/4-DQPSK	8-DPSK				
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
		Bluetooth BR 1Mbps GFSK					
Radiated	Mode 1: CH00_2402 MHz						
Test Cases	Mode 2: CH39_2441 MHz						
		Mode 3: CH78_2480 MHz					
AC		eteeth Link I USB Cable 1 (C	barging from Adaptor 1)				
Conducted	Mode 1 :GSM850 Idle + Bluetooth Link + USB Cable 1 (Charging from Adapter 1) + Battery 1						
Emission							
Remark:							
1. For radiate	ed test cases, the worst mode of	data rate 1Mbps was reported	only, because this data rate				
has the hig	ghest RF output power at prelir	minary tests, and no other sign	ificantly frequencies found in				
conducted	spurious emission.						

2. For Radiated Test Cases, The worst tests case were performed with Adapter 1 and USB Cable 1.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1	Base Station(LTE)	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Bluetooth Earphone	Samsung	EO-MG900	PYAHS-107W	N/A	N/A
3.	WLAN AP	Dlink	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 1.5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

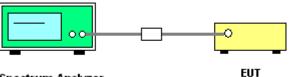
= 1.5 + 10 = 11.5 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

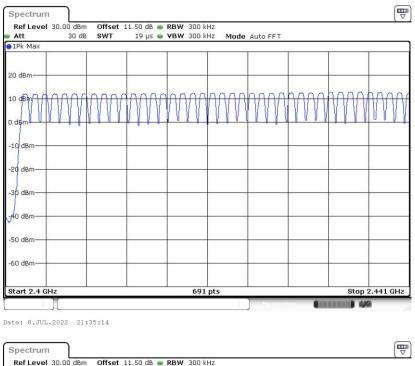

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

Number of Hopping Channel Plot on Channel 00 - 78

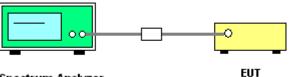
Offset 11.50 dB ● RBW 300 kHz SWT 19 µs ● VBW 300 kHz Ref Level 30.00 dBm Mode Auto FFT 30 dB SWT Att ●1Pk Max 20 dBm då -10 dBm -20 dBrr -30 dBm -40 dBm -50 dBm -60 dBm Stop 2.4835 GHz 691 pts Start 2.441 GHz B 446

Date: 8.JUL.2022 21:36:06

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

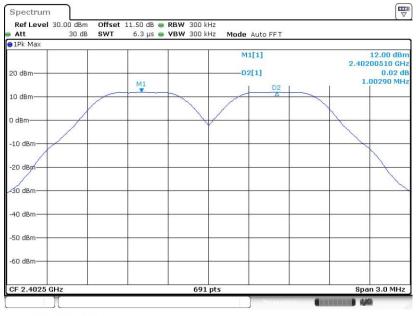
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

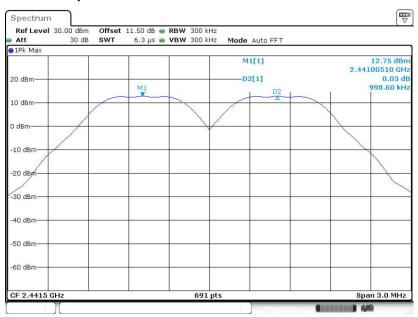
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

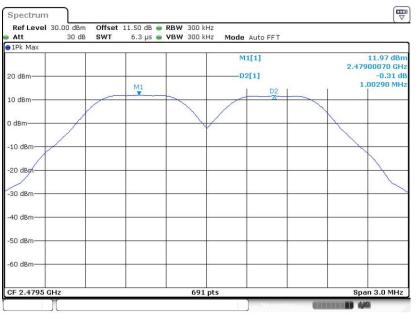
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

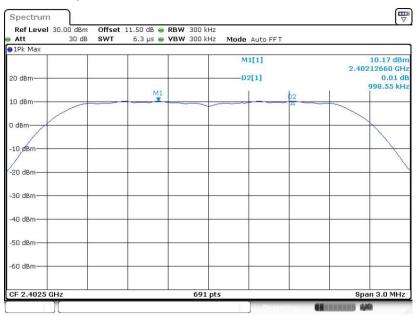

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 8.JUL.2022 21:16:01

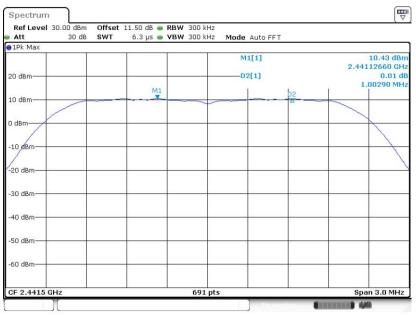
Channel Separation Plot on Channel 39 - 40

Date: 8.JUL.2022 21:25:57



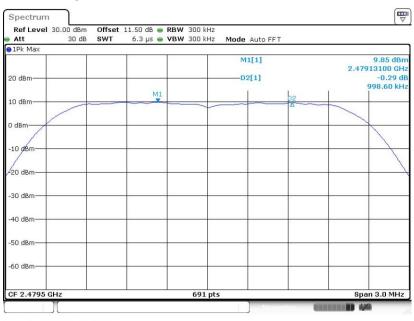
Channel Separation Plot on Channel 77 - 78

Date: 8.JUL.2022 21:32:53


<2Mbps>

Channel Separation Plot on Channel 00 - 01

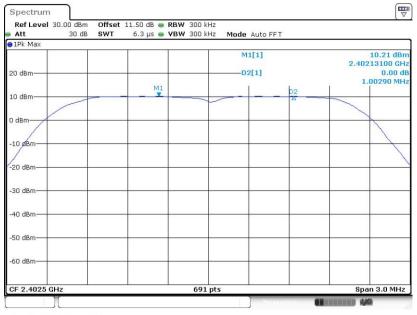
Date: 11.JUL.2022 18:32:00



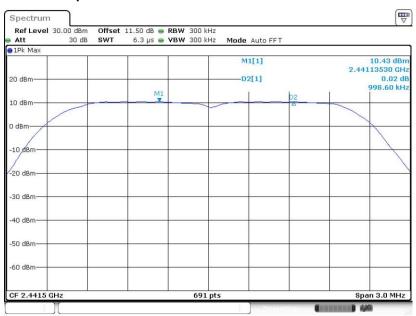
Channel Separation Plot on Channel 39 - 40

Date: 11.JUL.2022 18:42:22

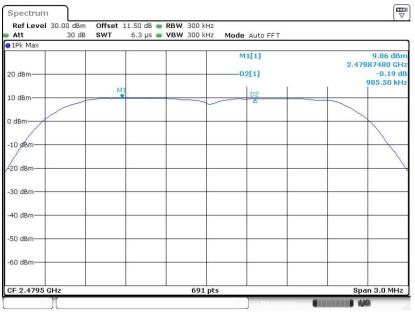
Channel Separation Plot on Channel 77 - 78



Date: 11.JUL.2022 18:53:08


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 11.JUL.2022 19:38:44

Channel Separation Plot on Channel 39 - 40

Date: 11.JUL.2022 19:25:54

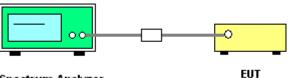
Channel Separation Plot on Channel 77 - 78

Date: 11.JUL.2022 20:04:59

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

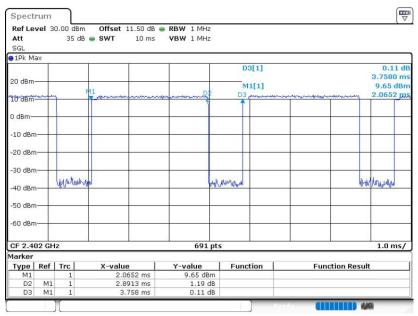

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 7.JUL.2022 17:18:34

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB Bandwidth Measurement

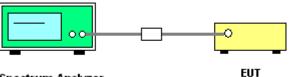
3.4.1 Limit of 20dB Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures


- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;

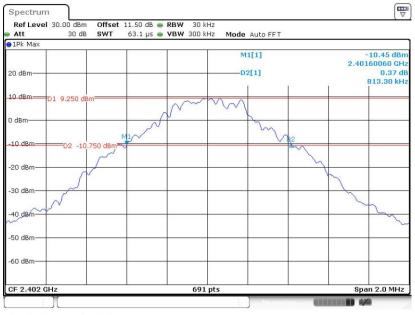
Sweep = auto; Detector function = peak;

Trace = max hold.

5. Measure and record the results in the test report.

3.4.4 Test Setup

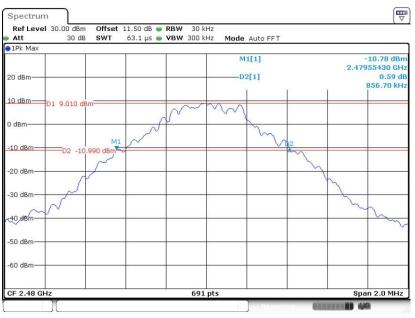
Spectrum Analyzer


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

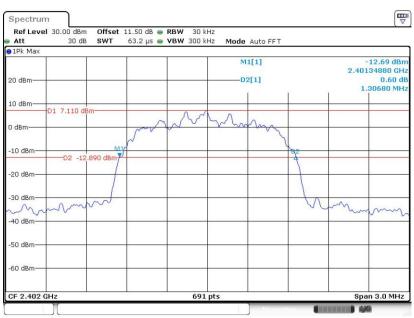
<1Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 8.JUL.2022 21:18:08

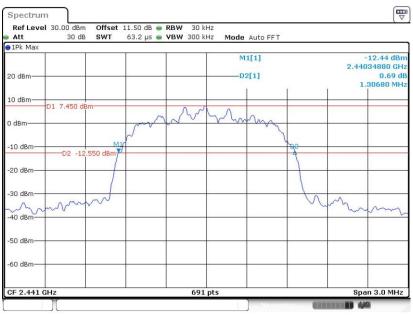
20 dB Bandwidth Plot on Channel 39

Date: 8.JUL.2022 21:28:32



20 dB Bandwidth Plot on Channel 78

Date: 8.JUL.2022 21:45:09


<2Mbps>

20 dB Bandwidth Plot on Channel 00

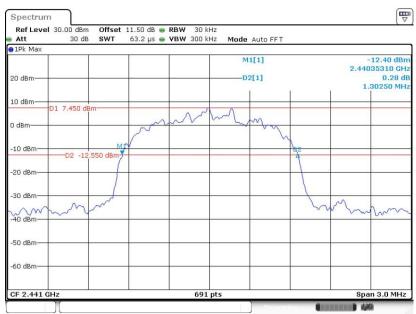
Date: 11.JUL.2022 18:33:44

20 dB Bandwidth Plot on Channel 39

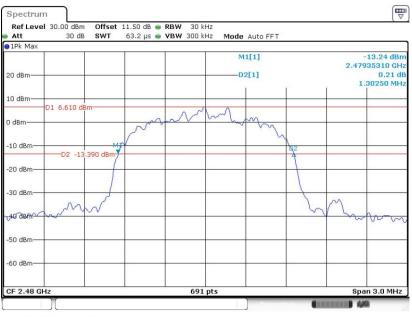
Date: 11.JUL.2022 18:44:08

20 dB Bandwidth Plot on Channel 78

Date: 11.JUL.2022 18:55:44


<3Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 11.JUL.2022 19:40:04

Date: 11.JUL.2022 19:27:07

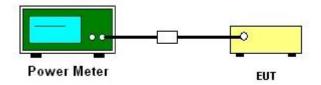
20 dB Bandwidth Plot on Channel 78

Date: 11.JUL.2022 19:16:42

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

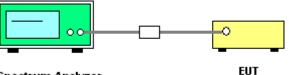
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

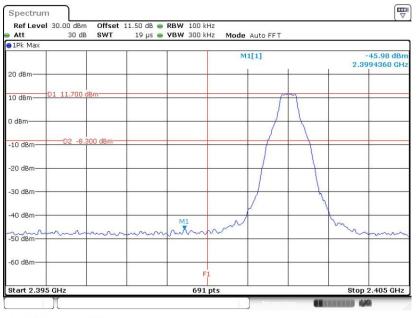

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

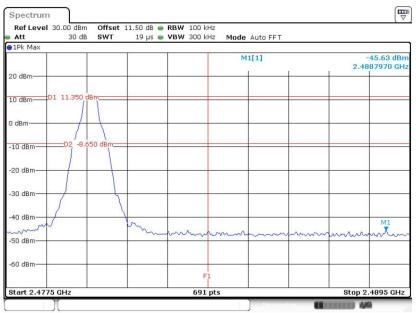
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

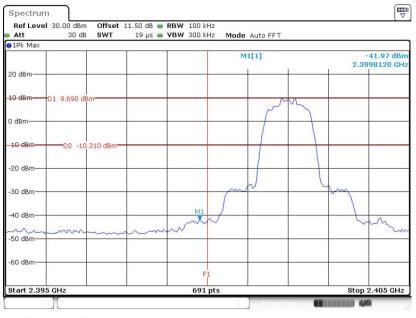
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

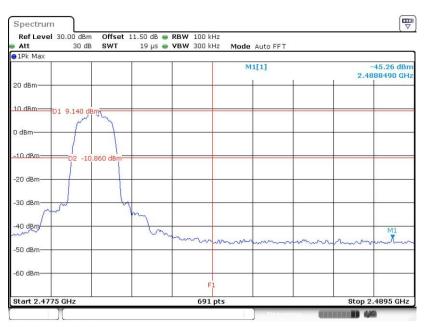
Low Band Edge Plot on Channel 00

Date: 8.JUL.2022 21:19:20

High Band Edge Plot on Channel 78



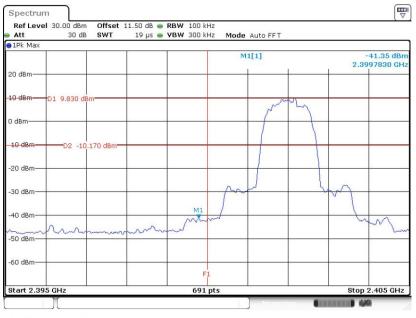
Date: 8.JUL.2022 21:45:28


<2Mbps>

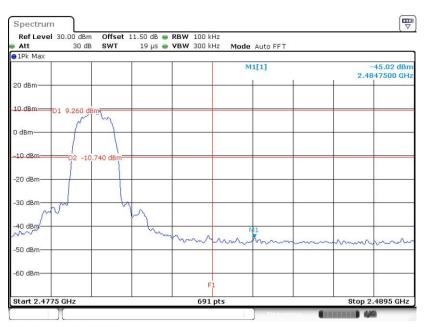
Low Band Edge Plot on Channel 00

Date: 11.JUL.2022 18:39:57

High Band Edge Plot on Channel 78



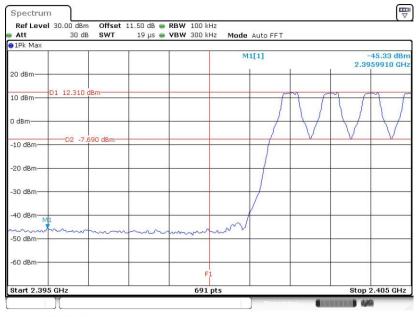
Date: 11.JUL.2022 18:56:09


<3Mbps>

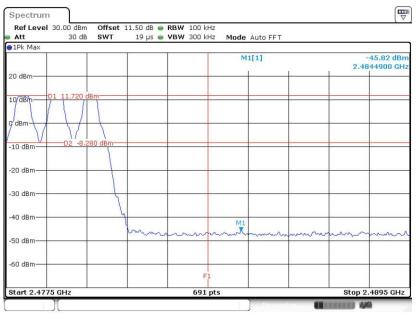
Low Band Edge Plot on Channel 00

Date: 11.JUL.2022 19:43:43

High Band Edge Plot on Channel 78


Date: 11.JUL.2022 19:17:08

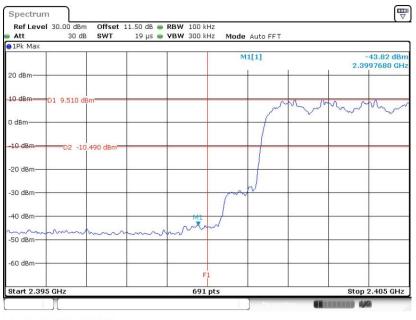
3.6.6 Test Result of Conducted Hopping Mode Band Edges



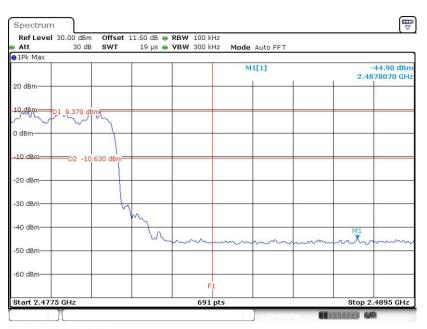
Hopping Mode Low Band Edge Plot

Date: 11.JUL.2022 18:07:46

Hopping Mode High Band Edge Plot



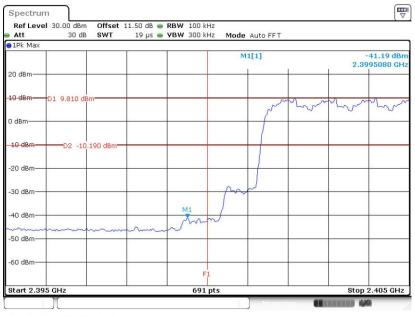
Date: 8.JUL.2022 21:37:22


<2Mbps>

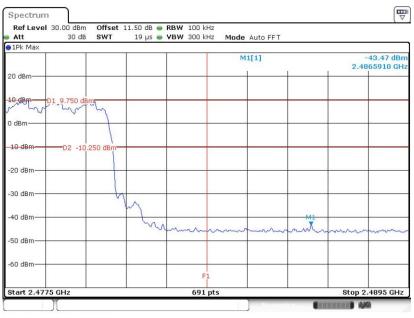
Hopping Mode Low Band Edge Plot

Date: 11.JUL.2022 18:23:10

Hopping Mode High Band Edge Plot



Date: 11.JUL.2022 18:24:51


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 11.JUL.2022 19:50:50

Hopping Mode High Band Edge Plot

Date: 11.JUL.2022 19:54:55

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

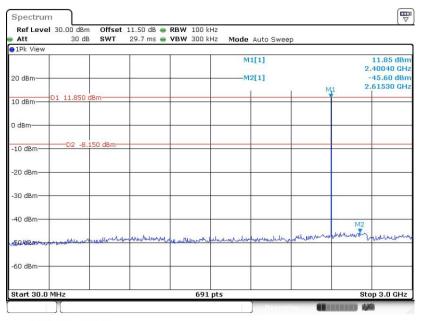

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

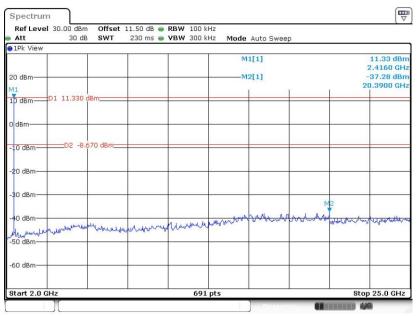
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

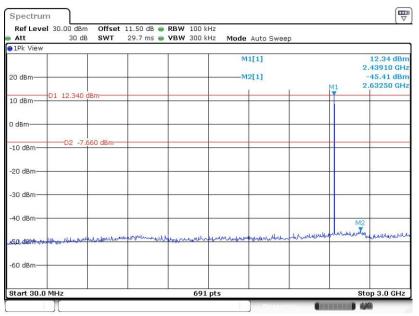
3.7.4 Test Setup


Sporton International Inc. (Shenzhen) TEL:+86-755-8637-9589 FAX:+86-755-8637-9595 FCC ID: 2AUCY-V2158

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

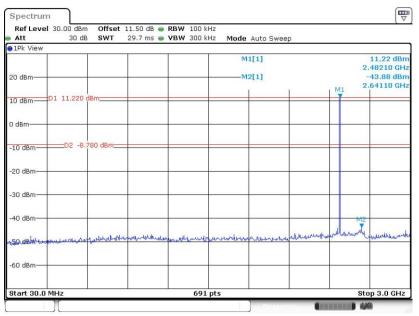
CSE Plot on Ch 00 between 30MHz ~ 3 GHz


Date: 8.JUL.2022 21:22:52

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 8.JUL.2022 21:23:23

CSE Plot on Ch 39 between 30MHz ~ 3 GHz


Date: 8.JUL.2022 21:30:18

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

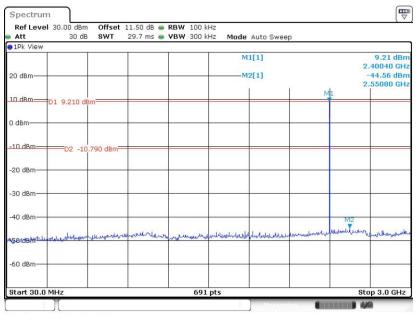
Ref Level 30.00 dBm Offset Att 30 dB SWT	11.50 dB RBW 100 kHz 230 ms VBW 300 kHz Mode	Auto Sweep	
1Pk View		Auto Sweep	
20 dBm-		[1] 2[1]	12.43 dBr 2.4490 GH -38.02 dBr
M1		1 1	18.0270 GH
10 dBm D1 12.430 dBm			
D dBm			· · · · · · · · · · · · · · · · · · ·
10 dBm			
20 dBm			
30 dBm			
40 dBm	Manunkalunanalanharadan	Www.Waterward	www.www.
buy how why have a writer	An Amaria and a		
60 dBm			
Start 2.0 GHz	691 pts		Stop 25.0 GHz

Date: 8.JUL.2022 21:30:48

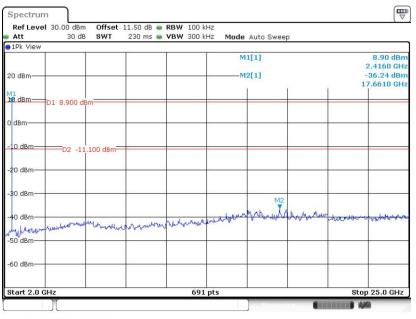
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 8.JUL.2022 21:46:58

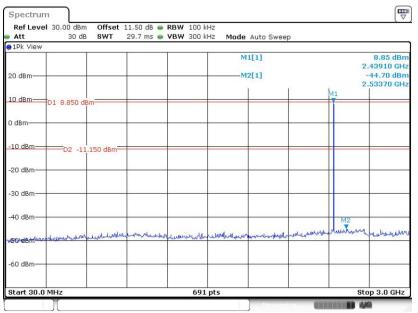
CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Ref Level 30.00 dBm	Offset 11.50 dB 👄 R			
Att 30 dB	SWT 230 ms 🖷 V	BW 300 KHZ Mode	Auto Sweep	
20 dBm-		130	1[1] 2[1]	11.44 dBr 2.4830 GH -36.94 dBr 17.6270 GH
M1 10 dBm D1 11.440 dB	m			
0 dBm				_
10 dBmD2 -8.56	0 dBm			
20 dBm				
30 dBm			M2	
40 dBm	und portral march	when burk and the manufacture	the work the work	mounderend
50 dBm	a state of the sta			
-60 dBm				
Start 2.0 GHz		691 pts		Stop 25.0 GHz

Date: 8.JUL.2022 21:47:27


<2Mbps>

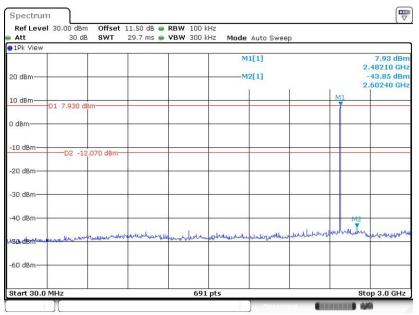
CSE Plot on Ch 00 between 30MHz ~ 3 GHz


Date: 11.JUL.2022 18:38:51

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 11.JUL.2022 18:39:24

CSE Plot on Ch 39 between 30MHz ~ 3 GHz


Date: 11.JUL.2022 18:50:50

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

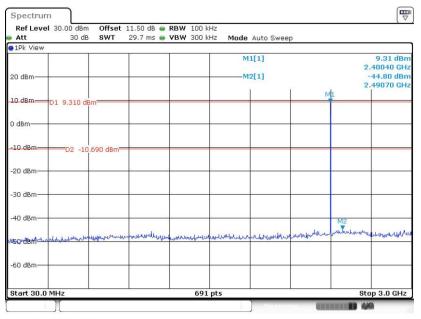
Ref Level 30.00 Att 3		.50 dB 👄 RBW		de Auto Sweep		
1Pk View					,	
20 dBm				M1[1] -M2[1]		8.44 dBr 2.4490 GH -36.62 dBr 17.6610 GH
dBmD1 8.44	10 dBm					
dBm						
10 dBmD2	-11.560 dBm					
20 dBm	-		r.			
30 dBm				M2		
40 dBm	whenthe me	human	person and have been	mound	All warden	where have here and the second
50 dBm			0			
-60 dBm						
Start 2.0 GHz			691 pts			Stop 25.0 GHz

Date: 11.JUL.2022 18:51:33

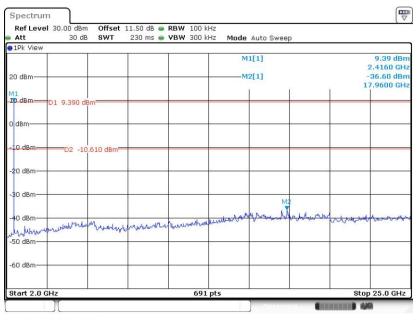
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 11.JUL.2022 19:03:19

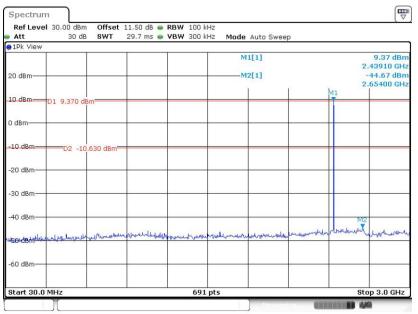
CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Ref Level 30.00 dBr		dB 👄 RBW 100 kH		35a	
Att 30 di 1Pk View	3 SWT 230	ms 👄 VBW 300 kH	Iz Mode Auto Swee	p	
20 dBm-			M1[1] M2[1]		8.53 dBr 2.4830 GH -37.16 dBr 16.2290 GH
01 dBm D1 8.530 d	Bm				10.2290 GH
0 dBm					
-10 dBm	1.470 dBm				_
-20 dBm					
-30 dBm			M2		
40 dBm	Muryman	worther two stewarters	wwwwwwwwwwwww	alour and population	Mar Called Haronard
-50 dBm					
-60 dBm					
Start 2.0 GHz		691			top 25.0 GHz

Date: 11.JUL.2022 19:03:49


<3Mbps>

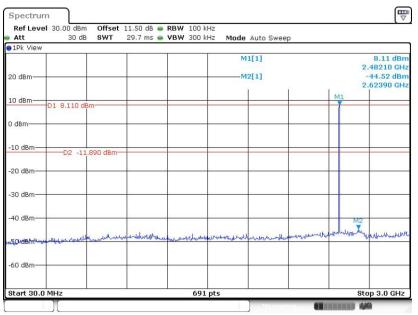
CSE Plot on Ch 00 between 30MHz ~ 3 GHz


Date: 11.JUL.2022 19:42:12

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 11.JUL.2022 19:42:54

CSE Plot on Ch 39 between 30MHz ~ 3 GHz


Date: 11.JUL.2022 19:30:05

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level 30.00 dB		11.50 dB 👄	RBW 100 k VBW 300 k		Auto Sweep			
1Pk View	0 011	200 1113	1011 300 K	ne moue	Auto Swee	,		
20 dBm				0000	1[1] 2[1]			10.17 dBr 2.4490 GH -36.68 dBr 7.6270 GH
M1 10 dBm D1 10.170) dBm	_						
0 dBm								
-10 dBmD2 -9	9.830 dBm-							
-20 dBm	-			2 I				
-30 dBm				<u> </u>	M2			
-40 dBm	and the work	ynhadaitm	monuted	with the providence	mun	ىمەلەكىلىرىلىرىكى ك ە	www.	atur and a state of a
-50 dBm-								
-60 dBm								
Start 2.0 GHz			691	nts			Sto	p 25.0 GHz

Date: 11.JUL.2022 19:30:39

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 13.JUL.2022 20:18:46

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

	Offset 11.50 dB 👄 RE SWT 230 ms 👄 VE		ana anno	
1Pk View	SWI 230 ms 🖝 Vi	SW 300 KHZ Mode	Auto Sweep	
20 dBm-			1[1] 2[1]	8.03 dBr 2.4830 GH -37.54 dBr 17.6270 GH
id dBm				
D1 0.000 dBm-				
10 dBm				
20 dBm D2 -20.000) dBm			
30 dBm			M2	
40 dBm	wand provident	communication and		Walnum man man and a second
50 dBm				
60 dBm				
Start 2.0 GHz		691 pts		Stop 25.0 GHz

Date: 13.JUL.2022 20:20:31

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

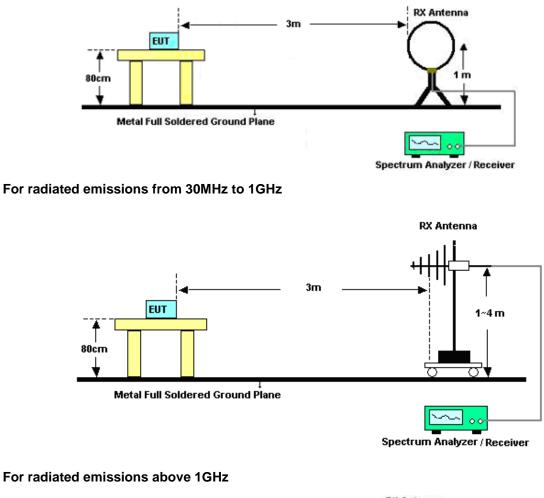
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

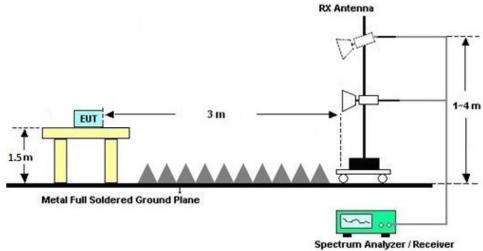
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.8.4 Test Setup

For radiated emissions below 30MHz

Sporton International Inc. (Shenzhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2AUCY-V2158

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

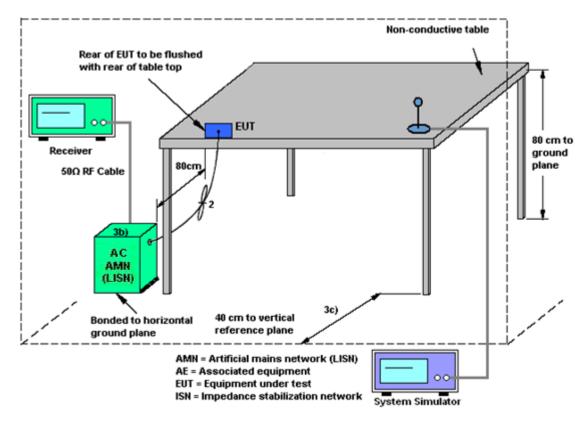
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Sep. 01, 2021	Jul. 18, 2022	Aug. 31, 2022	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Sep. 01, 2021	Jul. 18, 2022	Aug. 31, 2022	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 29, 2021	Jul. 18, 2022	Oct. 28, 2022	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	61602000 0891	100Vac~250Vac	Jul. 07, 2022	Jul. 18, 2022	Jul. 06, 2023	Conduction (CO01-SZ)
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 07, 2022	Jul. 07, 2022~ Jul. 30, 2022	Apr. 06, 2023	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 28, 2021	Jul. 07, 2022~ Jul. 30, 2022	Dec. 27, 2022	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1542004	50MHz Bandwidth	Dec. 28, 2021	Jul. 07, 2022~ Jul. 30, 2022	Dec. 27, 2022	Conducted (TH01-SZ)
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz	Oct. 22, 2021	Jul. 26, 2022~ Jul. 28, 2022	Oct. 21, 2022	Radiation (03CH04-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 46	10Hz~44GHz	Apr. 06, 2022	Jul. 26, 2022~ Jul. 28, 2022	Apr. 05, 2023	Radiation (03CH04-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 17, 2022	Jul. 26, 2022~ Jul. 28, 2022	Jul. 16, 2024	Radiation (03CH04-SZ)
Bilog Antenna	TeseQ	CBL6111D	41909	30MHz~1GHz	Oct. 22, 2021	Jul. 26, 2022~ Jul. 28, 2022	Oct. 21, 2022	Radiation (03CH04-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120 D	9120D-147 4	1GHz~18GHz	Jul. 07, 2022	Jul. 26, 2022~ Jul. 28, 2022	Jul. 06, 2023	Radiation (03CH04-SZ)
Horn Antenna	SCHWARZBE CK	BBHA9170	9170#679	15GHz~40GHz	Jul. 07, 2022	Jul. 26, 2022~ Jul. 28, 2022	Jul. 06, 2023	Radiation (03CH04-SZ)
LF Amplifier	Burgeon	BPA-530	102210	0.01Hz ~3000MHz	Oct. 22, 2021	Jul. 26, 2022~ Jul. 28, 2022	Oct. 21, 2022	Radiation (03CH04-SZ)
HF Amplifier	EMEC	EM01G18G	060781	1GHz~18GHz	Oct. 22, 2021	Jul. 26, 2022~ Jul. 28, 2022	Oct. 21, 2022	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	TTA1840-3 5-HG	1871923	18GHz~40GHz	Apr. 06, 2022	Jul. 26, 2022~ Jul. 28, 2022	Apr. 05. 2023	Radiation (03CH04-SZ)
HF Amplifier	Agilent Technologies	83017A	MY532703 57	500MHz~26.5G Hz	Apr. 06, 2022	Jul. 26, 2022~ Jul. 28, 2022	Apr. 05, 2023	Radiation (03CH04-SZ)
AC Power Source	Chroma	61601	N/A	N/A	NCR	Jul. 26, 2022~ Jul. 28, 2022	NCR	Radiation (03CH04-SZ)
Turn Table	EM	EM1000	060795	0~360 degree	NCR	Jul. 26, 2022~ Jul. 28, 2022	NCR	Radiation (03CH04-SZ)
Antenna Mast	EM	EM1000	060795	1 m~4 m	NCR	Jul. 26, 2022~ Jul. 28, 2022	NCR	Radiation (03CH04-SZ)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2 dB
of 95% (U = 2Uc(y))	2.2 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.1 dB
of 95% (U = 2Uc(y))	5.1 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.8 dB
of 95% (U = 2Uc(y))	4.0 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	E 1 dD
of 95% (U = 2Uc(y))	5.1 dB

----- THE END ------

Report Number : FR260201A

Appendix A. Test Result of Conducted Test Items

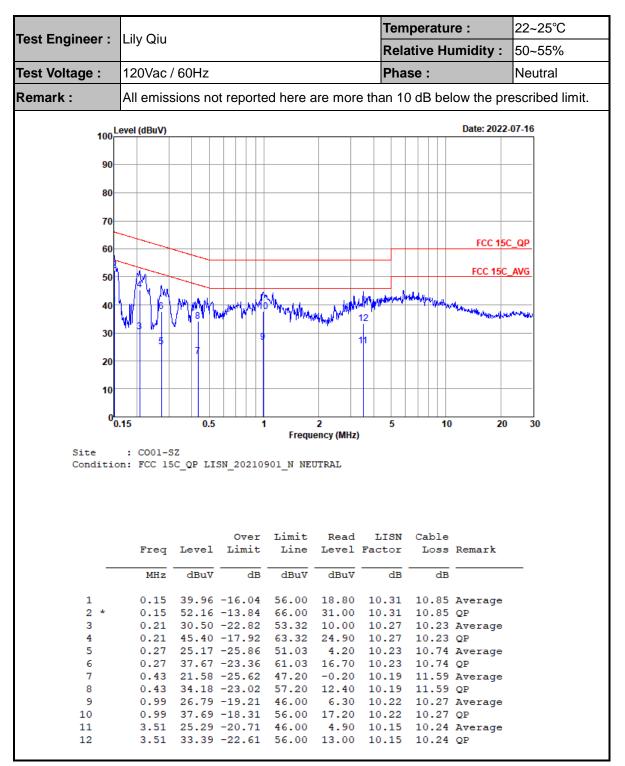
Test Engineer:	Chen Ran	Temperature:	21~25	°C
Test Date:	2022/7/20	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20dB BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail	
DH	1Mbps	1	0	2402	0.813	0.761	1.003	0.5422	Pass	
DH	1Mbps	1	39	2441	0.813	0.761	0.999	0.5422	Pass	
DH	1Mbps	1	78	2480	0.857	0.761	1.003	0.5711	Pass	
2DH	2Mbps	1	0	2402	1.307	1.172	0.999	0.8712	Pass	
2DH	2Mbps	1	39	2441	1.307	1.172	1.003	0.8712	Pass	
2DH	2Mbps	1	78	2480	1.307	1.172	0.999	0.8712	Pass	
3DH	3Mbps	1	0	2402	1.298	1.181	1.003	0.8654	Pass	
3DH	3Mbps	1	39	2441	1.303	1.178	0.999	0.8683	Pass	
3DH	3Mbps	1	78	2480	1.303	1.178	0.986	0.8683	Pass	

<u>TEST RESULTS DATA</u> Dwell Time										
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail				
Nomal	79	106.67	2.89	0.31	0.4	Pass				
AFH	20	53.33	2.89	0.15	0.4	Pass				

TEST RESULTS DATA Peak Power Table									
DH	CH.	NTX	Peak Power	Power Limit	Test				
			(dBm)	(dBm)	Result				
	0	1	13.80	20.97	Pass				
DH5	39	1	14.10	20.97	Pass				
	78	1	13.70	20.97	Pass				
	0	1	13.40	20.97	Pass				
2DH5	39	1	13.70	20.97	Pass				
	78	1	12.90	20.97	Pass				
	0	1	13.70	20.97	Pass				
3DH5	39	1	14.10	20.97	Pass				
	78	1	13.30	20.97	Pass				

				Ave	<u>RESULTS DATA</u> erage Power Table Reporting Only)
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	13.00	1.15	
DH5	39	1	13.40	1.15	
	78	1	13.00	1.15	
	0	1	10.60	1.14	
2DH5	39	1	11.10	1.14	
	78	1	10.20	1.14	
	0	1	10.60	1.14	1
3DH5	39	1	11.10	1.14]
	78	1	10.20	1.14	


<u>TEST RESULTS DATA</u> Number of Hopping Frequency								
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail					
79	20	> 15	Pass					

Appendix B. AC Conducted Emission Test Results

Toot Engineer						Tem	peratu	re :	22~25°C
Test Engineer :	Lily Qiu					Rela	ative Hu	umidity :	50~55%
Test Voltage :	120Vac /	/ 60Hz				Pha	se :		Line
Remark :	All emiss	sions no	ot reporte	ed here a	are mor	e than 10	dB be	ow the pr	escribed limit.
1	_evel (dBuV)							Date: 2022	07-16
100									
90									
80-									
70-									
70									
60								FCC 150	C_QP
50								FCC 15C	AVG
	1. #1 A	My . d .							
40	h () 6	18)(12)	What which had	1 2 No. 1-1			Million and	Myshirmanique	
	17 I V II	r I T		e ' www.linwy	Manufacture MA	AND AND CO.		and the state of the second states	TV CAME
30	5	+ + +	1	1	Lober				
		9							
20									
10									
	0.15	0.5	1		2	5	10	20	30
o			1		2 ency (MHz	-	10	20	30
0 Site	: CO01-S	Z		Frequ	ency (MHz	-	10	20	30
0 Site		Z		Frequ	ency (MHz	-	10	20	30
0 Site	: CO01-S	Z		Frequ	ency (MHz	-	10	20	30
0 Site	: CO01-S	Z		Frequ	ency (MHz	-	10	20	30
0 Site	: CO01-S	Z		Frequ	ency (MHz	-	10	20	30
0 Site	: CO01-S	Z		Frequ	ency (MHz	-	10 Cable	20	30
0 Site	: CO01-S on: FCC 15	SZ SC_QP LI	SN_20210	Frequ 901_L LI Limit	NE Read		Cable	20 Remark	30
0 Site	: COOl-S on: FCC 15 Freq	SZ GC_QP LI: Level	SN_20210 Over Limit	Frequ 901_L LI Limit Line	Read Level	LISN Factor	Cable Loss		30
0 Site	: CO01-S on: FCC 15	SZ SC_QP LI	SN_20210	Frequ 901_L LI Limit	NE Read	LISN	Cable		30
0 Site	: CO01-S on: FCC 15 Freq MHz	SZ SC_QP LI: Level dBuV	SN_20210 Over Limit	Frequ 901_L LI Limit Line 	Read Level dBuV	LISN Factor dB	Cable Loss dB		30
Site Conditio	: CO01-S on: FCC 15 Freq MHz 0.15 0.15	5Z GC_QP LI: Level dBuV 38.33 51.33	Over Limit -17.58 -14.58	Frequ 901_L LI Limit 	Read Level dBuV 17.30 30.30	LISN Factor dB 10.20 10.20	Cable Loss dB 10.83 10.83	Remark Average QP	30
Site Condition 1 2 * 3	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.21	5Z GC_QP LI: Level dBuV 38.33 51.33 30.49	Over Limit -17.58 -22.91	Frequ 901_L LI Limit 	Read Level dBuV 17.30 30.30 10.09	LISN Factor dB 10.20 10.20 10.20	Cable Loss dB 10.83 10.83 10.20	Remark Average QP Average	30
Site Condition	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.21 0.21	5Z Level dBuV 38.33 51.33 30.49 45.29	Over Limit -17.58 -14.58 -22.91 -18.11	Frequ 901_L LI Limit 	Read Level dBuV 17.30 30.30 10.09 24.89	LISN Factor dB 10.20 10.20 10.20 10.20	Cable Loss dB 10.83 10.83 10.20 10.20	Remark Average QP Average QP	30
Site Condition	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.21 0.21 0.29	5Z Level dBuV 38.33 51.33 30.49 45.29 25.41	Over Limit -17.58 -14.58 -22.91 -18.11 -25.13	Frequ 901_L LI Limit Line 	Read Level dBuV 17.30 30.30 10.09 24.89 4.40	LISN Factor dB 10.20 10.20 10.20 10.20 10.20 10.16	Cable Loss dB 10.83 10.83 10.20 10.20 10.85	Remark Average QP Average QP Average	30
0 Site Conditio	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.21 0.21 0.29 0.29	5Z Level dBuV 38.33 51.33 30.49 45.29 25.41 38.81	Over Limit -17.58 -14.58 -22.91 -18.11 -25.13 -21.73	Frequ 901_L LI Limit 	Read Level dBuV 17.30 30.30 10.09 24.89 4.40 17.80	LISN Factor dB 10.20 10.20 10.20 10.20 10.16 10.16	Cable Loss dB 10.83 10.83 10.20 10.20 10.85 10.85	Remark Average QP Average QP Average QP	30
0 Site Conditio	: CO01-S on: FCC 15 Freq MHz 0.15 0.21 0.21 0.29 0.29 0.36	5Z Level dBuV 38.33 51.33 30.49 45.29 25.41 38.81 26.24	Over Limit dB -17.58 -14.58 -22.91 -18.11 -25.13 -21.73 -22.50	Frequ 901_L LI Limit Line 	Read Level dBuV 17.30 30.30 10.09 24.89 4.40 17.80 4.91	LISN Factor dB 10.20 10.20 10.20 10.20 10.16 10.16 10.08	Cable Loss dB 10.83 10.83 10.20 10.20 10.85 10.85 11.25	Remark Average QP Average QP Average QP Average	30
0 Site Conditio 1 2 * 3 4 5 6 7 8	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.21 0.21 0.29 0.29 0.29 0.36 0.36	5Z Level dBuV 38.33 51.33 30.49 45.29 25.41 38.81 26.24 38.54	Over Limit dB -17.58 -14.58 -22.91 -18.11 -25.13 -21.73 -22.50 -20.20	Frequ 901_L LI Limit Line dBuV 55.91 65.91 53.40 63.40 50.54 60.54 48.74 58.74	Read Level dBuV 17.30 30.30 10.09 24.89 4.40 17.80 4.91 17.21	LISN Factor dB 10.20 10.20 10.20 10.20 10.16 10.16 10.08 10.08	Cable Loss dB 10.83 10.83 10.20 10.20 10.85 10.85 11.25 11.25	Remark Average QP Average QP Average QP Average QP	30
0 Site Conditio 1 2 * 3 4 5 6 7 8 9	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.21 0.29 0.29 0.29 0.36 0.36 0.44	52 5C_QP LI: Level dBuV 38.33 51.33 30.49 45.29 25.41 38.81 26.24 38.54 22.41	Over Limit dB -17.58 -14.58 -22.91 -18.11 -25.13 -21.73 -22.50 -20.20 -24.74	Frequ 901_L LI Limit Line dBuV 55.91 65.91 53.40 63.40 50.54 60.54 48.74 58.74 47.15	Read Level dBuV 17.30 30.30 10.09 24.89 4.40 17.80 4.91 17.21 0.70	LISN Factor dB 10.20 10.20 10.20 10.20 10.16 10.16 10.08 10.08 10.01	Cable Loss dB 10.83 10.83 10.20 10.20 10.85 10.85 11.25 11.25 11.60	Remark Average QP Average QP Average QP Average QP Average	30
0 Site Conditio 1 2 * 3 4 5 6 7 8	: CO01-S on: FCC 15 Freq MHz 0.15 0.15 0.21 0.29 0.29 0.29 0.36 0.36 0.44 0.44	5Z 5C_QP LI: Level dBuV 38.33 51.33 30.49 45.29 25.41 38.81 26.24 38.54 22.41 35.91	Over Limit dB -17.58 -14.58 -22.91 -18.11 -25.13 -21.73 -22.50 -20.20	Frequ 901_L LI Limit Line dBuV 55.91 63.40 63.40 50.54 60.54 48.74 58.74 47.15 57.15	Read Level dBuV 17.30 30.30 10.09 24.89 4.40 17.80 4.91 17.21 0.70	LISN Factor dB 10.20 10.20 10.20 10.16 10.16 10.16 10.08 10.08 10.11 10.11	Cable Loss dB 10.83 10.83 10.20 10.20 10.20 10.85 10.85 11.25 11.25 11.60 11.60	Remark Average QP Average QP Average QP Average QP Average	

Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dBµV) Limit Line(dBµV)

Appendix C. Radiated Spurious Emission

Toot Engineer	Zhong VII	Temperature :	24~25°C
Test Engineer :	Zhang Xu	Relative Humidity :	48~49%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2390	42.39	-31.61	74	43.83	27.02	5.37	33.83	110	291	Р	Н
		2390	17.6	-36.4	54	-	-	-	-	110	291	А	н
		2402	103.75	-	-	105.19	27.02	5.37	33.83	110	291	Р	Н
	*	2402	78.96	-	-	-	-	-	-	110	291	А	Н
вт		2388.75	42.75	-31.25	74	44.22	27.02	5.37	33.86	376	248	Р	V
CH00		2388.75	17.96	-36.04	54	-	-	-	-	376	248	А	V
2402MHz		2402	103.88	-	-	105.32	27.02	5.37	33.83	376	248	Р	V
240211112	*	2402	79.09	-	-	-	-	-	-	376	248	А	V
		2382.38	40.53	-33.47	74	42.05	27	5.34	33.86	135	275	Р	Н
		2382.38	15.74	-38.26	54	-	-	-	-	-	-	А	Н
	*	2441	103.86	-	-	105.15	27.06	5.41	33.76	135	275	Р	Н
	*	2441	79.07	-	-	-	-	-	-	-	-	А	Н
		2494.4	39.4	-34.6	74	40.52	27.1	5.46	33.68	135	275	Р	Н
		2494.4	14.61	-39.39	54	-	-	-	-	-	-	А	Н
D.T.		2342.9	39.86	-34.14	74	41.45	26.98	5.31	33.88	363	236	Р	V
ВТ СН 39		2342.9	15.07	-38.93	54	-	-	-	-	-	-	А	V
Сн 39 2441MHz	*	2441	103.31	-	-	104.6	27.06	5.41	33.76	363	236	Р	V
244110112	*	2441	78.52	-	-	-	-	-	-	-	-	А	V
		2496.99	39.77	-34.23	74	40.89	27.1	5.46	33.68	363	236	Р	V
		2496.99	14.98	-39.02	54	-	-	-	-	-	-	Α	V

	*	2480	103.73	-	-	104.9	27.09	5.46	33.72	100	317	Р	Н
	*	2480	78.94	-	-	-	-	-	-	-	-	А	Н
		2483.52	52	-22	74	53.17	27.09	5.46	33.72	100	317	Р	Н
BT		2483.52	27.21	-26.79	54	-	-	-	-	-	-	А	Н
CH 78 2480MHz	*	2480	103.92	-	-	105.09	27.09	5.46	33.72	392	242	Ρ	V
2400101712	*	2480	79.13	-	-	-	-	-	-	-	-	А	V
		2483.84	52.08	-21.92	74	53.25	27.09	5.46	33.72	392	242	Ρ	V
		2483.84	27.29	-26.71	54	-	-	-	-	-	-	А	V
Remark		o other spurious I results are PA		Peak and	Average lin	nit line.					<u>.</u>		<u>.</u>

2.4GHz 2400~2483.5MHz

BT (Harmonic	@	3m)
---------------------	---	-----

вт	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	39.33	-34.67	74	51.18	31.09	8.88	51.82	-	-	Ρ	Н
BT		4804	14.54	-39.46	54	-	-	-	-	-	-	А	Н
CH 00 2402MHz		4804	40.07	-33.93	74	51.92	31.09	8.88	51.82	-	-	Ρ	V
240211112		4804	15.28	-38.72	54	-	-	-	-	-	-	А	V
		4882	39.16	-34.84	74	51.23	31.21	8.65	51.93	-	-	Ρ	н
		4882	14.37	-39.63	54	-	-	-	-	-	-	А	н
		7323	44.36	-29.64	74	49.69	36.21	10.18	51.72	-	-	Ρ	Н
BT		7323	19.57	-34.43	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		4882	39.5	-34.5	74	51.57	31.21	8.65	51.93	-	-	Ρ	V
244 111112		4882	14.71	-39.29	54	-	-	-	-	-	-	А	V
		7323	45.55	-28.45	74	50.88	36.21	10.18	51.72	-	-	Ρ	V
		7323	20.76	-33.24	54	-	-	-	-	-	-	А	V
		4960	39.36	-34.64	74	51.64	31.34	8.41	52.03	-	-	Ρ	Н
		4960	14.57	-39.43	54	-	-	-	-	-	-	А	Н
DT		7440	44.34	-29.66	74	49.35	36.47	10.17	51.65	-	-	Ρ	Н
ВТ СН 78		7440	19.55	-34.45	54	-	-	-	-	-	-	А	Н
2480MHz		4960	40.27	-33.73	74	52.55	31.34	8.41	52.03	-	-	Ρ	V
240010112		4960	15.48	-38.52	54	-	-	-	-	-	-	А	V
		7440	45.31	-28.69	74	50.32	36.47	10.17	51.65	-	-	Ρ	V
		7440	20.52	-33.48	54	-	-	-	-	-	-	А	V
Remark		o other spurious		Peak and	Average lim	it line.							

Emission below 1GHz

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	24.74	-15.26	40	30.75	25.86	0.53	32.4	-	-	Р	Н
		99.84	17.75	-25.75	43.5	32.81	16.12	1.02	32.2	-	-	Р	н
		447.1	25.48	-20.52	46	31.52	23.08	2.19	31.31	-	-	Р	Н
		591.63	29.35	-16.65	46	31.24	26.31	2.54	30.74	-	-	Р	Н
0.4011-		743.92	31.21	-14.79	46	31.13	28.3	2.84	31.06	-	-	Р	Н
2.4GHz BT		973.81	33.45	-20.55	54	30.78	30.66	3.27	31.26	-	-	Р	Н
LF		30.97	25.27	-14.73	40	31.84	25.29	0.54	32.4	-	-	Р	V
		42.61	21.89	-18.11	40	35.13	18.53	0.63	32.4	-	-	Р	V
		317.12	21.4	-24.6	46	31.07	20.17	1.86	31.7	-	-	Р	V
		581.93	29.38	-16.62	46	31.4	26.23	2.52	30.77	-	-	Р	V
		776.9	31.57	-14.43	46	31.16	28.72	2.9	31.21	-	-	Р	V
		953.44	33.34	-12.66	46	30.48	31.09	3.24	31.47	-	-	Р	V
Remark	1. No	o other spurious	s found.										
		l results are PA		mit line.									

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any							
	unwanted emissions shall not exceed the level of the fundamental frequency.							
!	Test result is Margin line.							
P/A	Peak or Average							
H/V	Horizontal or Vertical							

A calculation example for radiated spurious emission is shown as below:

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

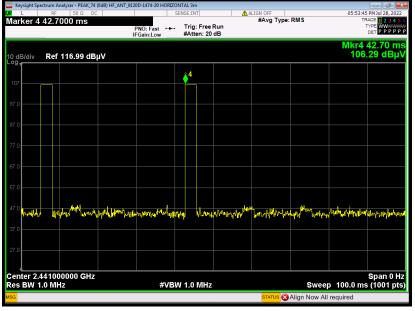
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".



Appendix D. Duty Cycle Plots

ALIGN OFF #Avg Type: RMS 5:51:49 PN 2 60000 m 12345 WW////// PPPPP ++ Trig: Free Run #Atten: 20 dB TYF PNO: I IFGain: Mkr4 2.600 r 106.26 dB Ref 116.99 dBµV B/di∖ ∆<mark>1∆2</mark> <u>∆3∆4</u> Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (1001 pts) #VBW 1.0 MHz 106.2 (**Δ**) 0.00 d 106.26 dBj **(Δ)** SAlign Now All required

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.88 / 100 = 5.76 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.