DASY5 Validation Report for Head TSL

Date: 22.06 .2021
Test Laboratory: SPEAG. Zurich, Switzerland
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060
Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5250 MHz , Frequency: 5300
MHz , Frequency: 5500 MHz , Frequency: 5600 MHz , Frequency: 5750 MHz , Frequency: 5800 MHz
Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=4.54 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{f}}=34.7: \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.
Medium parameters used: $\mathrm{f}=5250 \mathrm{MHz} ; \sigma=4.59 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.
Medium parameters used: $\mathrm{f}=5300 \mathrm{MHz} ; \sigma=4.64 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.6 ; p=1000 \mathrm{~kg} / \mathrm{m}^{3}$.
Medium parameters used: $\mathrm{f}=5500 \mathrm{MHz} ; \sigma=4.85 \mathrm{~S} / \mathrm{m} ; \varepsilon_{<}=34.3 ; p=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=4.95 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5750 \mathrm{MHz} ; \sigma=5.1 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{f}}=33.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=5.15 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=33.8: p=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz , $\operatorname{ConvF}(5.5,5.5,5.5)$ @ 5250 MHz , ConvF($5.49,5.49,5.49$)@ 5300 MHz , ConvF($5.25,5.25,5.25$)@ 5500 MHz , ConvF($5.1,5.1,5.1$) (9) $5600 \mathrm{MHz}, \mathrm{ConvF}(5.08,5.08,5.08)$ @ $5750 \mathrm{MHz}, \mathrm{ConvF}(5.01,5.01,5.01) @ 5800 \mathrm{MHz}$: Calibrated: 30.12 .2020
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA: Serial: 1001
- DASY52 52.10.4(1527): SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5200 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{d} x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=78.84 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=28.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.04 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.29 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at Mt $=69.1 \%$
Maximum value of SAR (measured) $=18.5 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, f=5250 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7 /$ Cube $0:$ dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=80.04 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.01 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.29 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=70.3 \%$
Maximum value of SAR (measured) $=18.2 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue $/$ Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5300 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=80.15 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=28.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.25 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.35 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=69.1 \%$
Maximum value of SAR (measured) $=19.1$ W/kg
Dipole Calibration for Head Tissue $/$ Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5500 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{d} x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{~d} z=1.4 \mathrm{~mm}$
Reference Value $=80.07 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=33.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.80 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.47 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.4 \%$
Maximum value of SAR (measured) $=20.9 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{d} x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{~d} z=1.4 \mathrm{~mm}$
Reference Value $=80.82 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=30.8 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.45 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.40 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=67.5 \%$
Maximum value of SAR (measured) $=19.9 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5750 \mathrm{MHz} / \mathrm{Zoom}$ Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=78.22 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=31.8 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.18 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.30 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=65.8 \%$
Maximum value of SAR (measured) $=19.5 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5800 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{d} x=4 \mathrm{~mm}, \mathrm{~d} y=4 \mathrm{~mm}, \mathrm{~d} z=1.4 \mathrm{~mm}$
Reference Value $=77.53 \mathrm{~V} / \mathrm{m}$; Power Driff $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=31.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.19 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.31 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.4 \mathrm{~mm}$
Ratio of SAR at M2 to SAR ar M1 $=65.4 \%$
Maximum value of SAR (measured) $=19.2 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL (5200, 5500, 5800 MHz)

Impedance Measurement Plot for Head TSL (5250, 5300, 5600, 5750 MHz)

ANNEX I Sensor Triggering Data Summary

The DUT has the proximity sensors to reduce the output power. The position of the sensor and antenna are as shown in the graphic.

Rear, Front, Bottom and Top of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.

The DUT featured a visual indicator on its display that showed the status of the proximity sensor (Triggered or not triggered). This was used to determine the status of the sensor during the proximity sensor assessment as monitoring the output power directly was not practical without affecting the measurement. It was confirmed separately that the output power according to locking the proximity sensor status.

Blue arrow : Direction of DUT travel for determination of power reduction triggering point.
Green arrow: Direction of DUT travel for determination of normal power triggering point When the visual indicator display is "CS0 turn green", indicates that the status of the proximity sensor B is triggered, when the visual indicator display is "CS4 turn green", indicates that the status of the proximity sensor A is triggered (see the figure below)

Fig1.sensor B is triggered

Fig2.Sensor A is triggered

When the visual indicator display is "CS0 and CS4 tune red", indicates that the status of the proximity sensor B and sensor A is not triggered

Fig3. sensor B and sensor A is not triggered

ANT 11

Rear Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance [mm]	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$
ANT11	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance [mm]	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$
ANT11	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Back right Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[m m]$	$\mathbf{2 2}$	$\mathbf{2 1}$	20	19	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$
ANT11	NO	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$
ANT11	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO	NO

ANT 13

Front Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[m \mathrm{~m}]$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$
ANT13	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
ANT13	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Rear Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[m m]$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$
ANT13	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[\mathbf{m m}]$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$
ANT13	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Top Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{2 5}$	$\mathbf{2 4}$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$
ANT13	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$
2	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distanceby rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0°.

The Rear evaluation

The Front edge evaluation

The Back Right edge evaluation

The Top edge evaluation
Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J Accreditation Certificate

