

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

TEST REPORT

For

WI-FI 600W DIMMER, SNGL POLE, REQUIRES NEUTRAL

MODEL NUMBER: SQR22601WHW

FCC ID: 2AUCU-22601W IC: 25381-22601W

REPORT NUMBER: 4789139401.4-1

ISSUE DATE: September 18, 2019

Prepared for

Schneider Electric (China) Co., Ltd., Shenzhen Branch Room 201, Building A, No. 1 Qianwanyi Road, Shengang Cooperation Zone, Qianhai, Shenzhen, China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

UL			REPORT	No.: 4789139401.4-1 Page 2 of 122
		Revis	ion History	
Rev.	Issue Date	Revisions		Revised By
V0	9/18/2019	Initial Issue		

Summary of Test Results				
Clause	Test Items	FCC/ISED Rules	Test Results	
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass	
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass	
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass	
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass	
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass	
6	Conducted Emission Test For AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	Pass	
7	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass	
Note: This test report is only published to and used by the applicant, and it is not for evidence purpose in China.				

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	6
2. TES	ST METHODOLOGY	7
3. FA	CILITIES AND ACCREDITATION	7
4. CA	LIBRATION AND UNCERTAINTY	8
4.1.	MEASURING INSTRUMENT CALIBRATION	8
4.2.	MEASUREMENT UNCERTAINTY	8
5. EQ	UIPMENT UNDER TEST	9
5.1.	DESCRIPTION OF EUT	9
5.2.	MAXIMUM OUTPUT POWER	9
5.3.	CHANNEL LIST	9
5.4.	TEST CHANNEL CONFIGURATION	9
5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5.6.	THE WORSE CASE CONFIGURATIONS	10
5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5.8.	DESCRIPTION OF TEST SETUP	11
6. ME	ASURING INSTRUMENT AND SOFTWARE USED	12
	ASURING INSTRUMENT AND SOFTWARE USED	
7. ME		13
7. ME	ASUREMENT METHODS	13 14
7. ME 8. AN	ASUREMENT METHODS	13 14 14
 7. ME 8. AN 8. 1. 8. 2. 8. 2. 	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1. 802.11b MODE	13 14 17 18
 7. ME 8. AN 8.1. 8.2. 8.2. 8.2. 	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1. 802.11b MODE	13 14 17 18 22
 7. ME 8. AN 8.1. 8.2. 8.2. 8.2. 	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1. 802.11b MODE. 2. 802.11g MODE.	13 14 14 17 18 22 26
 7. ME 8. AN 8.1. 8.2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE PEAK CONDUCTED OUTPUT POWER 1. 802.11b MODE	13 14 17 18 22 26 30 31
 7. ME 8. AN 8. 1. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1. 802.11b MODE 2. 802.11g MODE PEAK CONDUCTED OUTPUT POWER 1. 802.11b MODE 2. 802.11g MODE	13 14 17 18 22 26 30 31 31
 7. ME 8. AN 8.1. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.4. 	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE PEAK CONDUCTED OUTPUT POWER 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 3. 802.11n HT20 MODE POWER SPECTRAL DENSITY	13 14 17 18 22 26 30 31 31 31 31
 7. ME 8. AN 8. 1. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3. 8. 3. 8. 4. 8. 4. 	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE PEAK CONDUCTED OUTPUT POWER 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 1. 802.11b MODE 3. 802.11n HT20 MODE 1. 802.11b MODE	13 14 17 18 22 26 30 31 31 31 32 33
 7. ME 8. AN 8.1. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.4. 	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE PEAK CONDUCTED OUTPUT POWER 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 4. 802.11b MODE 5. 802.11b MODE 5. 802.11g M	13 14 17 18 22 26 30 31 31 31 32 33 35
 7. ME 8. AN 8.1. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4. 8.4. 8.4. 8.4. 8.5. 	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE PEAK CONDUCTED OUTPUT POWER. 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE POWER SPECTRAL DENSITY. 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 3. 802.11n HT20 MODE 3. 802.11n HT20 MODE 4. 802.11b MODE 5. 802.11n HT20 MODE 5. 802	13 14 17 18 22 26 30 31 31 31 31 32 33 35 37 39
 7. ME 8. AN 8. 1. 8. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3. 8. 3. 8. 4. 8. 4. 8. 4. 8. 4. 	ASUREMENT METHODS TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE PEAK CONDUCTED OUTPUT POWER. 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE POWER SPECTRAL DENSITY 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 3. 802.11n HT20 MODE 4. 802.11b MODE 5. 802.11b MODE 5. 802.11n HT20 MODE 5. 8	13 14 17 18 22 26 31 31 31 31 32 33 35 37 39 41

9. RADIATED TEST RESULTS	50
9.1. RESTRICTED BANDEDGE 9.1.1. 802.11b MODE	
9.1.2. 802.11g MODE 9.1.3. 802.11n HT20 MODE	60 68
 9.2. SPURIOUS EMISSIONS (3~18GHz) 9.2.1. 802.11b MODE 9.2.2. 802.11g MODE 9.2.3. 802.11n HT20 MODE 	76
9.3. SPURIOUS EMISSIONS (1~3GHz) 9.3.1. 802.11b MODE 9.3.2. 802.11g MODE 9.3.3. 802.11n HT20 MODE	94 100
9.4. SPURIOUS EMISSIONS (18~26GHz) 9.4.1. 802.11g MODE	
9.5. SPURIOUS EMISSIONS (0.03 ~ 1 GHz) 9.5.1. 802.11g MODE	
9.6. SPURIOUS EMISSIONS BELOW 30M 9.6.1. 802.11g MODE	
10. AC POWER LINE CONDUCTED EMISSIONS	119
10.1. 802.11g MODE	120
11. ANTENNA REQUIREMENTS	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Address:	Schneider Electric (China) Co., Ltd., Shenzhen Branch Room 201, Building A, No. 1 Qianwanyi Road, Shengang Cooperation Zone, Qianhai, Shenzhen, China
Manufacturer Information	
Company Name:	Schneider Electric (China) Co., Ltd., Shenzhen Branch
Address:	Room 201, Building A, No. 1 Qianwanyi Road, Shengang Cooperation Zone, Qianhai, Shenzhen, China
EUT Description	
EUT Name:	WI-FI 600W DIMMER, SNGL POLE, REQUIRES NEUTRAL
Model:	SQR22601WHW
Series Model:	SQR22601LAW, SQR22601BKW
Model difference:	All the same expect have different colors.
Sample Status:	Normal
Sample ID:	2520850 Sentember 02, 2010
Sample Received Date: Date of Tested:	September 03, 2019
Date of Tested.	September 04~18, 2019

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	PASS		
ISED RSS-247 Issue 2	PASS		
ISED RSS-GEN Issue 5	PASS		

Prepared By:

Kebo. zhang.

Kebo Zhang Engineer Project Associate

Approved By:

Aephenbus

Stephen Guo Laboratory Manager

Checked By:

Sherry les

Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:
	Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62dB		
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB		
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB		
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	5.78dB (1GHz-18Gz)		
	5.23dB (18GHz-26Gz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	WI-FI 600W DIMMER, SNGL POLE, REQUIRES NEUTRAL		
Model	SQR22601WHW		
Series Model:	SQR22601LAW, SQR22601BKW		
Model difference:	All the same expect have different colors.		
Radio Technology	IEEE802.11b/g/n HT20		
Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz		
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)		
Rated Input	AC 120V, 60Hz		

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Frequency (MHz)	Channel Number	Max AVG Conducted Power (dBm)
1	IEEE 802.11b	2412-2462	1-11[11]	14.15
1	IEEE 802.11g	2412-2462	1-11[11]	14.50
1	IEEE 802.11nHT20	2412-2462	1-11[11]	13.63

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	/	/

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	Low, Middle, High	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	Low, Middle, High	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT20)	Low, Middle, High	2412MHz, 2437MHz, 2462MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case	e Power Setting Param	neter under 2400	~ 2483.5MHz E	Band		
Test Soft	Test Software		SecureCRT			
-		Test So	oftware setting	value		
Modulation Mode	Modulation Mode Transmit Antenna Number	NCB: 20MHz				
	Number	CH 1	CH 6	CH 11		
802.11b	1	20	20	20		
802.11g	1	14	14	14		
802.11n HT20	1	18	18	18		

5.6. THE WORSE CASE CONFIGURATIONS

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	PIFA	2.7

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

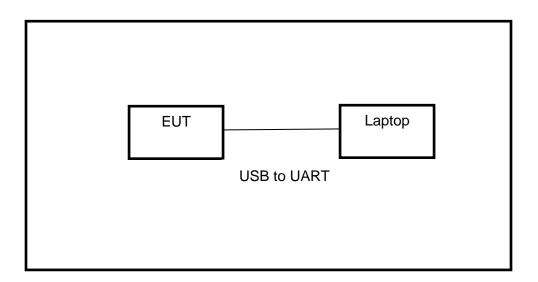
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	PC	Dell	Vostro 3902	8KNDDB2
2	USB TO UART	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	/		/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

6. MEASURING INSTRUMENT AND SOFTWARE USED

		Conc	lucted	d E	missi	ons			
Instrument Used Equipment Manufacturer Model No. Serial No. Last Cal. Next Ca									
Used	Equipment	Manufacturer	Model No.		Seria	al No.	Last Cal.	Next Cal.	
\checkmark	EMI Test Receiver	R&S	ESR3		101	961	Dec.10,2018	Dec.10,2019	
V	Two-Line V- Network	R&S	EN	NV2	216	101	983	Dec.10,2018	Dec.10,2019
V	Artificial Mains Networks	Schwarzbeck	NSL	_K 8	8126	812	6465	Dec.10,2018	Dec.10,2019
			Soft	twa	ire				
Used	Des	cription			Manu	ufactu	rer	Name	Version
\checkmark	Test Software for C	Conducted distu	rbance	е	F	arad		EZ-EMC	Ver. UL-3A1
		Rad	iated	En	nissio	ns			
			Instr	um	ent				
Used	Equipment	Manufacturer	Мо	del	No.	Seria	al No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	NS	N9038A		38A MY5640 036		Dec.10,2018	Dec.10,2019
V	Hybrid Log Periodic Antenna	TDK	HLP-3003C		130960		Sep.17, 2018	Sep.17, 2021	
V	Preamplifier	HP	8447D		2944A090 99		Dec.10,2018	Dec.10,2019	
V	EMI Measurement Receiver	R&S	E	ESR26 1		101	377	Dec.10,2018	Dec.10,2019
\checkmark	Horn Antenna	TDK	HRI	N-C)118	130939		Sep.17, 2018	Sep.17, 2021
V	High Gain Horn Antenna	Schwarzbeck	BBH	IA-9	9170	6	91	Aug.11, 2018	Aug.11, 2021
V	Preamplifier	TDK	PA-0	02-	0118		-305- 066	Dec.10,2018	Dec.10,2019
V	Preamplifier	TDK	PA	۹-02	2-2		-307- 003	Dec.10,2018	Dec.10,2019
\checkmark	Loop antenna	Schwarzbeck	1	519)B	00	800	Jan.07,2019	Jan.07, 2022
V	Band Reject Filter	Wainwright	2350 24	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS			4	Dec.10,2018	Dec.10,2019
V	High Pass Filter	Wi	2700	0-3	(10- 000- 40SS	2	23	Dec.10,2018	Dec.10,2019
			Soft	twa	ire				
Used	Descr	iption	I	Ma	nufact	urer		Name	Version
\checkmark	Test Software for R	adiated disturba	ince		Farac	k		EZ-EMC	Ver. UL-3A1

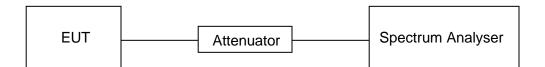
	Other instruments									
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.				
\checkmark	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.10,2018	Dec.10,2019				
\checkmark	Power Meter	Keysight	N1911A	MY55416024	Dec.10,2018	Dec.10,2019				
\checkmark	Power Sensor	Keysight	U2021XA	MY5100022	Dec.10,2018	Dec.10,2019				

7. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Peak Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non- restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2
8	99% Bandwidth	ANSI C63.10-2013	6.9.3

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

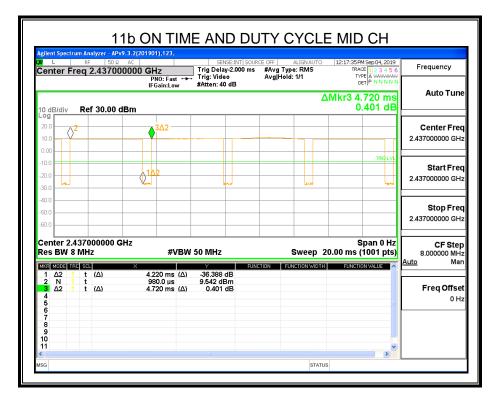
TEST ENVIRONMENT

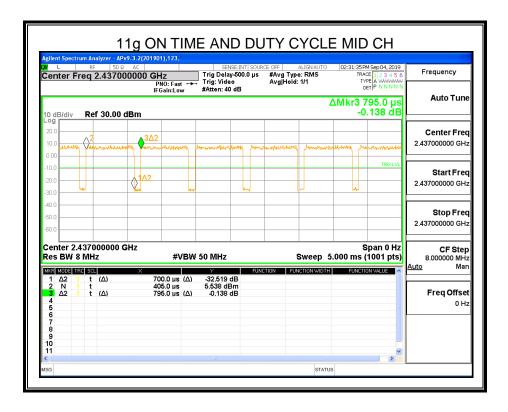
Temperature	24.6°C	Relative Humidity	57%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11b	4.220	4.720	0.894	89.4	0.487	0.24	0.5
11g	0.700	0.795	0.881	88.1	0.550	1.43	1.5
11n20	0.665	0.760	0.875	87.5	0.580	1.50	1.5

Note:


Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)

Where: T is On Time

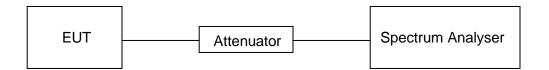
If that calculated VBW is not available on the analyzer then the next higher value should be used.

Frequency	PM Sep 04, 2019 ACE 1 2 3 4 5 6 YPE A WANNAW DET P N N N N N	TR		#Avg Type Avg Hold:) ¹	Trig Delay Trig: Vide	PNO: Fast ++	50 Ω AC 37000000	RF eq 2.4	ter Fr
Auto Tune	760.0 μs 0.439 dB	۵Mkr3	2		dB	#Atten: 40	IFGain:Low	.00 dBm	Ref 30	3/div
Center Fred 2.437000000 GH	Mary Land	1 th out when the	with Maples	un Martin	ر در می ^ر اور م	whether the	methoda 11. 11.	3∆2	Whanna	ka taka
Start Free 2.437000000 GH:	TRIGLVL									
Stop Fred 2.437000000 GH:										
CF Step 8.000000 MH: Auto Mar	Span 0 Hz (1001 pts)	.000 ms	<u> </u>			50 MHz	#VBW	000 GHz	MHz	BW 8
Freq Offse	FION VALUE	FUNCT	TION WIDTH	TION FUN	n	-21.404 c -5.718 dB 10.439 c	665.0 μs (Δ) 185.0 μs 760.0 μs (Δ)	X	t (Δ) t t (Δ)	400e TR0 Δ2 1 Ν 1 Δ2 1

8.2. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500KHz	2400-2483.5	
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5	

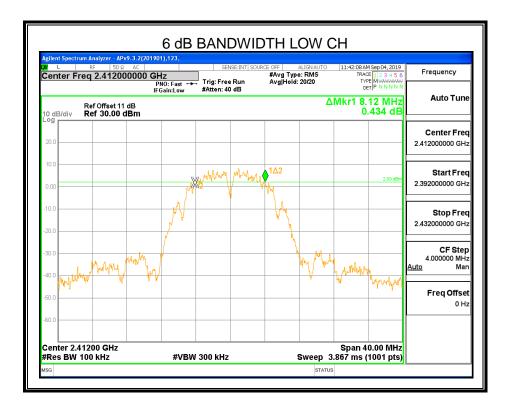

TEST PROCEDURE

Center Frequency	The centre frequency of the channel under test
Detector	Peak
IP B W	For 6dB Bandwidth :100K For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
VBW	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

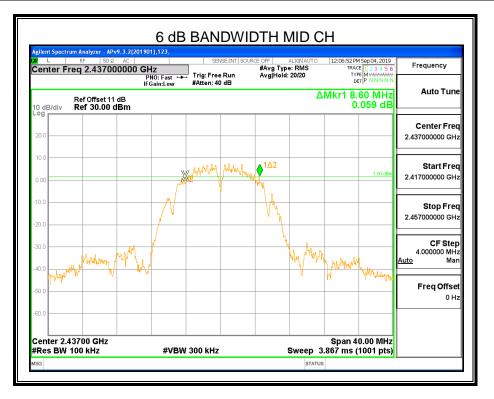
Connect the UUT to the spectrum analyser and use the following settings:

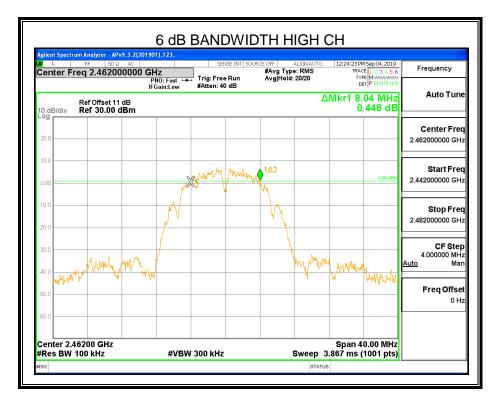
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

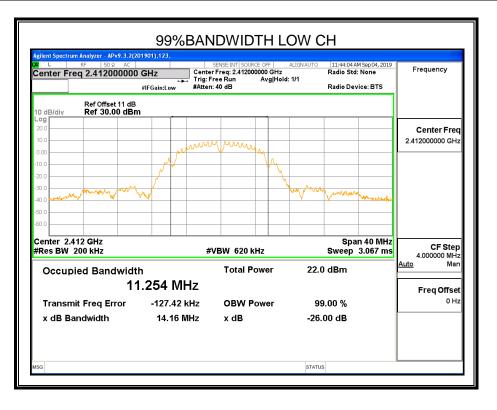

TEST ENVIRONMENT

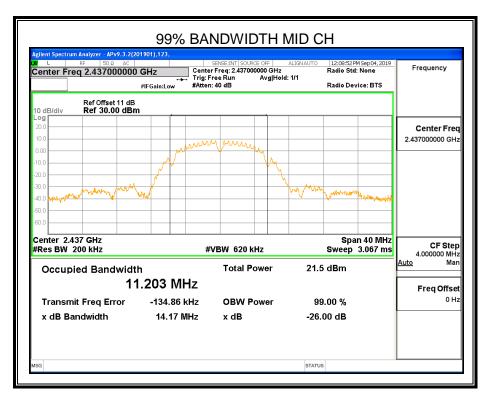
Temperature	24.6°C	Relative Humidity	57%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

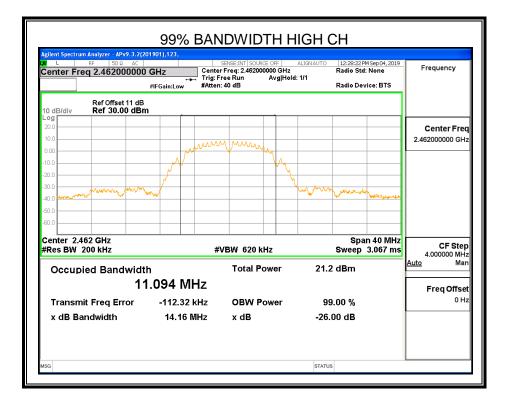

RESULTS

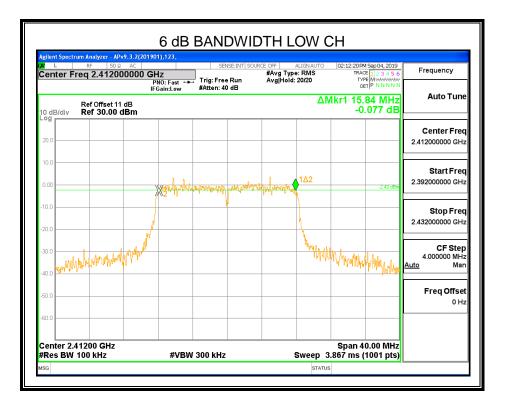

8.2.1. 802.11b MODE

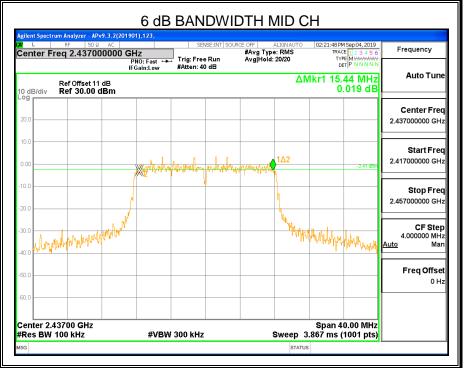
Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	8.12	11.254	≥500	Pass
Middle	8.60	11.203	≥500	Pass
High	8.04	11.094	≥500	Pass

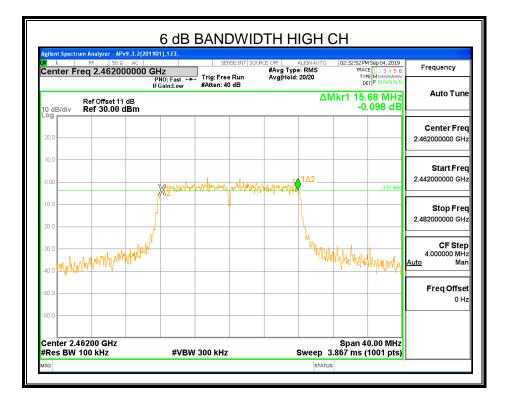




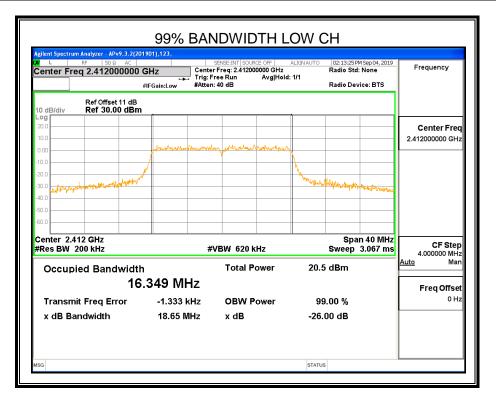


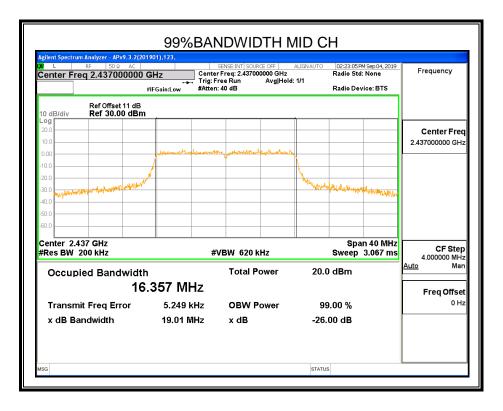




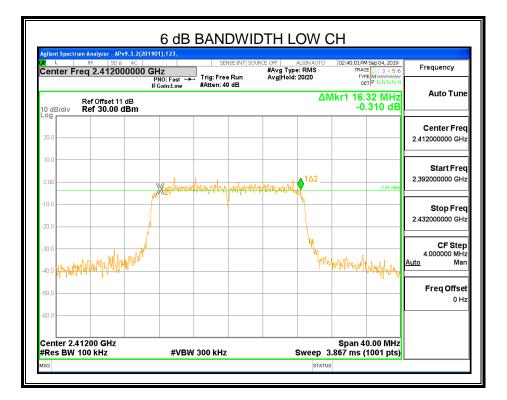

8.2.2. 802.11g MODE

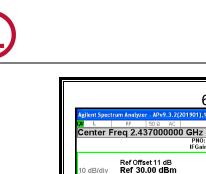
Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	15.84	16.349	≥500	Pass
Middle	15.44	16.357	≥500	Pass
High	15.68	16.345	≥500	Pass

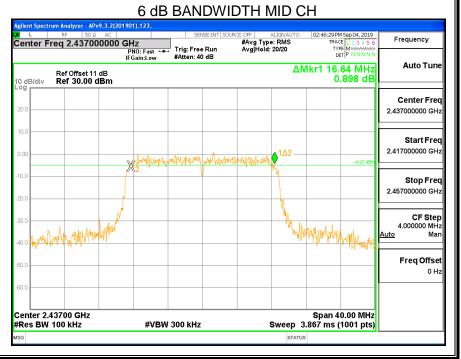


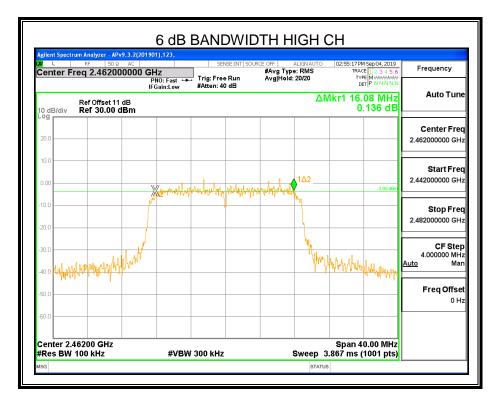




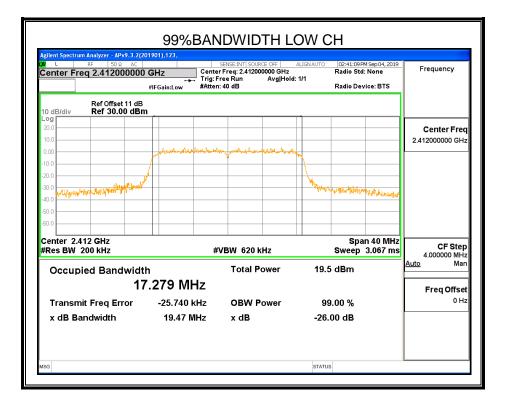


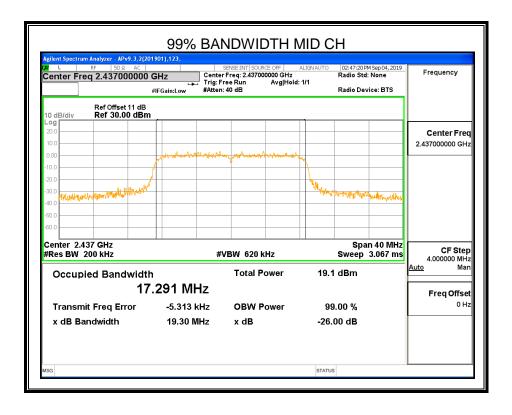


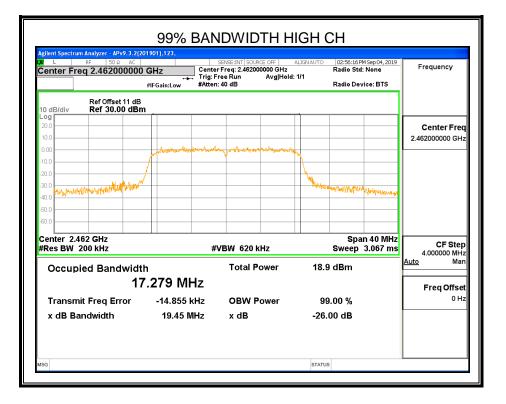



8.2.3. 802.11n HT20 MODE

Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	16.32	17.279	≥500	Pass
Middle	16.64	17.291	≥500	Pass
High	16.08	17.279	≥500	Pass

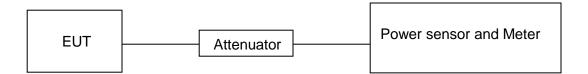






8.3. PEAK CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Output Power	1 watt or 30dBm	2400-2483.5	

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor. Measure the power of each channel. Peak Detector use for Peak result.

AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6°C	Relative Humidity	57%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

8.3.1. 802.11b MODE

Test Channel	Maximum Conducted Output Power(PK)	Maximum Conducted Output Power(AV)	LIMIT
	(dBm)	(dBm)	dBm
Low	17.360	14.15	30
Middle	17.340	13.95	30
High	16.720	13.42	30

8.3.2. 802.11g MODE

Test Channel	Maximum Conducted Output Power(PK)	Maximum Conducted Output Power(AV)	LIMIT
	(dBm)	(dBm)	dBm
Low	23.697	14.50	30
Middle	23.385	14.42	30
High	22.937	14.22	30

8.3.3. 802.11n HT20 MODE

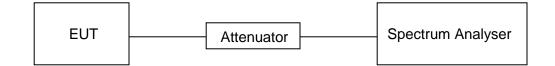
Test Channel	Maximum Conducted Output Power(PK)	Maximum Conducted Output Power(AV)	LIMIT
	(dBm)	(dBm)	dBm
Low	23.346	13.63	30
Middle	23.257	13.50	30
High	22.710	13.20	30

8.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

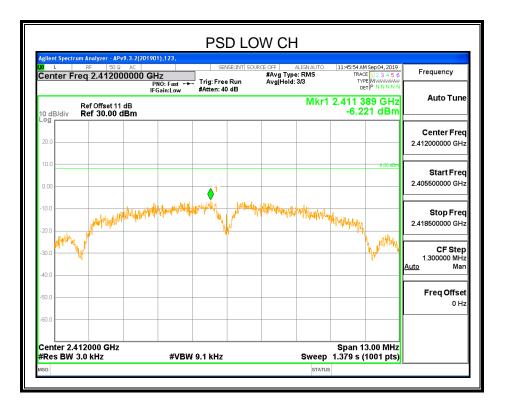
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

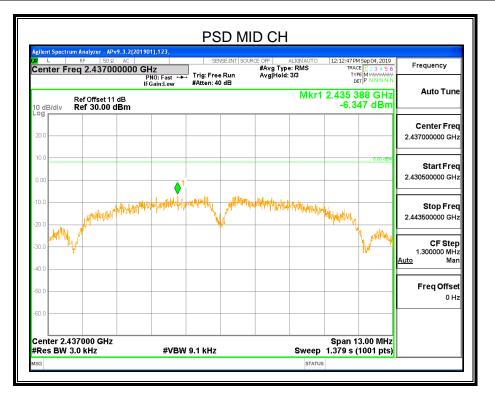
If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

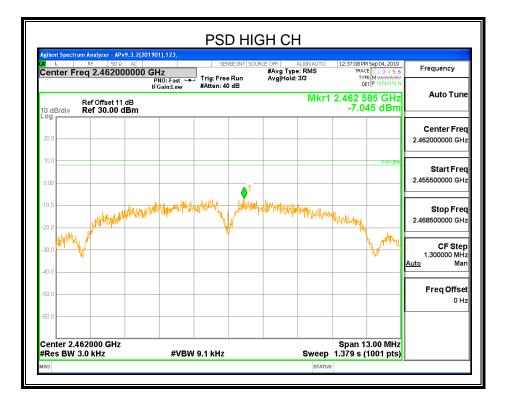
TEST SETUP

TEST ENVIRONMENT

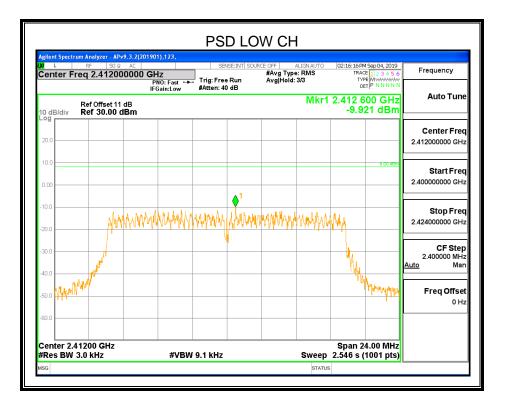

Temperature	24.6°C	Relative Humidity	57%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

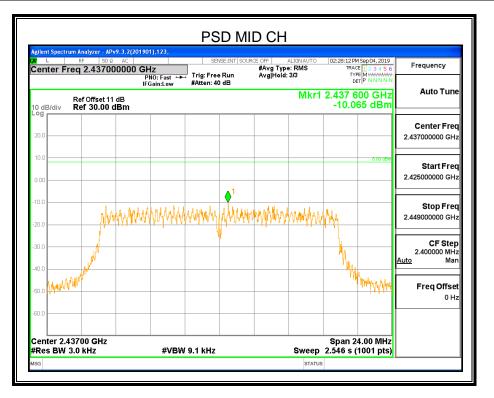
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

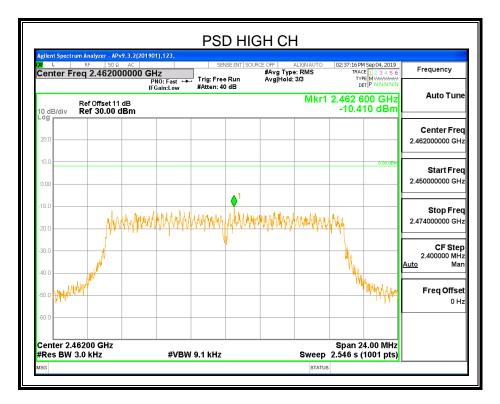



8.4.1. 802.11b MODE

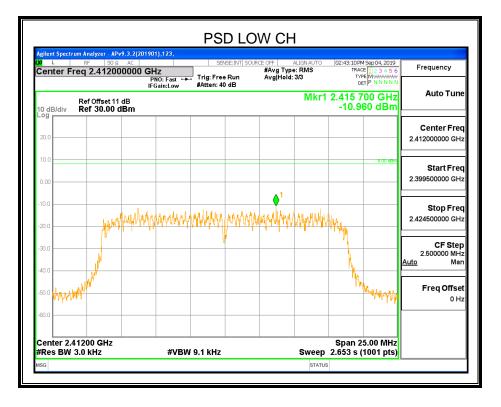
Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low	-6.221	8	PASS
Middle	-6.347	8	PASS
High	-7.045	8	PASS

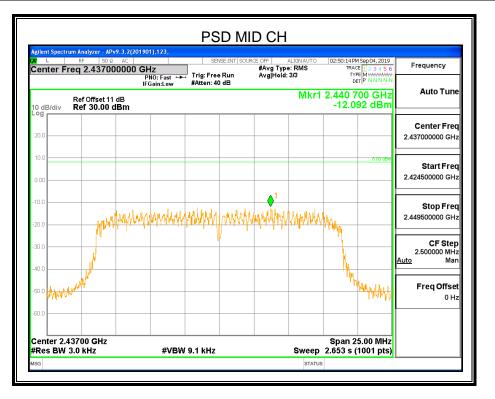


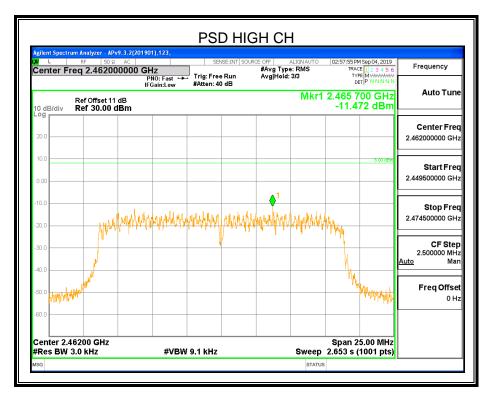



8.4.2. 802.11g MODE

Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low	-9.921	8	PASS
Middle	-10.065	8	PASS
High	-10.410	8	PASS






Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low	-10.960	8	PASS
Middle	-12.092	8	PASS
High	-11.472	8	PASS

8.4.3. 802.11n HT20 MODE

8.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

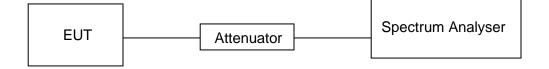
<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit		Limit		
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power		

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

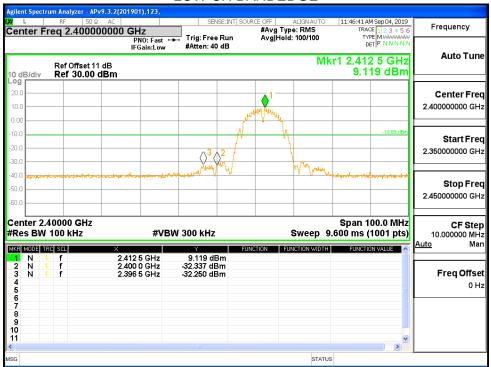
Center Frequency	he centre frequency of the channel under test	
Detector	Peak	
RBW	100K	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	


Use the peak marker function to determine the maximum PSD level.

12090	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

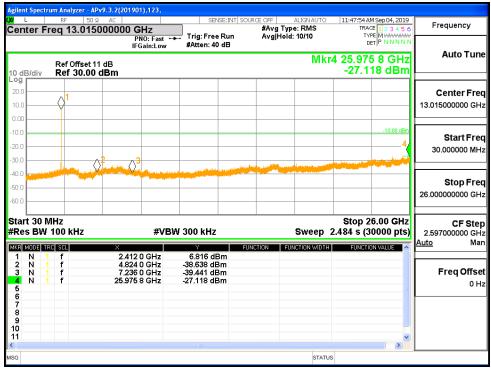
Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

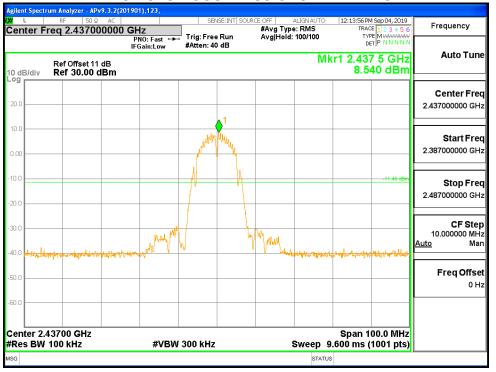


TEST ENVIRONMENT

Temperature	24.7°C	Relative Humidity	57%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

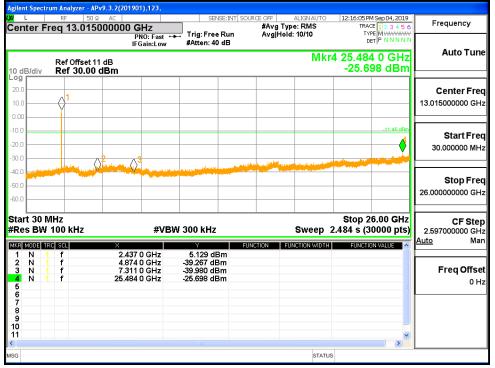

RESULTS

8.5.1. 802.11b MODE



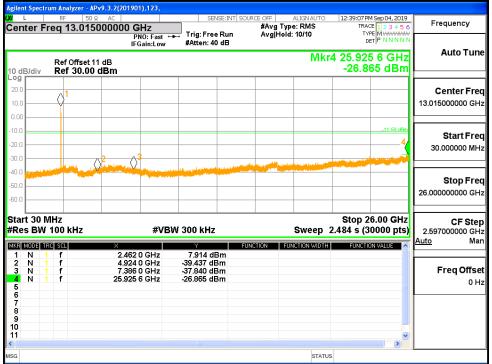
LOW CH BANDEDGE

LOW CH SPURIOUS EMISSIONS 30M-26G

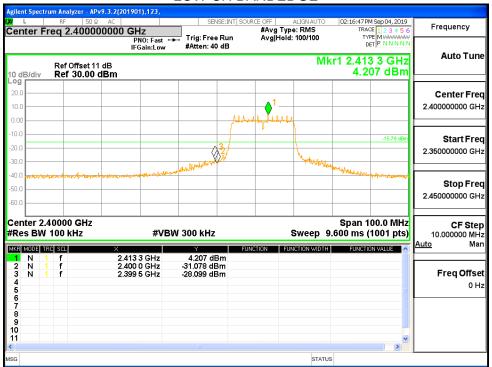


MID CH SPURIOUS EMISSIONS REFERENCE

MID CH SPURIOUS EMISSIONS 30M-26G

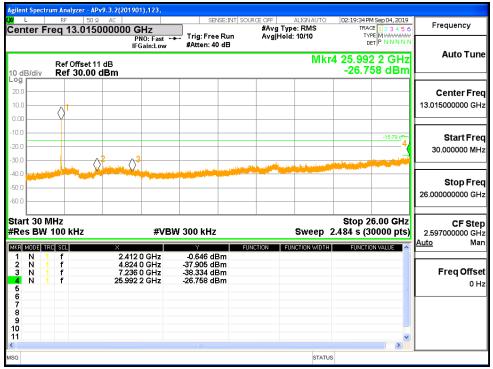


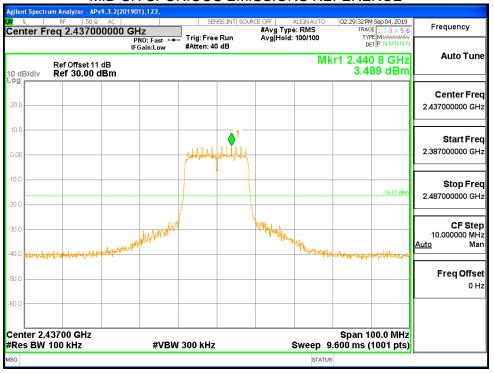
UL


HIGH CH BANDEDGE

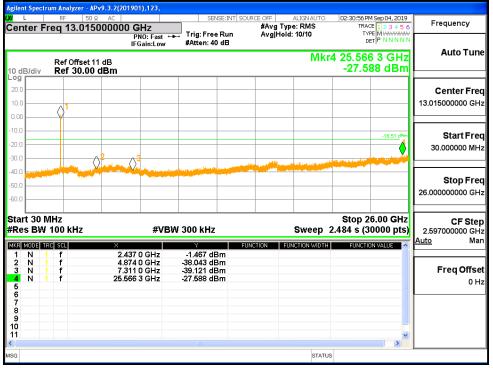
Agilent Spectrum Analyzer - APv9.3.2(201901),123,				
L RF 50Ω AC	SENSE:INT SOURCE OFF	ALIGN AUTO	12:38:05 PM Sep 04, 2019	Frequency
Center Freq 2.483500000 GHz		Type: RMS	TRACE 1 2 3 4 5 6	Frequency
PNO: Fast ↔ IFGain:Low	[⊥] Trig: Free Run Avgj #Atten: 40 dB	Hold: 100/100	DET P N N N N N	
Ref Offset 11 dB		Mk	r1 2.462 5 GHz	Auto Tune
10 dB/div Ref 30.00 dBm			8.416 dBm	
20.0				Center Freq
10.0				2.483500000 GHz
0.00				
-10.0			-11.58 dBm	Start Freq
-20.0	0.02			2.433500000 GHz
-30.0 -40.0 month of the man of t	Variant 2 2	والمحقير والرفار والإلى ومريد ومريد الاروان	Walnut marks with miles to be	
-50.0				Stop Freq
-60.0				2.533500000 GHz
Center 2.48350 GHz			Span 100.0 MHz	05.04
· · · · · · · · · · · · · · · · · · ·	300 kHz	Sweep 9.	600 ms (1001 pts)	CF Step 10.000000 MHz
MKR MODE TRC SCL X	Y FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
	8.416 dBm -37.306 dBm			
3 N 1 f 2.483 5 GHz 4	-39.324 dBm			Freq Offset 0 Hz
5 6				0112
4 5 6 7 8 9				
10				
11			×	
MSG		STATUS		

HIGH CH SPURIOUS EMISSIONS 30M-26G



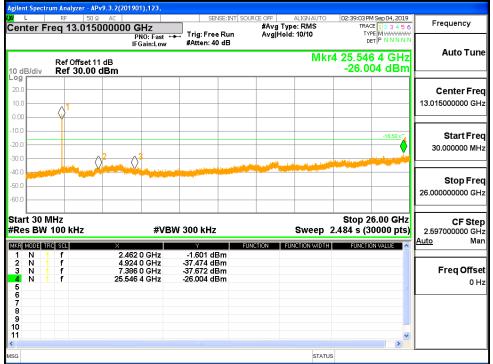

8.5.1. 802.11g MODE

LOW CH BANDEDGE

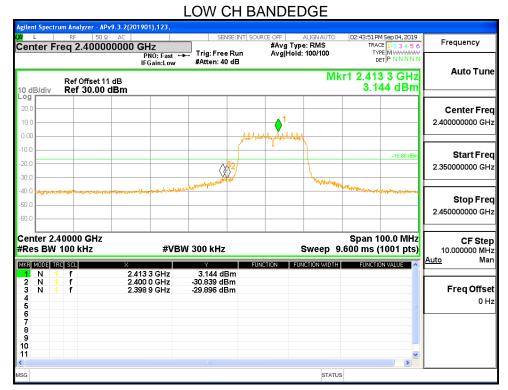

LOW CH SPURIOUS EMISSIONS 30M-26G

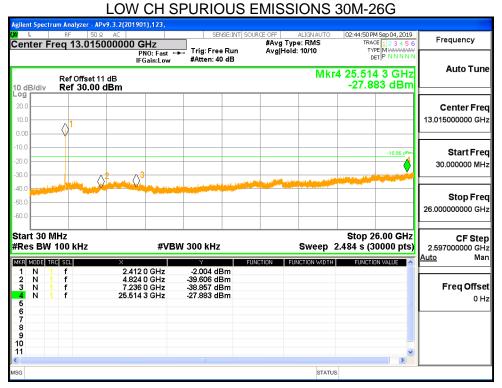
MID CH SPURIOUS EMISSIONS REFERENCE

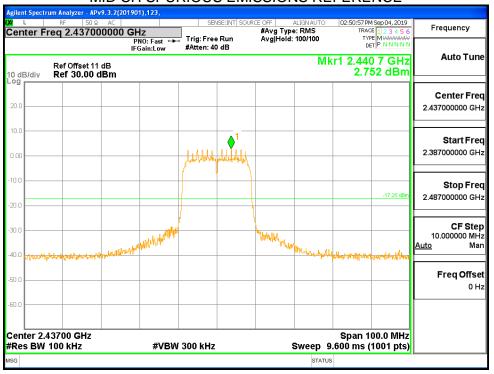
MID CH SPURIOUS EMISSIONS 30M-26G



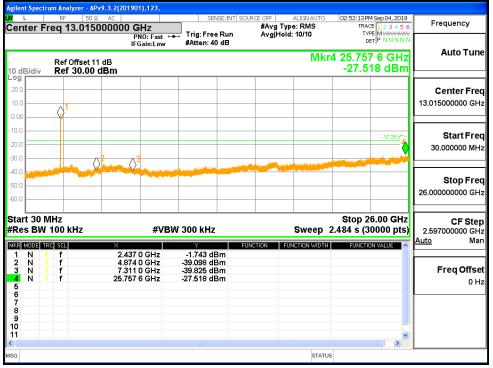
HIGH CH BANDEDGE


Center Freq 2.483500000 GHz Trig: Free Run IFGain:Low #Avg Type: RMS AvgIHold: 100/100 TRACE [1:2:3:4:5:6 PYPE MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	Agilent Spectrum Analyzer - APv9.3.2(20	1901),123,						
Center Fred 2.483500000 GH PNO: Fast Trig: Free Run #Atten: 40 dB PNO: Fast Trig: Free Run #Atten: 40 dB Mkr1 2.463 3 GHz 3.499 dBm Auto Tun 10 dB/div Ref 00ffset 11 dB Mkr1 2.463 3 GHz 3.499 dBm Center Free 2.483500000 GH Center Free 2.483500000 GH 10 dB/div 1<	L RF 50Ω AC		SENSE:INT S					Fragmanau
PNO: Fast Trg: Free Run IFGain:Low Avg Hold: 100/100 International Processing Auto Tun 10 dB/div Ref Offset 11 dB Mkr1 2.463 3 GHz 3.499 dBm Auto Tun 10 dB/div Ref 30.00 dBm 3.499 dBm Center Free 2.483500000 GH 100 -16.50 dBm Start Free 2.433500000 GH Start Free 2.433500000 GH -400 -400 -16.50 dBm Start Free 2.433500000 GH	Center Freq 2.483500000	GHz						Frequency
Ref Offset 11 dB Mkr1 2.463 3 GHz Auto Tun 10 dB/div Ref 30.00 dBm 3.499 dBm Center Free 200 1 2.46350000 GH 2.46350000 GH 100 1 1.1650 dBm Start Free 200 - - - Start Free 200 - - - - 100 - - - - 200 - - - - 200 - - - - 200 - - - - 200 - - - - 200 - - - - 200 - - - - 200 - - - - - 200 - - - - - 200 - - - - - 200 - - - - <th></th> <th>PNO: Fast +++</th> <th></th> <th>Avg Hold:</th> <th>100/100</th> <th>TYI</th> <th></th> <th></th>		PNO: Fast +++		Avg Hold:	100/100	TYI		
Ref Offset 11 dB MRCH 2.4653 3 GHz 10 dB/div Ref 30.00 dBm 3.499 dBm 200 1 1 100 1 <		IFGain:Low	#Atten: 40 dB			Di	The residue resid	
10 dB/dlv Ref 30.00 dBm 3.499 dBm 200 1 1 100 1 100 1					Mk	r1 2 461	3 3 GHZ	Auto Tune
Control Conter Free 200 1 -								
200 1 Center Free 100 1	10 dB/div Ref 30.00 dBm					5.4	ээ авш	
10.0 1 2.483500000 GH 10.0 1.1. 1.1. 10.0 1.1. 1.1. 10.0 1.1. 1.1. 10.0 1.1. 1.1. 10.0 1.1. 1.1. 10.0 1.1. 1.1. 10.0 1.1. 1.1. 10.0 1.1. 1.1. 10.0 1.1. 1.1. 10.0 1.1. 1.1. 2.00 1.1. 1.1. 2.00 1.1. 1.1. 2.00 1.1. 1.1. 2.00 1.1. 1.1. 2.00 1.1. 1.1. 2.00 1.1. 1.1. 2.00 1.1. 1.1. 2.00 1.1. 1.1. 3.00 1.1. 1.1. 4.0.0 1.1. 1.1. 4.0.0 1.1. 1.1. 4.0.0 1.1. 1.1. 4.0.0 1.1. 1.1.	Log							
0.00 10.0	20.0							Center Freq
0.00 10.0	10.0	1						2 /83500000 GHz
Start Free Start Free 200		V						2.40000000 0112
-20.0 -30.0 -40.0	0.00	aligned Aufled					I	
-20.0 -30.0 -40.0	-10.0							
-30.0 -40.0	-10.0	4					-16.50 dBm	Start Freq
-30.0 -40.0	-20.0							2 433500000 GHz
Stop Fred	30.0	Margaret .						2
Stop Fred	SOLO A MANATANY		PT WITH WALL					
so Stop Free	-40.0 March 197		which gold on	man and a second second	and the state of the second		And the state of t	
	-50.0							Stop Freq
2.533500000 GH								2.533500000 GHz
-60.0	-60.0						I	
Center 2.48350 GHz CF Stel	Center 2.48350 GHz					Span 1	00.0 MHz	CF Step
	#Res BW 100 kHz	#VBW :	300 kHz	9	Sweep 9			10.000000 MHz
Auto Ma					· ·		<u> </u>	
MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 🔼				UNCTION FUN	ICTION WIDTH	FUNCTIO	IN VALUE 🔼 🔼	<u>Auto</u> Mair
1 N 1 f 2.463 3 GHz 3.499 dBm								
2 N 1 f 2.484 2 GHz -36.545 dBm Freq Offset	2 N 1 f 2.4							
3 N 1 f 2.483 5 GHz -37.669 dBm Freq Offse	3 N 1 f 2.4	183 5 GHz -	37.669 dBm					Freq Offset
6 OH	5							0 Hz
	6						=	
7	7							
8	8							
9	9							
10	10							
	11						~	
							>	
MSG STATUS	MSG				STATUS	6		


HIGH CH SPURIOUS EMISSIONS 30M-26G



8.5.1. 802.11n HT20 MODE



MID CH SPURIOUS EMISSIONS REFERENCE

MID CH SPURIOUS EMISSIONS 30M-26G

HIGH CH BANDEDGE

Agilent Spectrum Analyzer - APv					
<mark>μμ L</mark> RF 50 Ω	AC	SENSE:INT S			Frequency
Center Freq 2.48350		Trig: Free Run	#Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE M MANAMAN	riequency
	PNO: Fast ← IFGain:Low	#Atten: 40 dB		DET P N N N N	
				Mkr1 2.465 7 GHz	Auto Tune
Ref Offset 11 10 dB/div Ref 30.00 d				2.278 dBm	
Log					
20.0					Center Freq
10.0					2.483500000 GHz
					2.400000000000112
0.00	tal Alatha alde belalas				
-10.0	•			-17.72 dBm	Start Freq
-20.0				-17.72 dbh	2.433500000 GHz
-30.0	<u> </u>	A2			2.400000000000112
-30.0		Warner Marian			
			Maghenderson and the second second second	Discrete and a state of the second state of th	Stop Freq
-50.0					2.533500000 GHz
-60.0					2.00000000000000
Center 2.48350 GHz			-	Span 100.0 MHz	CF Step
#Res BW 100 kHz	#VBI	N 300 kHz	Sweep	9.600 ms (1001 pts)	10.000000 MHz
MKR MODE TRC SCL	X	Y	FUNCTION FUNCTION WIE	OTH FUNCTION VALUE	<u>Auto</u> Man
1 N 1 f	2.465 7 GHz	2.278 dBm			
2 N 1 f 3 N 1 f 4 5 6 7 7 8 9 9 10	2.483 6 GHz 2.483 5 GHz	-36.001 dBm -37.354 dBm			Freq Offset
4	2.400 0 0112	or too quality			0 Hz
5					0112
7					
8					
9					
11				×	
<				>	
MSG			ST	ATUS	

HIGH CH SPURIOUS EMISSIONS 30M-26G

9. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209

Please refer to ISED RSS-GEN Clause 8.9 (Transmitter)

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

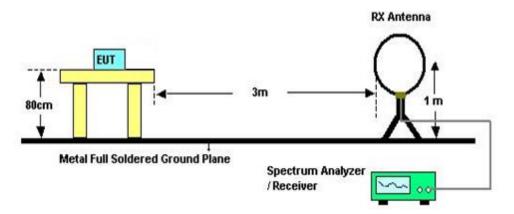
Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)		
	Peak	Average	
Above 1000	74	54	

IC Restricted bands please refer to ISED RSS-GEN Clause 8.10 FCC Restricted bands of operation:


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7- <mark>1</mark> 56.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

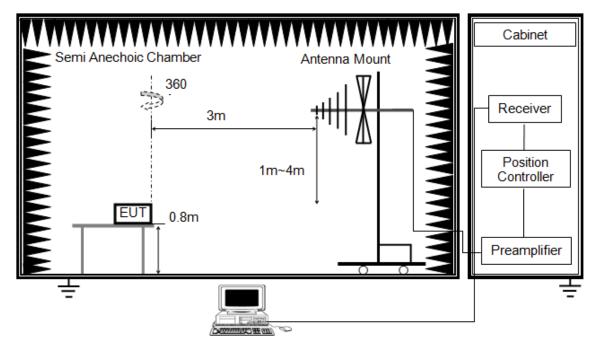
1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.


6. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

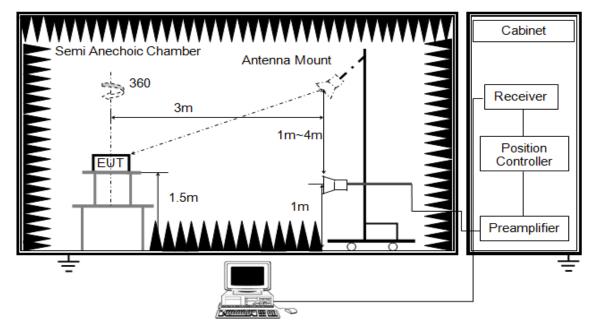
Below 1G

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

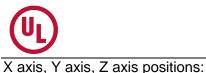
5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

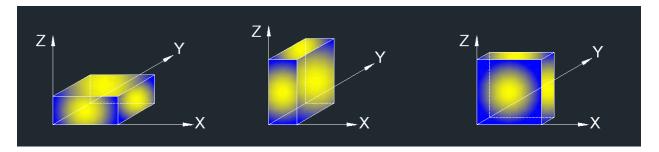
ABOVE 1G

The setting of the spectrum analyser

RBW	1M
IV BWV	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 8.1.ON TIME AND DUTY CYCLE.

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST ENVIRONMENT

Temperature	22.6°C	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

9.1. RESTRICTED BANDEDGE

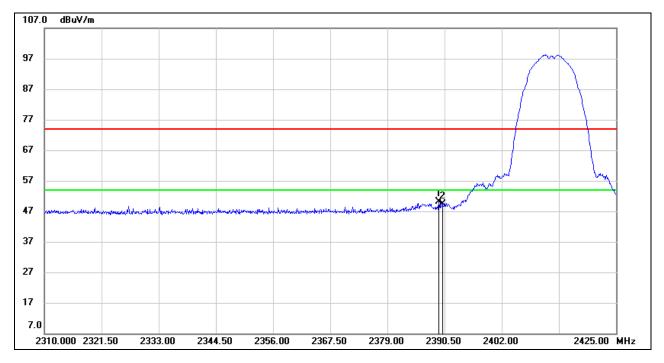
9.1.1. 802.11b MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2386.130	19.06	32.93	51.99	74.00	-22.01	peak
2	2390.000	17.00	32.94	49.94	74.00	-24.06	peak

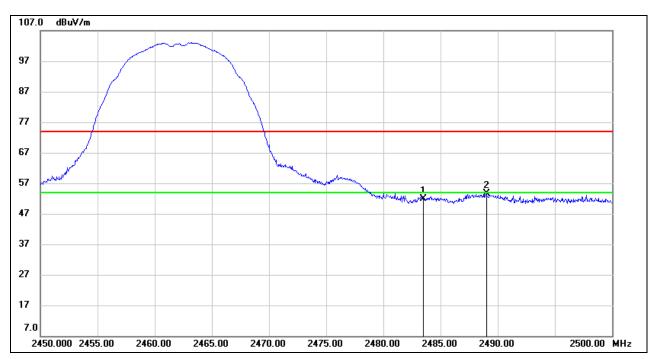
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.350	17.15	32.94	50.09	74.00	-23.91	peak
2	2390.000	16.32	32.94	49.26	74.00	-24.74	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

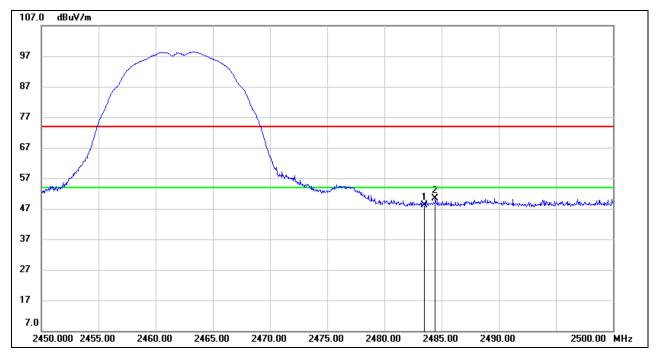
RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.24	33.58	51.82	74.00	-22.18	peak
2	2489.000	19.93	33.62	53.55	74.00	-20.45	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

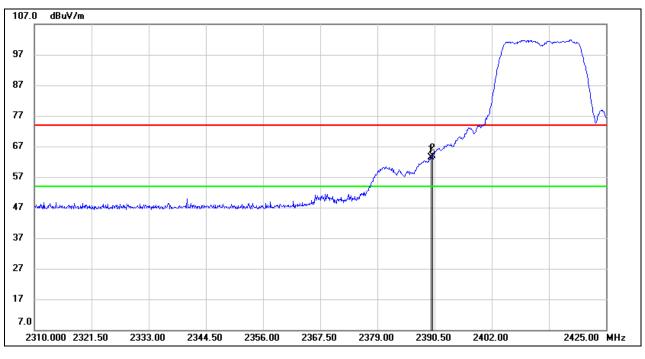
<u>PEAK</u>

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.67	33.58	48.25	74.00	-25.75	peak
2	2484.450	16.83	33.59	50.42	74.00	-23.58	peak

Note: 1. Measurement = Reading Level + Correct Factor.

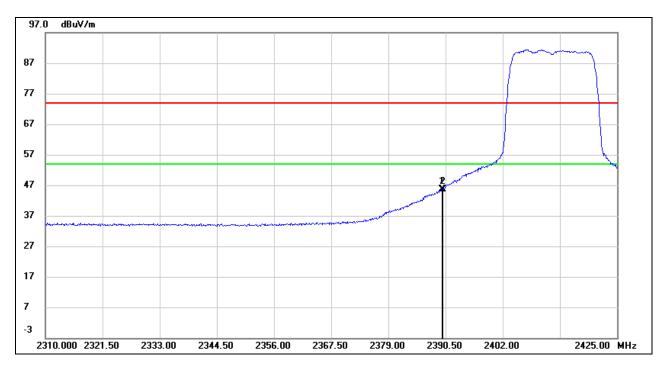

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

9.1.2. 802.11g MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.810	30.40	32.94	63.34	74.00	-10.66	peak
2	2390.000	30.85	32.94	63.79	74.00	-10.21	peak

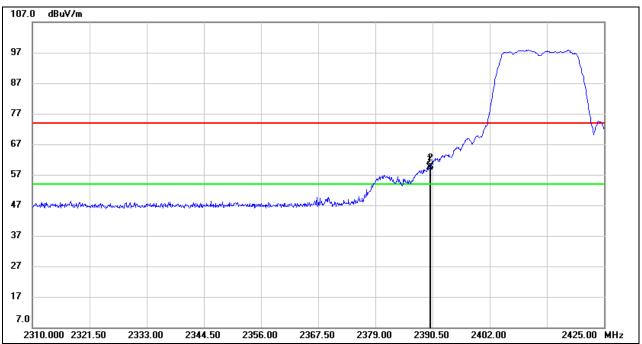
Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.810	12.67	32.94	45.61	54.00	-8.39	AVG
2	2390.000	12.77	32.94	45.71	54.00	-8.29	AVG

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

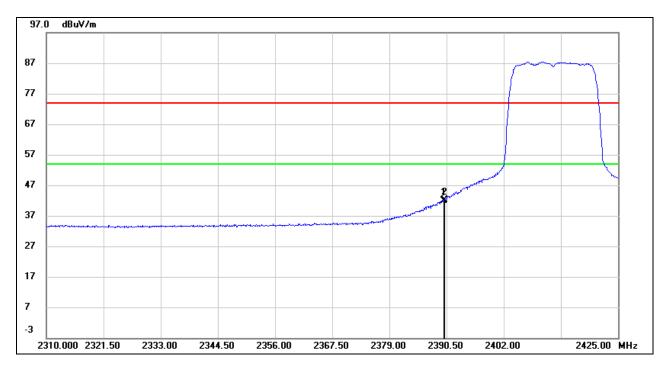
4. For transmit duration, please refer to clause 8.1.

AL) RE

ESTRICTED	BANDEDGE	(LOW	CHANNEL,	VERTICA

PEAK

2310.00	0 2321.50 2	333.00 2344.50	2356.00	2367.50 237	9.00 2390.50	2402.00	2425.00 MI
2310.00	10 ZJZ1.JU Z		2330.00	2301.30 231	3.00 2330.30	2402.00	242J.00 MI
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Roman
1	2389.925	26.51	32.94	59.45	74.00	-14.55	peak
2	2390.000	27.00	32.94	59,94	74.00	-14.06	peak


Note: 1. Measurement = Reading Level + Correct Factor.

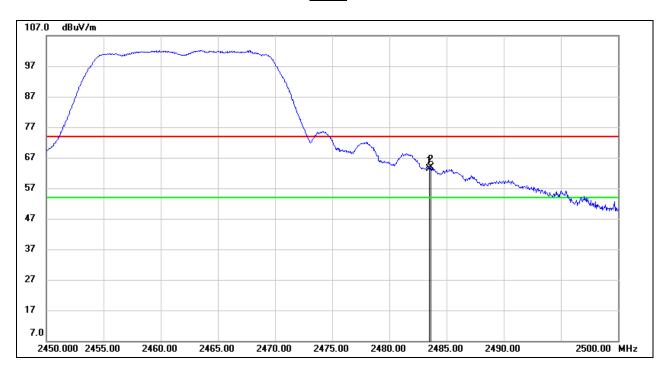
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.925	8.92	32.94	41.86	54.00	-12.14	AVG
2	2390.000	9.08	32.94	42.02	54.00	-11.98	AVG

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

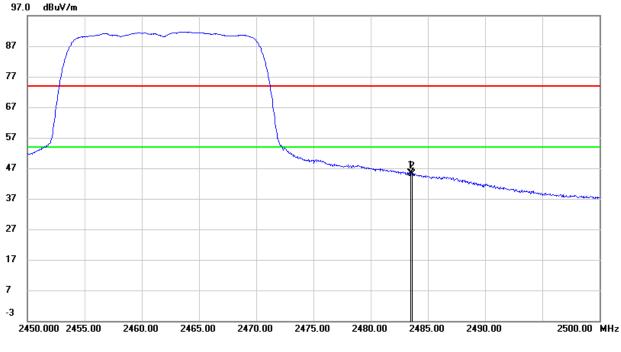
4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	29.85	33.58	63.43	74.00	-10.57	peak
2	2483.600	30.34	33.58	63.92	74.00	-10.08	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

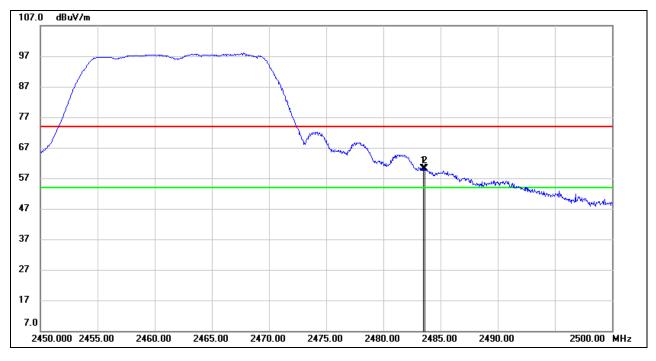
<u>PEAK</u>

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	11.77	33.58	45.35	54.00	-8.65	AVG
2	2483.600	11.60	33.58	45.18	54.00	-8.82	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

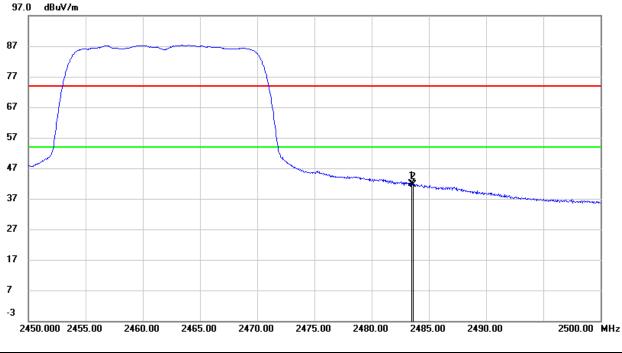
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	26.61	33.58	60.19	74.00	-13.81	peak
2	2483.600	26.52	33.58	60.10	74.00	-13.90	peak

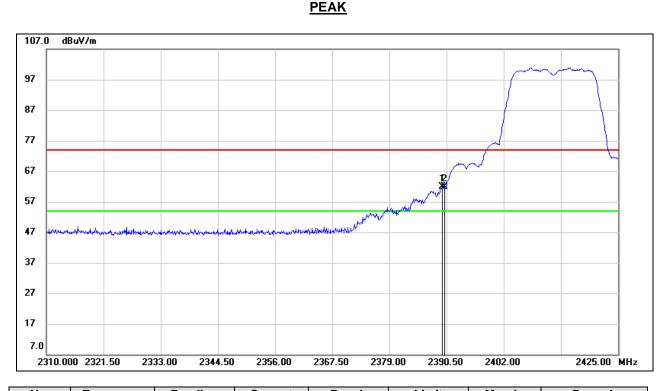
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	8.27	33.58	41.85	54.00	-12.15	AVG
2	2483.600	7.99	33.58	41.57	54.00	-12.43	AVG

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

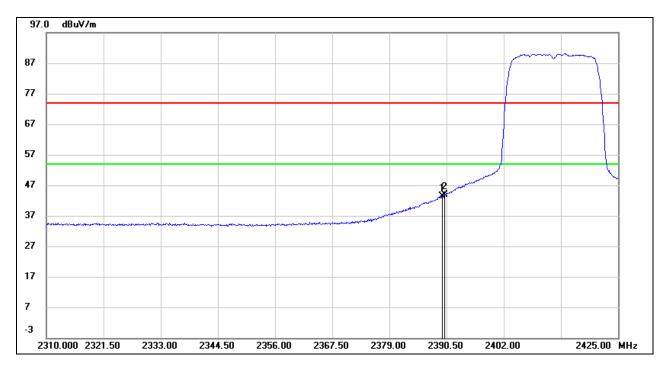
3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

9.1.3. 802.11n HT20 MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.695	28.91	32.94	61.85	74.00	-12.15	peak
2	2390.000	28.85	32.94	61.79	74.00	-12.21	peak


Note: 1. Measurement = Reading Level + Correct Factor.

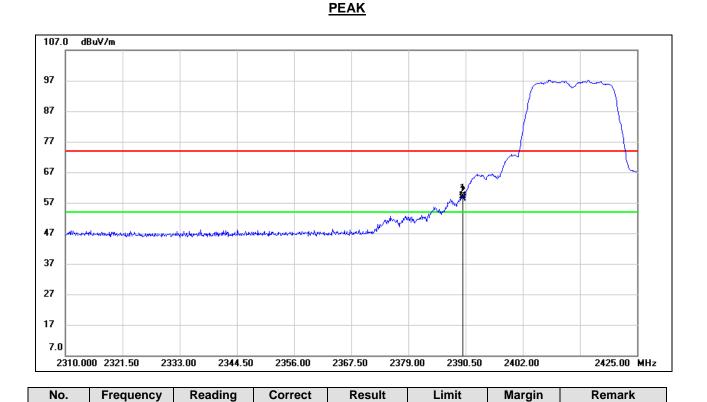
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.695	10.44	32.94	43.38	54.00	-10.62	AVG
2	2390.000	10.87	32.94	43.81	54.00	-10.19	AVG

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RES :AL)

STRICTED BANDEDGE	<u>(LOW CHANNEL,</u>	VERTIC

Note: 1. Measurement = Reading Level + Correct Factor.

(dBuV/m)

26.23

25.44

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

(dBuV/m)

59.17

58.38

(dBuV/m)

74.00

74.00

(dB)

-14.83

-15.62

peak

peak

3. Peak: Peak detector.

(MHz)

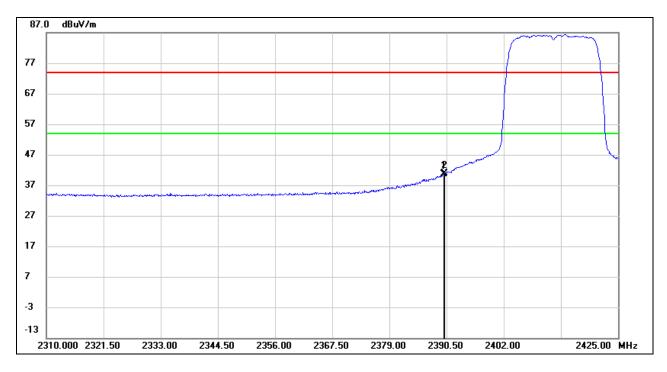
2389.925

2390.000

1

2

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


(dB/m)

32.94

32.94

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.925	7.61	32.94	40.55	54.00	-13.45	AVG
2	2390.000	7.92	32.94	40.86	54.00	-13.14	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	30.17	33.58	63.75	74.00	-10.25	peak

Note: 1. Measurement = Reading Level + Correct Factor.

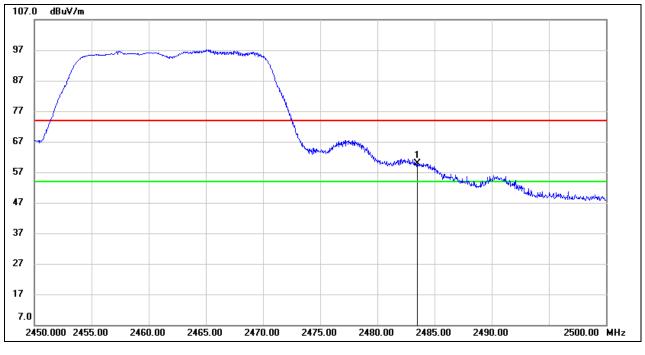
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

110.	Trequency	Reading	001001	Reodit		margin	Roman
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	9.81	33.58	43.39	54.00	-10.61	AVG

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

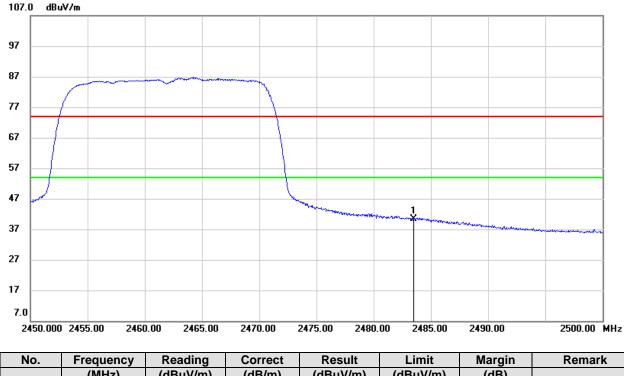

4. For transmit duration, please refer to clause 8.1.

5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	26.29	33.58	59.87	74.00	-14.13	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

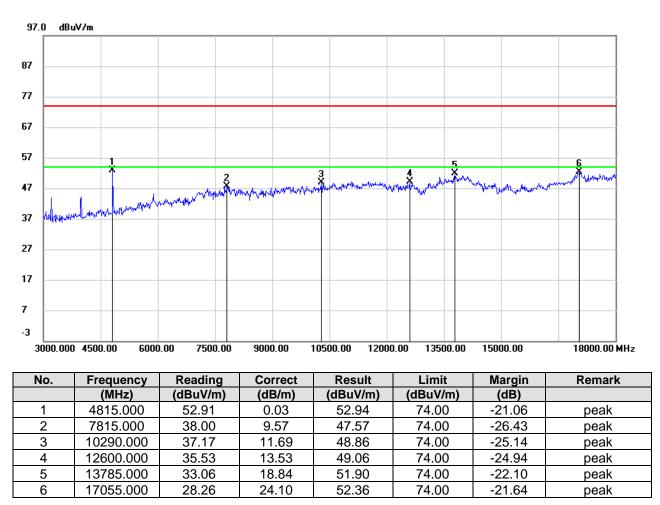
4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	6.86	33.58	40.44	54.00	-13.56	AVG

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.


5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

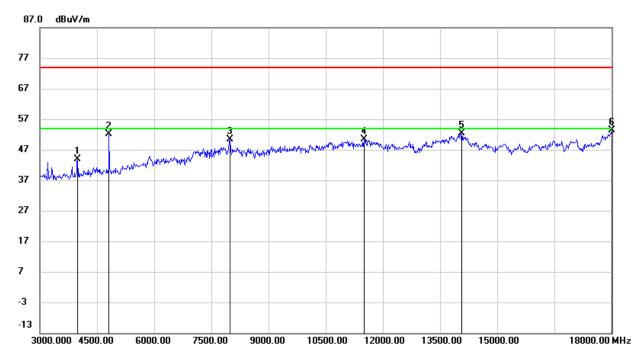
(h)

9.2. SPURIOUS EMISSIONS (3~18GHz)

9.2.1. 802.11b MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

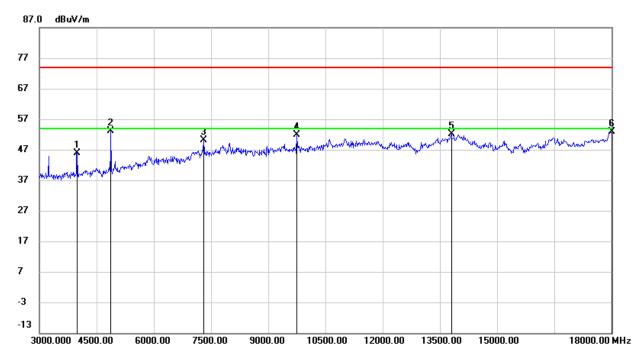
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

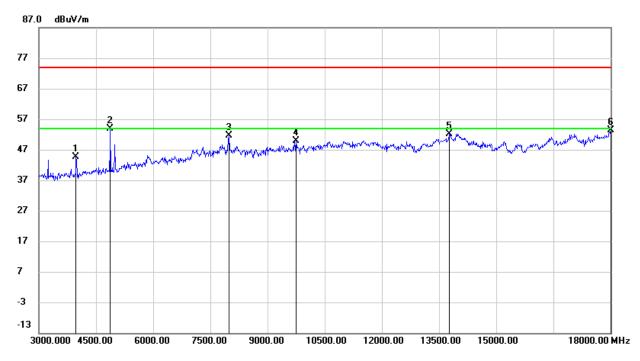
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	46.56	-2.59	43.97	74.00	-30.03	peak
2	4815.000	52.12	0.03	52.15	74.00	-21.85	peak
3	7995.000	41.63	8.72	50.35	74.00	-23.65	peak
4	11505.000	36.02	14.36	50.38	74.00	-23.62	peak
5	14070.000	34.09	18.20	52.29	74.00	-21.71	peak
6	18000.000	28.96	24.44	53.40	74.00	-20.60	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

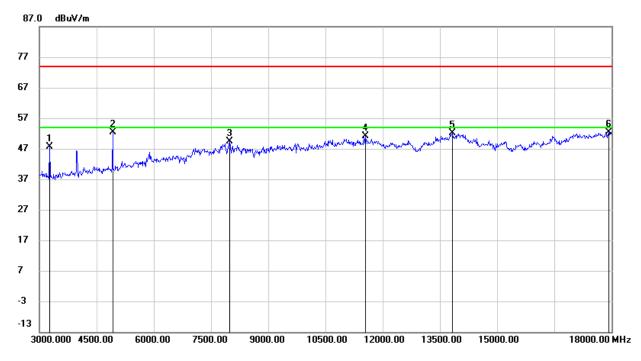
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	48.51	-2.59	45.92	74.00	-28.08	peak
2	4875.000	53.05	0.17	53.22	74.00	-20.78	peak
3	7305.000	42.51	7.68	50.19	74.00	-23.81	peak
4	9750.000	40.77	11.10	51.87	74.00	-22.13	peak
5	13800.000	33.08	19.04	52.12	74.00	-21.88	peak
6	18000.000	28.49	24.44	52.93	74.00	-21.07	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

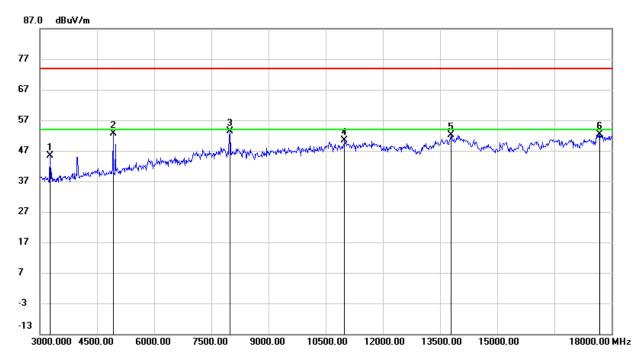
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	47.26	-2.57	44.69	74.00	-29.31	peak
2	4875.000	53.60	0.17	53.77	74.00	-20.23	peak
3	7995.000	42.90	8.72	51.62	74.00	-22.38	peak
4	9750.000	38.72	11.10	49.82	74.00	-24.18	peak
5	13770.000	33.52	18.64	52.16	74.00	-21.84	peak
6	18000.000	28.90	24.44	53.34	74.00	-20.66	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

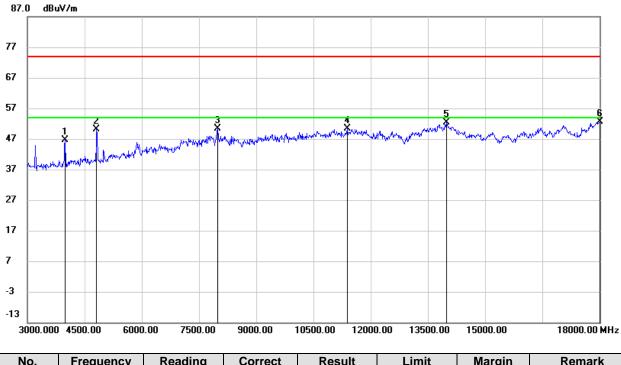
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3270.000	51.53	-3.91	47.62	74.00	-26.38	peak
2	4920.000	51.93	0.34	52.27	74.00	-21.73	peak
3	7995.000	40.73	8.72	49.45	74.00	-24.55	peak
4	11550.000	36.86	14.28	51.14	74.00	-22.86	peak
5	13830.000	33.55	18.56	52.11	74.00	-21.89	peak
6	17925.000	28.47	24.00	52.47	74.00	-21.53	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3270.000	49.35	-3.91	45.44	74.00	-28.56	peak
2	4920.000	52.20	0.34	52.54	74.00	-21.46	peak
3	7995.000	44.69	8.72	53.41	74.00	-20.59	peak
4	10995.000	36.96	13.49	50.45	74.00	-23.55	peak
5	13785.000	33.34	18.84	52.18	74.00	-21.82	peak
6	17685.000	29.20	23.26	52.46	74.00	-21.54	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

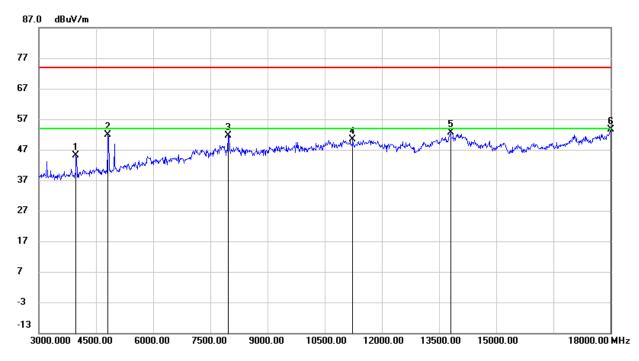
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

9.2.2. 802.11g MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	49.21	-2.59	46.62	74.00	-27.38	peak
2	4815.000	50.04	0.03	50.07	74.00	-23.93	peak
3	7995.000	41.59	8.72	50.31	74.00	-23.69	peak
4	11385.000	36.91	13.53	50.44	74.00	-23.56	peak
5	13980.000	34.42	18.03	52.45	74.00	-21.55	peak
6	18000.000	28.07	24.44	52.51	74.00	-21.49	peak

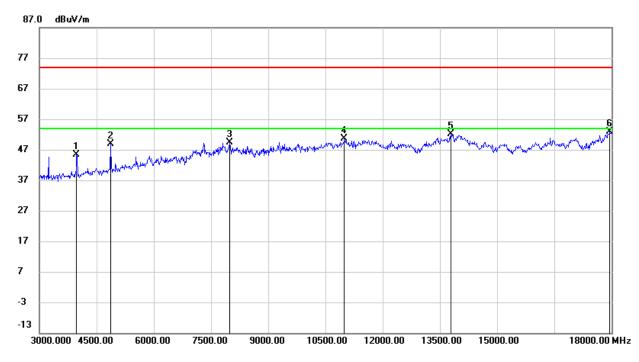
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

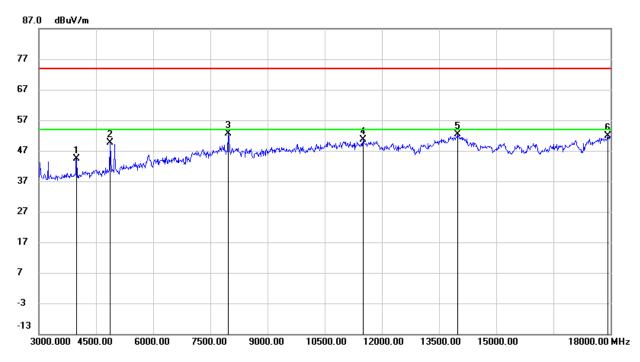
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	47.72	-2.57	45.15	74.00	-28.85	peak
2	4815.000	51.89	0.03	51.92	74.00	-22.08	peak
3	7965.000	42.82	8.84	51.66	74.00	-22.34	peak
4	11235.000	36.90	13.43	50.33	74.00	-23.67	peak
5	13800.000	33.52	19.04	52.56	74.00	-21.44	peak
6	18000.000	29.11	24.44	53.55	74.00	-20.45	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

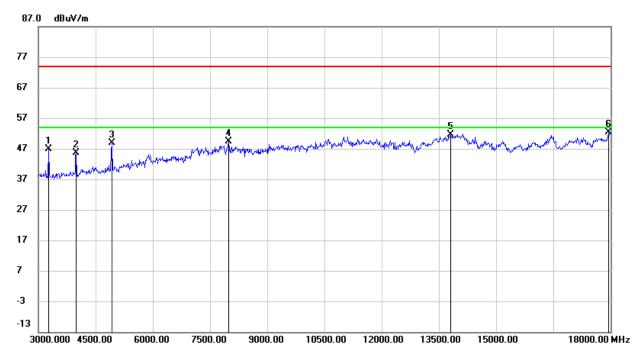
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	48.06	-2.57	45.49	74.00	-28.51	peak
2	4860.000	48.74	0.13	48.87	74.00	-25.13	peak
3	7995.000	40.75	8.72	49.47	74.00	-24.53	peak
4	10995.000	37.04	13.49	50.53	74.00	-23.47	peak
5	13785.000	33.17	18.84	52.01	74.00	-21.99	peak
6	17955.000	28.61	24.18	52.79	74.00	-21.21	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

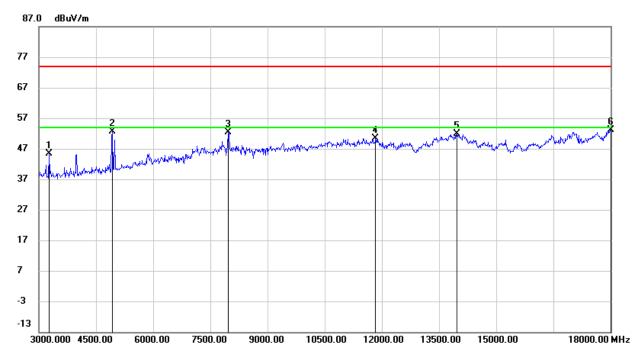
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	47.05	-2.59	44.46	74.00	-29.54	peak
2	4875.000	49.41	0.17	49.58	74.00	-24.42	peak
3	7965.000	43.68	8.84	52.52	74.00	-21.48	peak
4	11505.000	36.26	14.36	50.62	74.00	-23.38	peak
5	13980.000	34.38	18.03	52.41	74.00	-21.59	peak
6	17925.000	27.91	24.00	51.91	74.00	-22.09	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

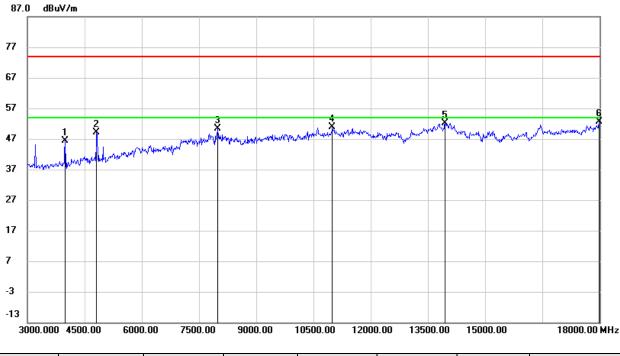
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3270.000	50.74	-3.91	46.83	74.00	-27.17	peak
2	3990.000	48.15	-2.59	45.56	74.00	-28.44	peak
3	4920.000	48.50	0.34	48.84	74.00	-25.16	peak
4	7995.000	40.57	8.72	49.29	74.00	-24.71	peak
5	13800.000	32.58	19.04	51.62	74.00	-22.38	peak
6	17955.000	28.21	24.18	52.39	74.00	-21.61	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3270.000	49.38	-3.91	45.47	74.00	-28.53	peak
2	4920.000	52.25	0.34	52.59	74.00	-21.41	peak
3	7965.000	43.61	8.84	52.45	74.00	-21.55	peak
4	11835.000	36.59	13.86	50.45	74.00	-23.55	peak
5	13965.000	33.96	17.91	51.87	74.00	-22.13	peak
6	18000.000	28.74	24.44	53.18	74.00	-20.82	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

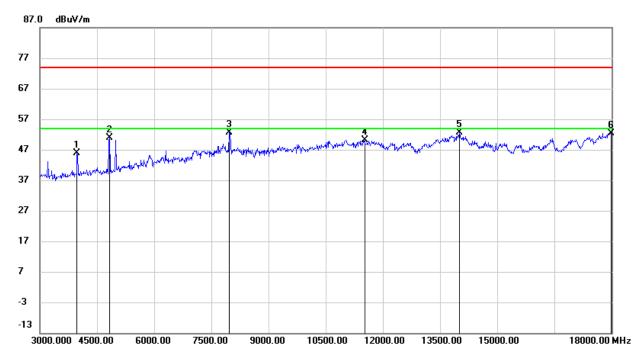
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

9.2.3. 802.11n HT20 MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	48.91	-2.59	46.32	74.00	-27.68	peak
2	4815.000	49.01	0.03	49.04	74.00	-24.96	peak
3	7995.000	41.77	8.72	50.49	74.00	-23.51	peak
4	10995.000	37.39	13.49	50.88	74.00	-23.12	peak
5	13950.000	34.31	17.79	52.10	74.00	-21.90	peak
6	17985.000	28.24	24.35	52.59	74.00	-21.41	peak

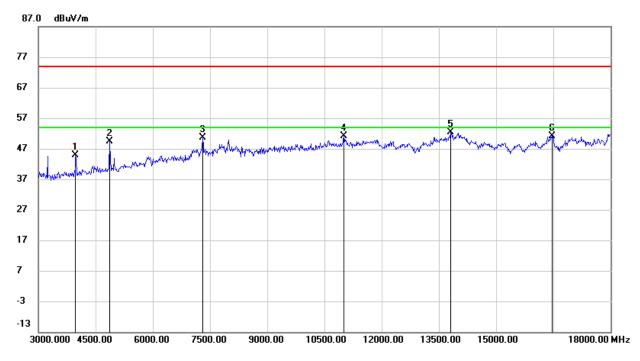
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

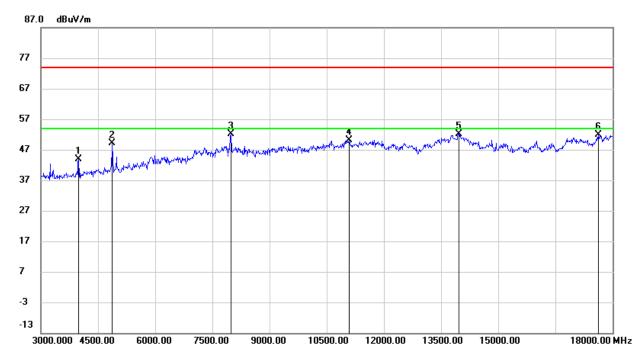
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	48.34	-2.57	45.77	74.00	-28.23	peak
2	4830.000	50.86	0.07	50.93	74.00	-23.07	peak
3	7965.000	43.67	8.84	52.51	74.00	-21.49	peak
4	11520.000	35.91	14.33	50.24	74.00	-23.76	peak
5	14010.000	34.46	18.18	52.64	74.00	-21.36	peak
6	17985.000	27.99	24.35	52.34	74.00	-21.66	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3975.000	47.48	-2.57	44.91	74.00	-29.09	peak
2	4860.000	49.30	0.13	49.43	74.00	-24.57	peak
3	7305.000	42.99	7.68	50.67	74.00	-23.33	peak
4	11010.000	37.60	13.54	51.14	74.00	-22.86	peak
5	13800.000	33.32	19.04	52.36	74.00	-21.64	peak
6	16470.000	32.04	19.06	51.10	74.00	-22.90	peak

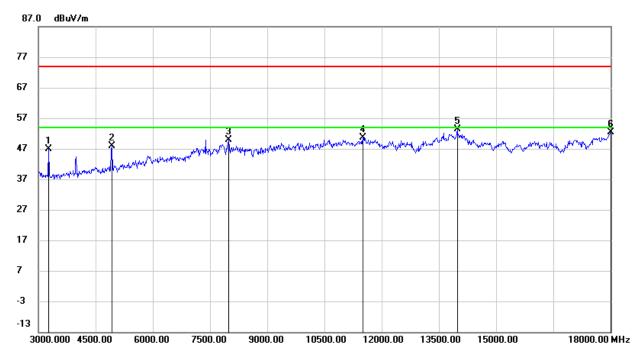

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

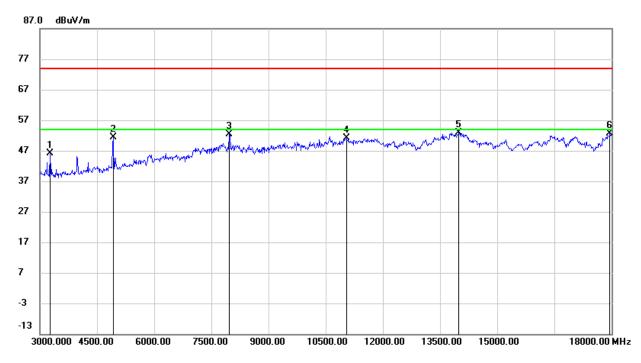
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3990.000	46.46	-2.59	43.87	74.00	-30.13	peak
2	4875.000	48.99	0.17	49.16	74.00	-24.84	peak
3	7995.000	43.49	8.72	52.21	74.00	-21.79	peak
4	11085.000	36.40	13.65	50.05	74.00	-23.95	peak
5	13965.000	34.15	17.91	52.06	74.00	-21.94	peak
6	17625.000	28.36	23.40	51.76	74.00	-22.24	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3270.000	50.73	-3.91	46.82	74.00	-27.18	peak
2	4920.000	47.46	0.34	47.80	74.00	-26.20	peak
3	7995.000	41.27	8.72	49.99	74.00	-24.01	peak
4	11505.000	36.27	14.36	50.63	74.00	-23.37	peak
5	13980.000	35.33	18.03	53.36	74.00	-20.64	peak
6	18000.000	27.97	24.44	52.41	74.00	-21.59	peak

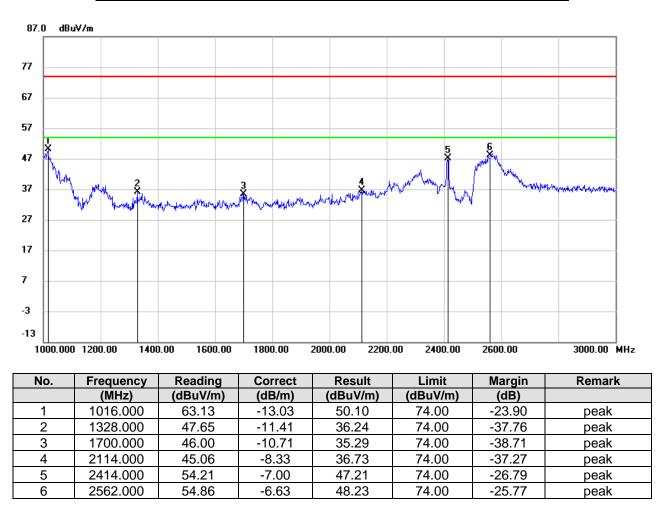

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3270.000	49.99	-3.91	46.08	74.00	-27.92	peak
2	4920.000	50.96	0.34	51.30	74.00	-22.70	peak
3	7965.000	43.58	8.84	52.42	74.00	-21.58	peak
4	11040.000	37.64	13.58	51.22	74.00	-22.78	peak
5	13995.000	34.84	18.14	52.98	74.00	-21.02	peak
6	17955.000	28.36	24.18	52.54	74.00	-21.46	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

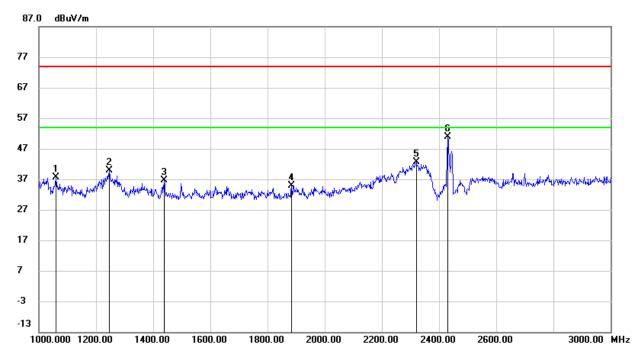
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

9.3. SPURIOUS EMISSIONS (1~3GHz)

9.3.1. 802.11b MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

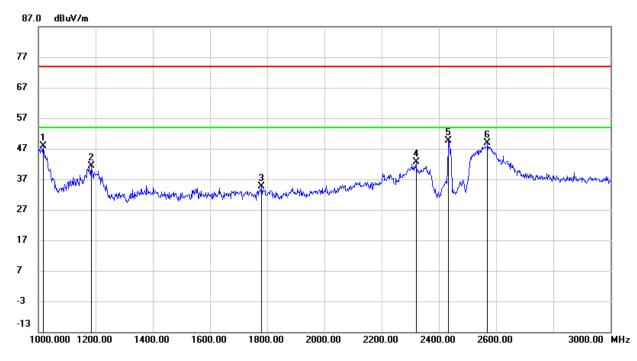
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

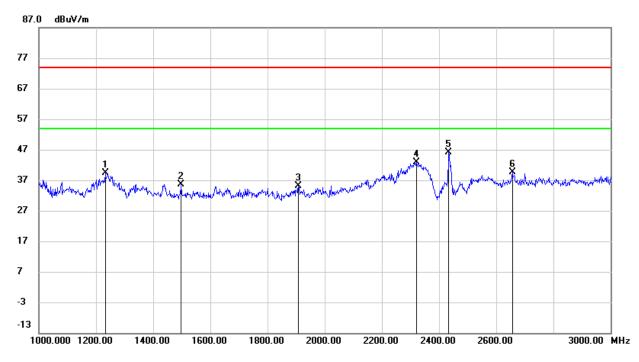
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1060.000	50.40	-12.81	37.59	74.00	-36.41	peak
2	1246.000	51.70	-11.87	39.83	74.00	-34.17	peak
3	1438.000	48.30	-11.79	36.51	74.00	-37.49	peak
4	1884.000	44.20	-9.32	34.88	74.00	-39.12	peak
5	2320.000	49.93	-7.41	42.52	74.00	-31.48	peak
6	2430.000	57.73	-6.88	50.85	74.00	-23.15	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

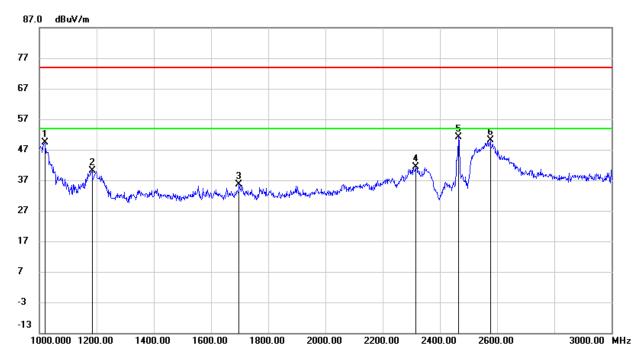
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1016.000	60.90	-13.03	47.87	74.00	-26.13	peak
2	1184.000	53.85	-12.47	41.38	74.00	-32.62	peak
3	1780.000	44.26	-9.68	34.58	74.00	-39.42	peak
4	2320.000	50.09	-7.41	42.68	74.00	-31.32	peak
5	2434.000	56.58	-6.84	49.74	74.00	-24.26	peak
6	2570.000	55.57	-6.66	48.91	74.00	-25.09	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

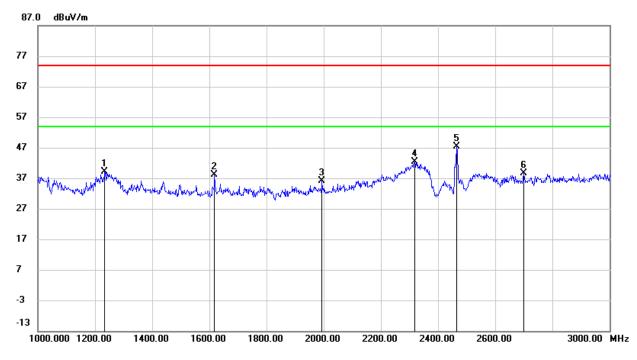
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1232.000	51.52	-12.04	39.48	74.00	-34.52	peak
2	1498.000	47.14	-11.60	35.54	74.00	-38.46	peak
3	1908.000	44.40	-9.34	35.06	74.00	-38.94	peak
4	2320.000	50.17	-7.41	42.76	74.00	-31.24	peak
5	2434.000	52.91	-6.84	46.07	74.00	-27.93	peak
6	2656.000	46.68	-7.15	39.53	74.00	-34.47	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

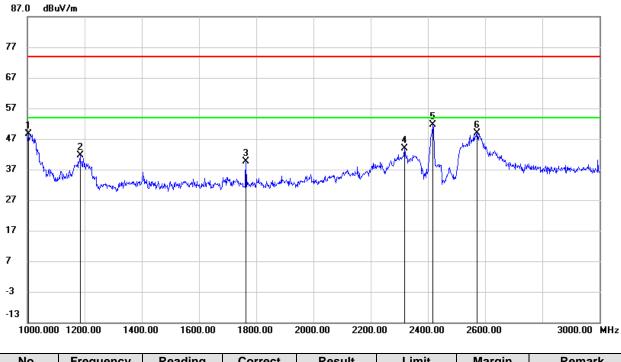
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1020.000	62.47	-13.00	49.47	74.00	-24.53	peak
2	1184.000	52.67	-12.47	40.20	74.00	-33.80	peak
3	1698.000	46.30	-10.71	35.59	74.00	-38.41	peak
4	2316.000	48.70	-7.43	41.27	74.00	-32.73	peak
5	2466.000	57.85	-6.60	51.25	74.00	-22.75	peak
6	2576.000	56.84	-6.69	50.15	74.00	-23.85	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1234.000	51.08	-12.02	39.06	74.00	-34.94	peak
2	1618.000	48.74	-10.62	38.12	74.00	-35.88	peak
3	1994.000	45.76	-9.75	36.01	74.00	-37.99	peak
4	2318.000	49.71	-7.43	42.28	74.00	-31.72	peak
5	2466.000	53.97	-6.60	47.37	74.00	-26.63	peak
6	2700.000	46.14	-7.42	38.72	74.00	-35.28	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

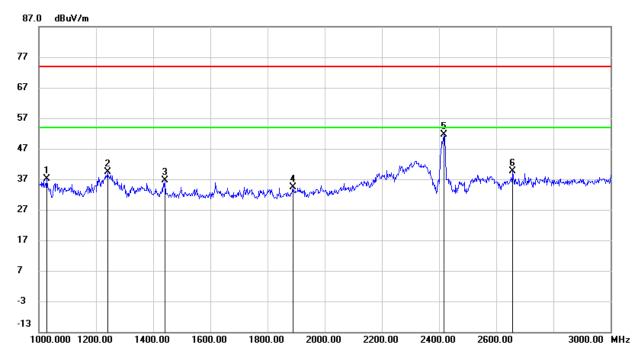
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

9.3.2. 802.11g MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1004.000	61.65	-13.09	48.56	74.00	-25.44	peak
2	1184.000	54.07	-12.47	41.60	74.00	-32.40	peak
3	1764.000	49.58	-9.89	39.69	74.00	-34.31	peak
4	2318.000	51.21	-7.43	43.78	74.00	-30.22	peak
5	2418.000	58.65	-6.97	51.68	74.00	-22.32	peak
6	2572.000	55.58	-6.67	48.91	74.00	-25.09	peak

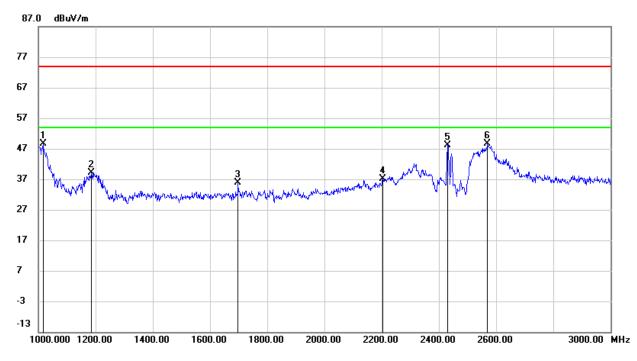
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

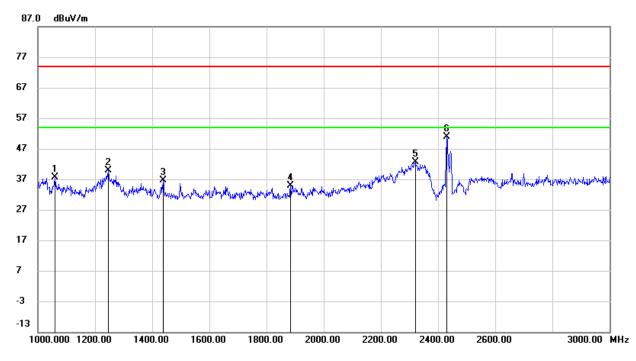
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1028.000	50.20	-12.96	37.24	74.00	-36.76	peak
2	1240.000	51.28	-11.95	39.33	74.00	-34.67	peak
3	1440.000	48.49	-11.79	36.70	74.00	-37.30	peak
4	1888.000	43.76	-9.32	34.44	74.00	-39.56	peak
5	2418.000	58.65	-6.97	51.68	74.00	-22.32	peak
6	2658.000	46.85	-7.16	39.69	74.00	-34.31	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

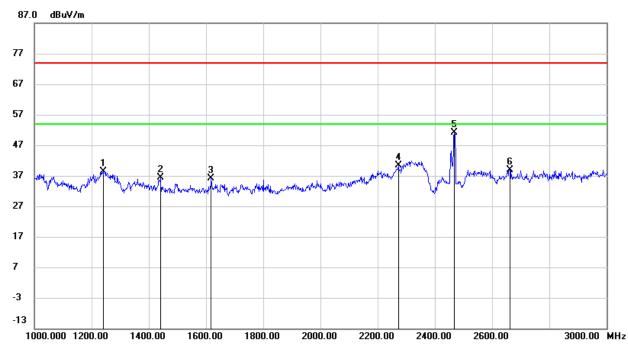
4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1016.000	61.65	-13.03	48.62	74.00	-25.38	peak
2	1184.000	51.60	-12.47	39.13	74.00	-34.87	peak
3	1698.000	46.67	-10.71	35.96	74.00	-38.04	peak
4	2204.000	45.60	-8.40	37.20	74.00	-36.80	peak
5	2430.000	54.89	-6.88	48.01	74.00	-25.99	peak
6	2570.000	55.38	-6.66	48.72	74.00	-25.28	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1060.000	50.40	-12.81	37.59	74.00	-36.41	peak
2	1246.000	51.70	-11.87	39.83	74.00	-34.17	peak
3	1438.000	48.30	-11.79	36.51	74.00	-37.49	peak
4	1884.000	44.20	-9.32	34.88	74.00	-39.12	peak
5	2320.000	49.93	-7.41	42.52	74.00	-31.48	peak
6	2430.000	57.73	-6.88	50.85	74.00	-23.15	peak

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

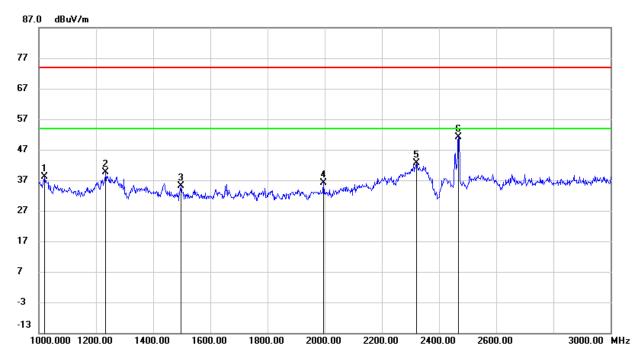
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1242.000	50.32	-11.91	38.41	74.00	-35.59	peak
2	1440.000	48.28	-11.79	36.49	74.00	-37.51	peak
3	1618.000	46.70	-10.62	36.08	74.00	-37.92	peak
4	2272.000	48.19	-7.76	40.43	74.00	-33.57	peak
5	2468.000	57.67	-6.59	51.08	74.00	-22.92	peak
6	2662.000	46.06	-7.19	38.87	74.00	-35.13	peak

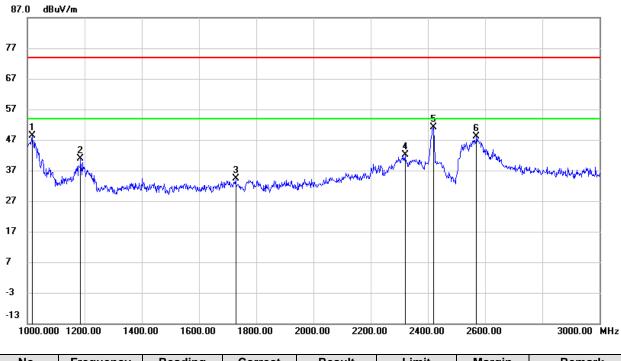
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1020.000	51.23	-13.00	38.23	74.00	-35.77	peak
2	1234.000	51.77	-12.02	39.75	74.00	-34.25	peak
3	1498.000	46.72	-11.60	35.12	74.00	-38.88	peak
4	1996.000	45.93	-9.77	36.16	74.00	-37.84	peak
5	2320.000	50.02	-7.41	42.61	74.00	-31.39	peak
6	2468.000	57.82	-6.59	51.23	74.00	-22.77	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

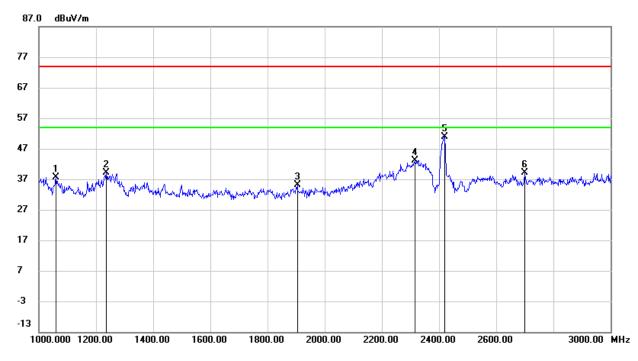
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

9.3.3. 802.11n HT20 MODE

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1016.000	61.46	-13.03	48.43	74.00	-25.57	peak
2	1186.000	53.29	-12.47	40.82	74.00	-33.18	peak
3	1728.000	44.72	-10.34	34.38	74.00	-39.62	peak
4	2320.000	49.51	-7.41	42.10	74.00	-31.90	peak
5	2420.000	58.11	-6.95	51.16	74.00	-22.84	peak
6	2570.000	54.67	-6.66	48.01	74.00	-25.99	peak

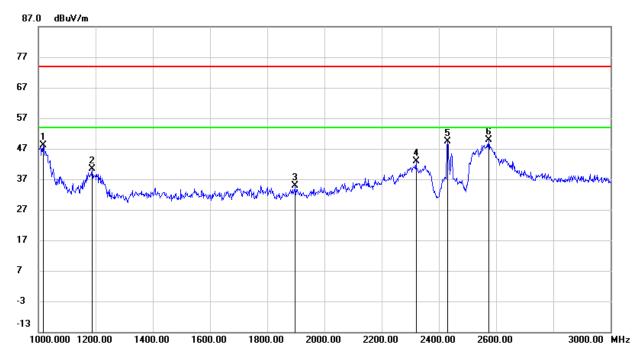
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

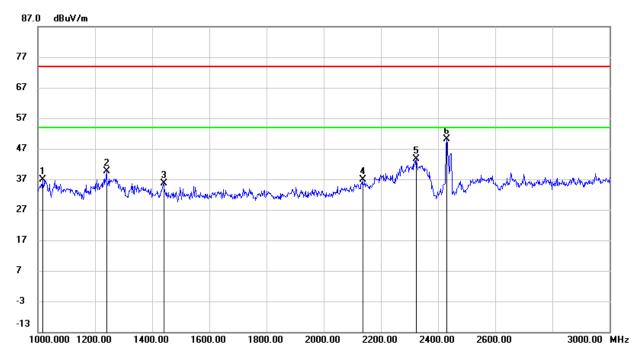
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1060.000	50.34	-12.81	37.53	74.00	-36.47	peak
2	1236.000	51.15	-12.00	39.15	74.00	-34.85	peak
3	1904.000	44.41	-9.31	35.10	74.00	-38.90	peak
4	2316.000	50.63	-7.43	43.20	74.00	-30.80	peak
5	2420.000	57.95	-6.95	51.00	74.00	-23.00	peak
6	2700.000	46.56	-7.42	39.14	74.00	-34.86	peak


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1018.000	61.15	-13.02	48.13	74.00	-25.87	peak
2	1188.000	52.92	-12.46	40.46	74.00	-33.54	peak
3	1898.000	44.16	-9.30	34.86	74.00	-39.14	peak
4	2320.000	50.19	-7.41	42.78	74.00	-31.22	peak
5	2430.000	56.28	-6.88	49.40	74.00	-24.60	peak
6	2574.000	56.48	-6.68	49.80	74.00	-24.20	peak

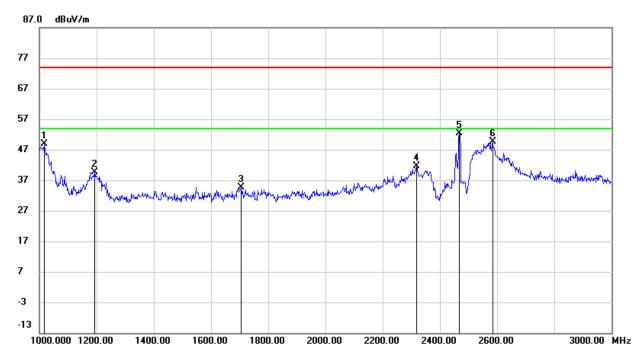

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1016.000	49.91	-13.03	36.88	74.00	-37.12	peak
2	1240.000	51.50	-11.95	39.55	74.00	-34.45	peak
3	1440.000	47.34	-11.79	35.55	74.00	-38.45	peak
4	2136.000	45.19	-8.37	36.82	74.00	-37.18	peak
5	2324.000	50.92	-7.40	43.52	74.00	-30.48	peak
6	2430.000	57.07	-6.88	50.19	74.00	-23.81	peak

Note: 1. Measurement = Reading Level + Correct Factor.

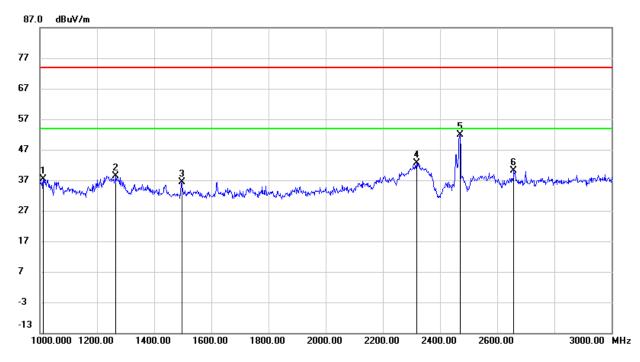

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1018.000	61.95	-13.02	48.93	74.00	-25.07	peak
2	1192.000	52.03	-12.45	39.58	74.00	-34.42	peak
3	1704.000	45.39	-10.65	34.74	74.00	-39.26	peak
4	2318.000	49.05	-7.43	41.62	74.00	-32.38	peak
5	2468.000	58.97	-6.59	52.38	74.00	-21.62	peak
6	2584.000	56.42	-6.73	49.69	74.00	-24.31	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

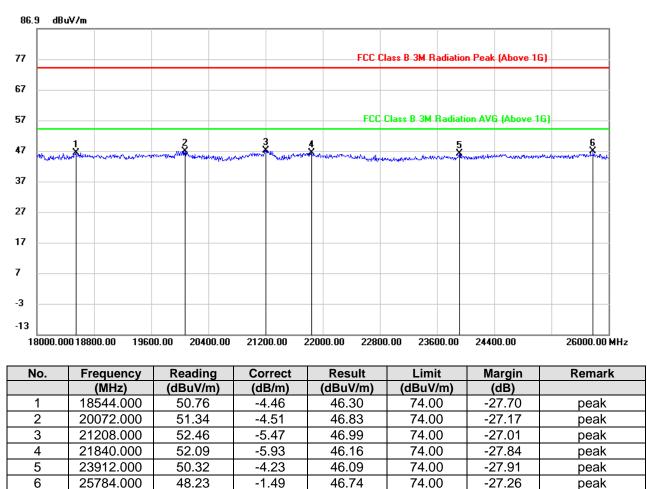
3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1012.000	50.42	-13.05	37.37	74.00	-36.63	peak
2	1266.000	50.02	-11.63	38.39	74.00	-35.61	peak
3	1496.000	48.07	-11.62	36.45	74.00	-37.55	peak
4	2318.000	50.06	-7.43	42.63	74.00	-31.37	peak
5	2470.000	58.39	-6.57	51.82	74.00	-22.18	peak
6	2658.000	47.27	-7.16	40.11	74.00	-33.89	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

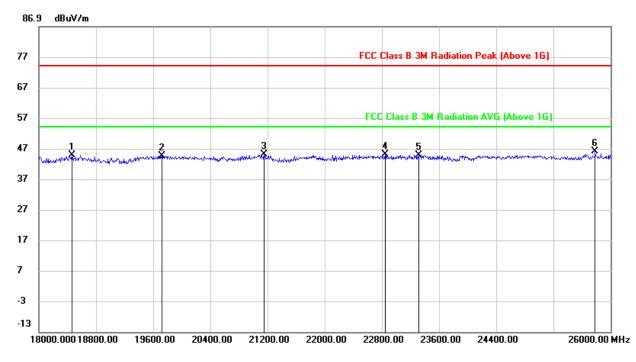

3. Peak: Peak detector.

4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for BRF losses.

9.4. SPURIOUS EMISSIONS (18~26GHz)

9.4.1. 802.11g MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

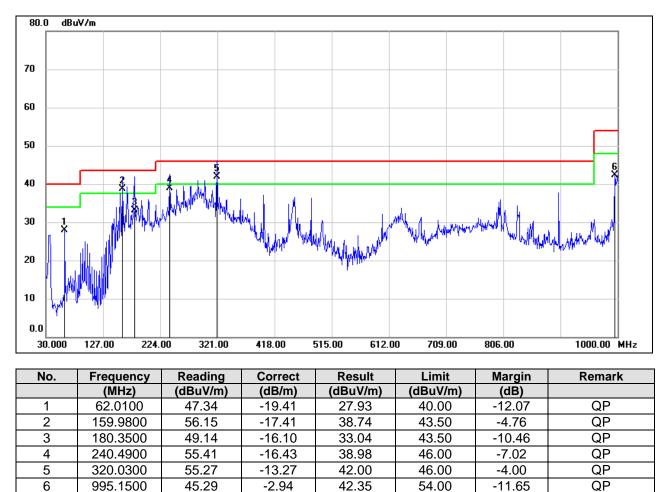
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18464.000	49.20	-4.39	44.81	74.00	-29.19	peak
2	19720.000	49.00	-4.39	44.61	74.00	-29.39	peak
3	21152.000	50.56	-5.42	45.14	74.00	-28.86	peak
4	22848.000	50.60	-5.69	44.91	74.00	-29.09	peak
5	23320.000	49.96	-5.12	44.84	74.00	-29.16	peak
6	25784.000	47.58	-1.49	46.09	74.00	-27.91	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

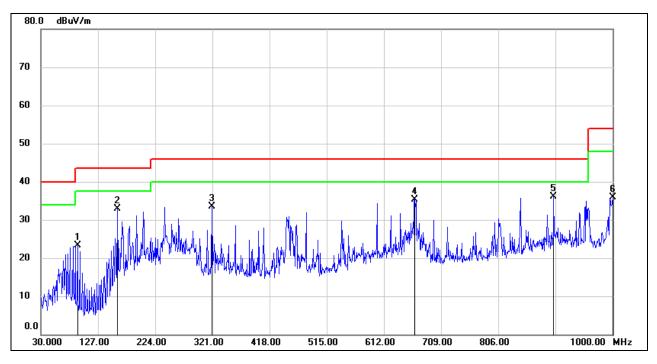
4. Proper operation of the transmitter prior to adding the filter to the measurement chain.


Note: All the test modes have been tested, only the worst data record in the report.

9.5. SPURIOUS EMISSIONS (0.03 ~ 1 GHz)

9.5.1. 802.11g MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)



Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	92.0800	44.26	-20.98	23.28	43.50	-20.22	QP
2	159.9800	50.38	-17.41	32.97	43.50	-10.53	QP
3	320.0300	46.69	-13.27	33.42	46.00	-12.58	QP
4	664.3800	42.17	-6.90	35.27	46.00	-10.73	QP
5	900.0900	39.95	-3.75	36.20	46.00	-9.80	QP
6	1000.0000	38.70	-2.88	35.82	54.00	-18.18	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All the test modes have been tested, only the worst data record in the report.

9.6. SPURIOUS EMISSIONS BELOW 30M

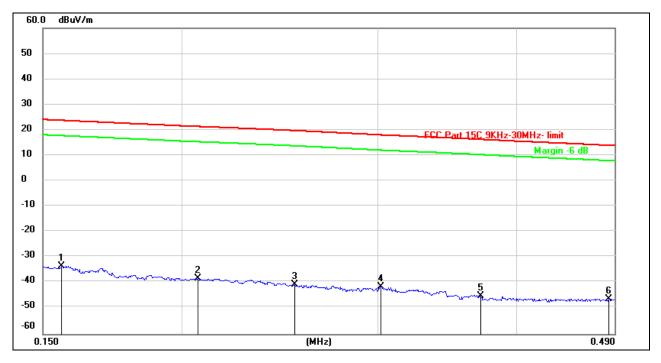
9.6.1. 802.11g MODE

SPURIOUS EMISSIONS (LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

60.0 dBu¥/m				
			FCC Part 15C 9KH	z= 30MHzlimit
				Margin -6 dB
)				
1				
	3			
)	and and a second	4	5 6	
			5	
D				and the second sec
o				
0.009		(MHz)		0.150

<u>0.09kHz~ 150kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0091	71.79	-101.33	-29.54	48.29	-77.83	peak
2	0.0122	69.50	-101.39	-31.89	46.28	-78.17	peak
3	0.0165	68.14	-101.37	-33.23	43.69	-76.92	peak
4	0.0290	64.25	-101.38	-37.13	38.41	-75.54	peak
5	0.0475	60.44	-101.47	-41.03	34.10	-75.13	peak
6	0.0609	58.83	-101.53	-42.70	31.92	-74.62	peak


Note: 1. Measurement = Reading Level + Correct Factor.

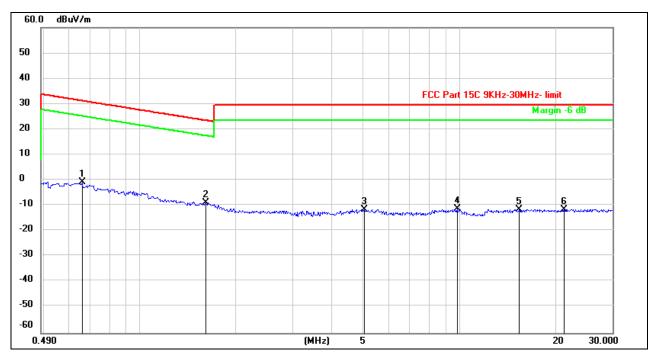
2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

<u>150kHz ~ 490kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1559	68.15	-101.65	-33.50	23.75	-57.25	peak
2	0.2068	63.45	-101.73	-38.28	21.34	-59.62	peak
3	0.2530	61.09	-101.80	-40.71	19.71	-60.42	peak
4	0.3019	60.43	-101.85	-41.42	18.01	-59.43	peak
5	0.3714	56.78	-101.93	-45.15	16.27	-61.42	peak
6	0.4842	55.75	-102.05	-46.30	13.91	-60.21	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490kHz ~ 30MHz</u>

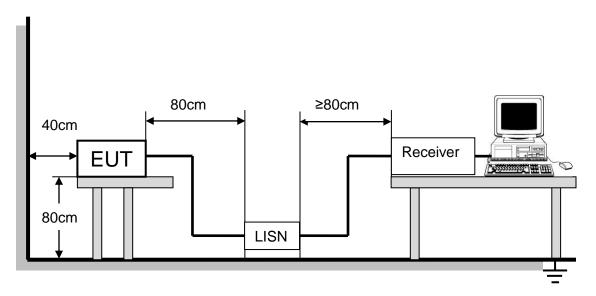
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.6590	61.38	-62.10	-0.72	31.25	-31.97	peak
2	1.6026	53.19	-62.00	-8.81	23.51	-32.32	peak
3	5.0345	50.02	-61.49	-11.47	29.54	-41.01	peak
4	9.8152	49.58	-60.82	-11.24	29.54	-40.78	peak
5	15.3925	49.50	-61.00	-11.50	29.54	-41.04	peak
6	21.2056	49.23	-60.74	-11.51	29.54	-41.05	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the test modes have been tested, only the worst data record in the report.


10. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

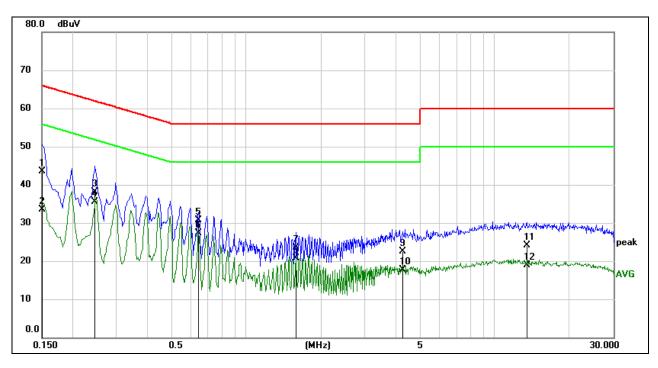
Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

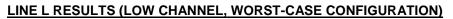
The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

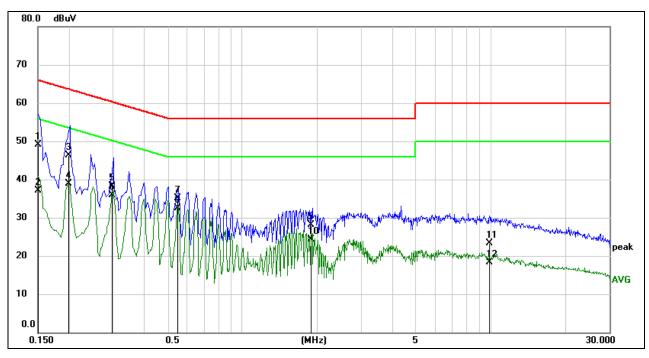

TEST ENVIRONMENT

Temperature	23.0°C	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

10.1. 802.11g MODE


LINE N RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	34.00	9.60	43.60	66.00	-22.40	QP
2	0.1500	24.00	9.60	33.60	56.00	-22.40	AVG
3	0.2450	28.58	9.60	38.18	61.92	-23.74	QP
4	0.2450	25.95	9.60	35.55	51.92	-16.37	AVG
5	0.6400	21.12	9.60	30.72	56.00	-25.28	QP
6	0.6400	17.75	9.60	27.35	46.00	-18.65	AVG
7	1.5783	13.85	9.62	23.47	56.00	-32.53	QP
8	1.5783	11.18	9.62	20.80	46.00	-25.20	AVG
9	4.2813	12.83	9.66	22.49	56.00	-33.51	QP
10	4.2813	8.04	9.66	17.70	46.00	-28.30	AVG
11	13.4404	14.25	9.85	24.10	60.00	-35.90	QP
12	13.4404	8.96	9.85	18.81	50.00	-31.19	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	39.49	9.61	49.10	66.00	-16.90	QP
2	0.1500	27.49	9.61	37.10	56.00	-18.90	AVG
3	0.1989	36.65	9.60	46.25	63.66	-17.41	QP
4	0.1989	29.35	9.60	38.95	53.66	-14.71	AVG
5	0.2986	28.61	9.60	38.21	60.28	-22.07	QP
6	0.2986	26.31	9.60	35.91	50.28	-14.37	AVG
7	0.5464	25.52	9.60	35.12	56.00	-20.88	QP
8	0.5464	22.94	9.60	32.54	46.00	-13.46	AVG
9	1.8868	18.47	9.62	28.09	56.00	-27.91	QP
10	1.8868	14.71	9.62	24.33	46.00	-21.67	AVG
11	9.8966	13.52	9.74	23.26	60.00	-36.74	QP
12	9.8966	8.55	9.74	18.29	50.00	-31.71	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All test modes have been tested, only the worst data record in the report.

11. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT