



Accredited by the Swiss Accreditation Service (SAS)  
 The Swiss Accreditation Service is one of the signatories to the EA  
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client Eurofins

Certificate No: DAE3-522\_Oct21

## CALIBRATION CERTIFICATE

Object DAE3 - SD 000 D03 AA - SN: 522

Calibration procedure(s) QA CAL-06.v30  
 Calibration procedure for the data acquisition electronics (DAE)

Calibration date: October 14, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards             | ID #               | Cal Date (Certificate No.) | Scheduled Calibration  |
|-------------------------------|--------------------|----------------------------|------------------------|
| Keithley Multimeter Type 2001 | SN: 0810278        | 31-Aug-21 (No:31368)       | Aug-22                 |
| Secondary Standards           | ID #               | Check Date (in house)      | Scheduled Check        |
| Auto DAE Calibration Unit     | SE UWS 053 AA 1001 | 07-Jan-21 (in house check) | In house check: Jan-22 |
| Calibrator Box V2.1           | SE UMS 006 AA 1002 | 07-Jan-21 (in house check) | In house check: Jan-22 |

Calibrated by: Name: Dominique Steffen Function: Laboratory Technician

Approved by: Name: Sven Kühn Function: Deputy Manager

Issued: October 14, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

## Glossary

|                 |                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------|
| DAE             | data acquisition electronics                                                            |
| Connector angle | information used in DASY system to align probe sensor X to the robot coordinate system. |

## Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
  - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
  - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
  - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - *Power consumption*: Typical value for information. Supply currents in various operating modes.

## DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB =  $6.1\mu\text{V}$ , full range =  $-100...+300\text{ mV}$

Low Range: 1LSB =  $61\text{nV}$ , full range =  $-1.....+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | X                                  | Y                                  | Z                                  |
|---------------------|------------------------------------|------------------------------------|------------------------------------|
| High Range          | $404.450 \pm 0.02\% \text{ (k=2)}$ | $404.119 \pm 0.02\% \text{ (k=2)}$ | $404.974 \pm 0.02\% \text{ (k=2)}$ |
| Low Range           | $3.95978 \pm 1.50\% \text{ (k=2)}$ | $3.93908 \pm 1.50\% \text{ (k=2)}$ | $3.99682 \pm 1.50\% \text{ (k=2)}$ |

## Connector Angle

|                                           |                           |
|-------------------------------------------|---------------------------|
| Connector Angle to be used in DASY system | $321.0^\circ \pm 1^\circ$ |
|-------------------------------------------|---------------------------|

## Appendix (Additional assessments outside the scope of SCS0108)

### 1. DC Voltage Linearity

| High Range |         | Reading (µV) | Difference (µV) | Error (%) |
|------------|---------|--------------|-----------------|-----------|
| Channel X  | + Input | 199997.12    | 1.77            | 0.00      |
| Channel X  | + Input | 20003.90     | 1.59            | 0.01      |
| Channel X  | - Input | -19999.09    | 2.44            | -0.01     |
| Channel Y  | + Input | 199996.50    | 0.99            | 0.00      |
| Channel Y  | + Input | 20002.01     | -0.33           | -0.00     |
| Channel Y  | - Input | -20002.04    | -0.52           | 0.00      |
| Channel Z  | + Input | 199996.43    | 1.02            | 0.00      |
| Channel Z  | + Input | 20001.90     | -0.24           | -0.00     |
| Channel Z  | - Input | -20002.32    | -0.57           | 0.00      |

| Low Range |         | Reading (µV) | Difference (µV) | Error (%) |
|-----------|---------|--------------|-----------------|-----------|
| Channel X | + Input | 2001.52      | 0.10            | 0.00      |
| Channel X | + Input | 201.97       | 0.25            | 0.12      |
| Channel X | - Input | -198.73      | -0.61           | 0.31      |
| Channel Y | + Input | 2001.64      | 0.36            | 0.02      |
| Channel Y | + Input | 200.56       | -1.03           | -0.51     |
| Channel Y | - Input | -198.98      | -0.69           | 0.35      |
| Channel Z | + Input | 2001.98      | 0.79            | 0.04      |
| Channel Z | + Input | 199.57       | -1.94           | -0.96     |
| Channel Z | - Input | -199.10      | -0.78           | 0.39      |

### 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (µV) | Low Range<br>Average Reading (µV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | -3.22                              | -5.14                             |
|           | -200                              | 6.21                               | 4.64                              |
| Channel Y | 200                               | 0.03                               | -0.21                             |
|           | -200                              | -0.30                              | -0.90                             |
| Channel Z | 200                               | 16.50                              | 16.12                             |
|           | -200                              | -18.22                             | -18.31                            |

### 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (µV) | Channel Y (µV) | Channel Z (µV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | -0.26          | -4.59          |
| Channel Y | 200                | 7.28           | -              | 0.77           |
| Channel Z | 200                | 9.54           | 5.88           | -              |

#### 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 15765            | 16471           |
| Channel Y | 15715            | 14849           |
| Channel Z | 16039            | 14357           |

#### 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input  $10M\Omega$

|           | Average ( $\mu V$ ) | min. Offset ( $\mu V$ ) | max. Offset ( $\mu V$ ) | Std. Deviation ( $\mu V$ ) |
|-----------|---------------------|-------------------------|-------------------------|----------------------------|
| Channel X | 0.41                | -1.08                   | 1.80                    | 0.55                       |
| Channel Y | -0.08               | -1.29                   | 1.87                    | 0.57                       |
| Channel Z | 1.04                | -0.36                   | 2.86                    | 0.63                       |

#### 6. Input Offset Current

Nominal Input circuitry offset current on all channels:  $<25fA$

#### 7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

#### 8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |
|----------------|-------------------|
| Supply (+ Vcc) | +7.9              |
| Supply (- Vcc) | -7.6              |

#### 9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

DAG/522

Eurofins

## IMPORTANT NOTICE

### USAGE OF THE DAE3

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

**Battery Exchange:** The battery cover of the DAE3 unit is connected to a fragile 3-pin battery connector. Customer is responsible to apply outmost caution not to bend or damage the connector when changing batteries.

**Shipping of the DAE:** Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

**E-Stop Failures:** Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

**Repair:** Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

**DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 M $\Omega$  is given in the corresponding configuration file.

**Important Note:**

**Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.**

**Important Note:**

**Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.**

**Important Note:**

**To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.**



Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 0108**

The Swiss Accreditation Service is one of the signatories to the EA  
 Multilateral Agreement for the recognition of calibration certificates

Client **Eurofins**

Certificate No: **EX3-3893\_Oct21**

## CALIBRATION CERTIFICATE

|                          |                                                                                                               |
|--------------------------|---------------------------------------------------------------------------------------------------------------|
| Object                   | EX3DV4 - SN:3893                                                                                              |
| Calibration procedure(s) | QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7<br>Calibration procedure for dosimetric E-field probes |
| Calibration date:        | October 20, 2021                                                                                              |

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22 \pm 3)^\circ\text{C}$  and humidity  $< 70\%$ .

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 09-Apr-21 (No. 217-03291/03292)   | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103244       | 09-Apr-21 (No. 217-03291)         | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103245       | 09-Apr-21 (No. 217-03292)         | Apr-22                 |
| Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343)         | Apr-22                 |
| DAE4                       | SN: 660          | 23-Dec-20 (No. DAE4-660_Dec20)    | Dec-21                 |
| Reference Probe ES3DV2     | SN: 3013         | 30-Dec-20 (No. ES3-3013_Dec20)    | Dec-21                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 |

| Calibrated by: | Name            | Function              | Signature |
|----------------|-----------------|-----------------------|-----------|
|                | Jeffrey Katzman | Laboratory Technician |           |
| Approved by:   | Katja Pokovic   | Technical Manager     |           |

Issued: October 20, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA  
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

### Glossary:

|                          |                                                                                                                                                         |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| TSL                      | tissue simulating liquid                                                                                                                                |
| NORM $x,y,z$             | sensitivity in free space                                                                                                                               |
| ConvF                    | sensitivity in TSL / NORM $x,y,z$                                                                                                                       |
| DCP                      | diode compression point                                                                                                                                 |
| CF                       | crest factor (1/duty_cycle) of the RF signal                                                                                                            |
| A, B, C, D               | modulation dependent linearization parameters                                                                                                           |
| Polarization $\varphi$   | $\varphi$ rotation around probe axis                                                                                                                    |
| Polarization $\vartheta$ | $\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center),<br>i.e., $\vartheta = 0$ is normal to probe axis |
| Connector Angle          | information used in DASY system to align probe sensor X to the robot coordinate system                                                                  |

### Calibration is Performed According to the Following Standards:

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$ : Assessed for E-field polarization  $\vartheta = 0$  ( $f \leq 900$  MHz in TEM-cell;  $f > 1800$  MHz: R22 waveguide). NORM $x,y,z$  are only intermediate values, i.e., the uncertainties of NORM $x,y,z$  does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency\_response$  (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$ : DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- $PAR$ : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z$ : A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \leq 800$  MHz) and inside waveguide using analytical field distributions based on power measurements for  $f > 800$  MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to  $NORMx,y,z * ConvF$  whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50$  MHz to  $\pm 100$  MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3893

### Basic Calibration Parameters

|                                                       | Sensor X | Sensor Y | Sensor Z | Unc (k=2)    |
|-------------------------------------------------------|----------|----------|----------|--------------|
| Norm $(\mu\text{V}/(\text{V}/\text{m})^2)^{\text{A}}$ | 0.52     | 0.40     | 0.32     | $\pm 10.1\%$ |
| DCP (mV) <sup>B</sup>                                 | 103.5    | 103.5    | 99.6     |              |

### Calibration Results for Modulation Response

| UID | Communication System Name |   | A<br>dB | B<br>dB/ $\mu\text{V}$ | C   | D<br>dB | VR<br>mV | Max<br>dev. | Unc <sup>F</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------------------|-----|---------|----------|-------------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0                    | 1.0 | 0.00    | 168.3    | $\pm 3.5\%$ | $\pm 4.7\%$               |
|     |                           | Y | 0.0     | 0.0                    | 1.0 |         | 147.6    |             |                           |
|     |                           | Z | 0.0     | 0.0                    | 1.0 |         | 165.3    |             |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>A</sup> The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 5).

<sup>B</sup> Numerical linearization parameter: uncertainty not required.

<sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3893

### Other Probe Parameters

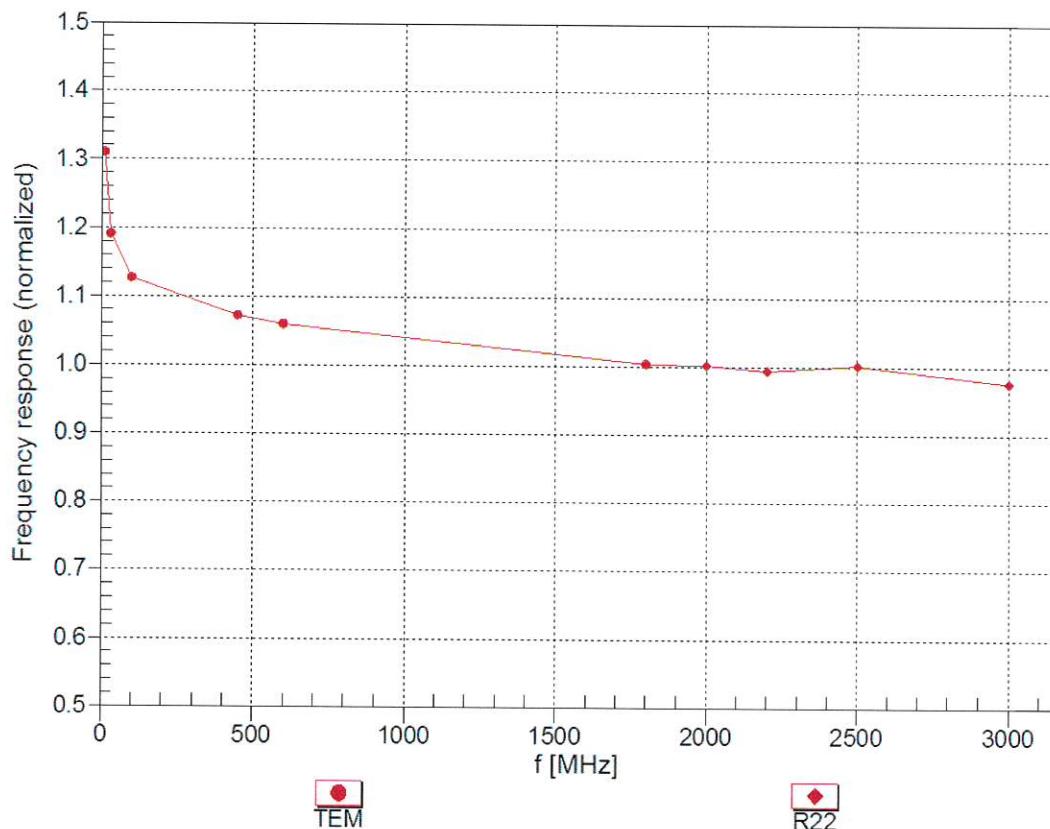
|                                               |            |
|-----------------------------------------------|------------|
| Sensor Arrangement                            | Triangular |
| Connector Angle (°)                           | 158.6      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

**Note:** Measurement distance from surface can be increased to 3-4 mm for an *Area Scan* job.

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3893

### Calibration Parameter Determined in Head Tissue Simulating Media

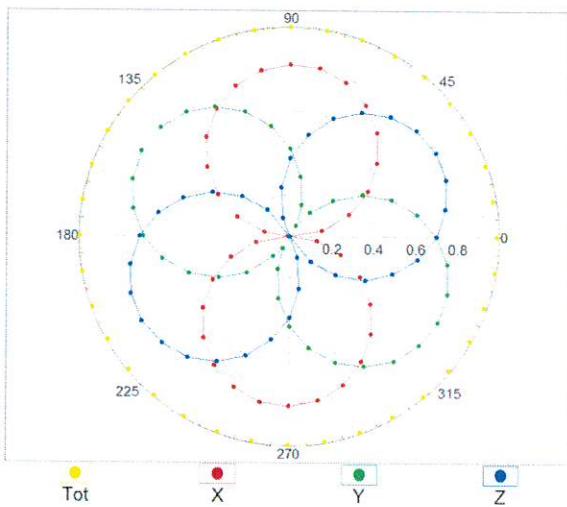
| f (MHz) <sup>C</sup> | Relative Permittivity <sup>F</sup> | Conductivity (S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup> (mm) | Unc (k=2) |
|----------------------|------------------------------------|---------------------------------|---------|---------|---------|--------------------|-------------------------|-----------|
| 750                  | 41.9                               | 0.89                            | 10.54   | 10.54   | 10.54   | 0.43               | 0.80                    | ± 12.0 %  |
| 835                  | 41.5                               | 0.90                            | 10.32   | 10.32   | 10.32   | 0.41               | 0.80                    | ± 12.0 %  |
| 900                  | 41.5                               | 0.97                            | 10.07   | 10.07   | 10.07   | 0.45               | 0.83                    | ± 12.0 %  |
| 1750                 | 40.1                               | 1.37                            | 9.08    | 9.08    | 9.08    | 0.32               | 0.86                    | ± 12.0 %  |
| 1810                 | 40.0                               | 1.40                            | 8.93    | 8.93    | 8.93    | 0.28               | 0.86                    | ± 12.0 %  |
| 2450                 | 39.2                               | 1.80                            | 7.87    | 7.87    | 7.87    | 0.31               | 0.90                    | ± 12.0 %  |
| 2600                 | 39.0                               | 1.96                            | 7.72    | 7.72    | 7.72    | 0.29               | 0.90                    | ± 12.0 %  |
| 5250                 | 35.9                               | 4.71                            | 5.19    | 5.19    | 5.19    | 0.40               | 1.80                    | ± 13.1 %  |
| 5500                 | 35.6                               | 4.96                            | 5.00    | 5.00    | 5.00    | 0.40               | 1.80                    | ± 13.1 %  |
| 5750                 | 35.4                               | 5.22                            | 4.97    | 4.97    | 4.97    | 0.40               | 1.80                    | ± 13.1 %  |


<sup>C</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

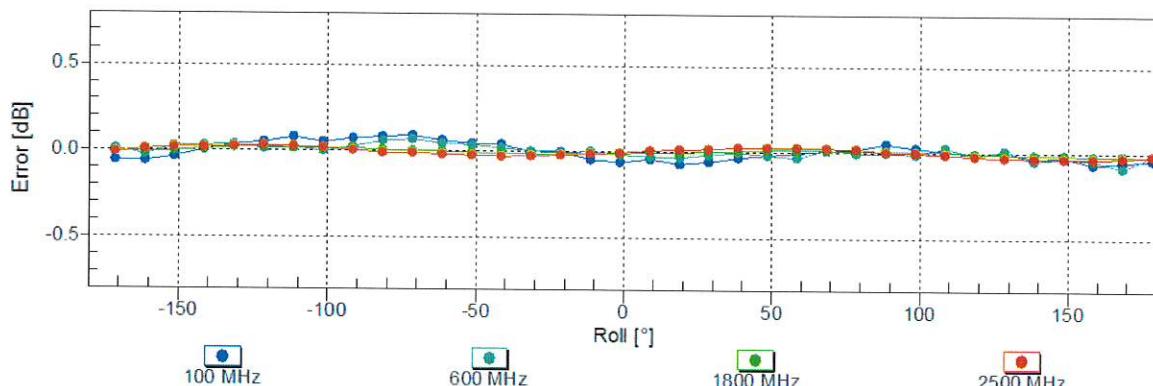
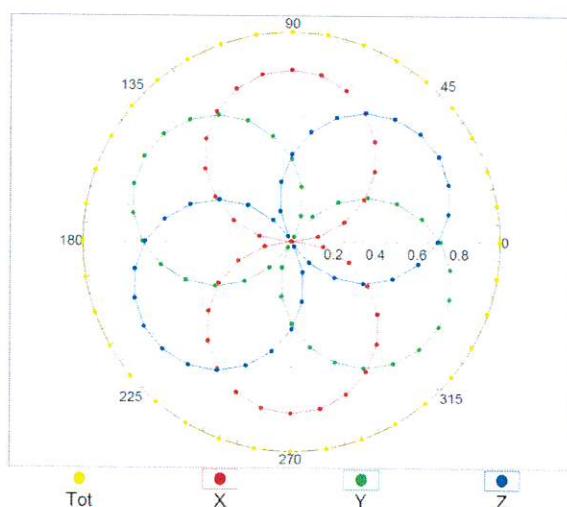
<sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

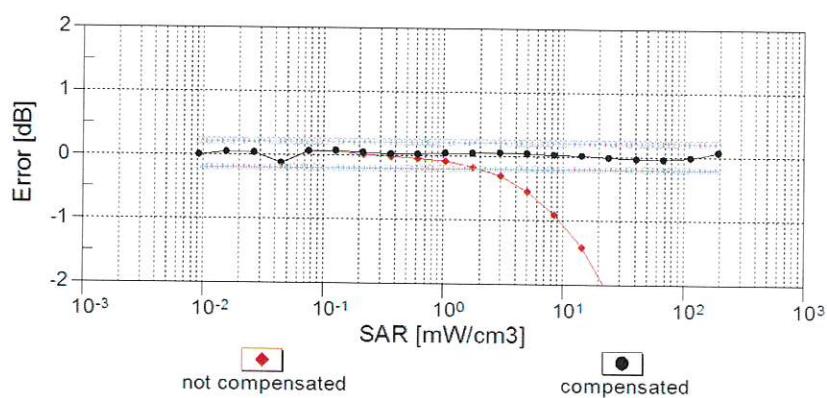
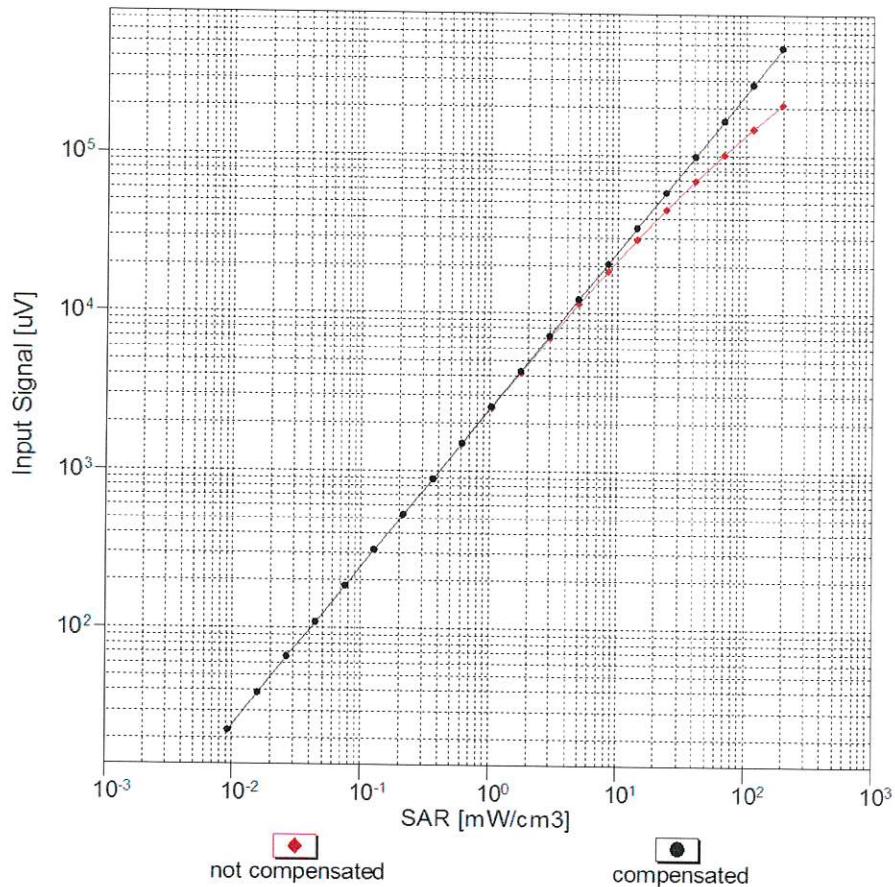
## Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)





Uncertainty of Frequency Response of E-field:  $\pm 6.3\%$  ( $k=2$ )

## Receiving Pattern ( $\phi$ ), $\theta = 0^\circ$



f=600 MHz, TEM



f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment:  $\pm 0.5\%$  ( $k=2$ )

## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)



Uncertainty of Linearity Assessment:  $\pm 0.6\%$  (k=2)

# **Validation Report**

## **No. VAL\_0946\_EF 2021-12**

Kind of doc.:  
QM Template

**EUROFINS PRODUCT SERVICE GmbH**  
Storkower Str. 38c, 15526 Reichenwalde, Germany

### **1 Customer**

Eurofins Product Service GmbH

### **2 Object**

|                  |                                 |
|------------------|---------------------------------|
| Equipment Number | EF00946                         |
| Equipment Name:  | System validation dipole        |
| Equipment Type:  | D750V3                          |
| Serial Number:   | 1125                            |
| Manufacturer:    | Schmid & Partner Engineering AG |

### **3 State of Measurement**

|                      |                                     |
|----------------------|-------------------------------------|
| Validation:          | <input checked="" type="checkbox"/> |
| Performance Control: | <input checked="" type="checkbox"/> |
| Other:               | <input type="checkbox"/>            |

### **4 Performance of Measurement**

#### **4.1 Generals**

(e.g. object of validation such as specific setup, non-standard method or SW, specification of the requirements, test set-up configuration, risk analysis etc.)

Dipol verification

#### **4.2 Validation procedure / measurement**

(e.g. comparison of results achieved with other methods, interlaboratory comparison, systematic assessment of factors influencing the result, assessment of the uncertainty of the results based on scientific understanding of the theoretical principles of the method and practical experience; criteria/requirements for approval/rejection etc.)

According KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 3.2.2 Dipole calibration

Limits for the verification:      return loss <20% to the original measurement or >20 dB minimum return-loss  
Impedance <5 Ω to the original measurement.

#### **4.3 Used reference equipment**

| Equipment name      | Equipment type | Manufacturer | Equipment number | Cal. Date  | Cal. Due Date |
|---------------------|----------------|--------------|------------------|------------|---------------|
| RF Network analyzer | ZNB 40         | R&S          | EF01065          | 2021-07-27 | 2022-07-26    |

- new acquired (incl. calibration)
- new calibrated
- check reference standard

#### **4.4 Environmental conditions**

|                        |                      |
|------------------------|----------------------|
| Temperature:           | <u>23 °C ± 2°C</u>   |
| Relative Air Humidity: | <u>50% rH ± 5%</u>   |
| Air Pressure:          | <u>1020 hPa ± 5%</u> |

# Validation Report

## No. VAL\_0946\_EF 2021-12

Kind of doc.:  
QM Template

**EUROFINS PRODUCT SERVICE GmbH**  
Storkower Str. 38c, 15526 Reichenwalde, Germany

### 5 Results

#### 5.1 General:

(e.g. measurement results, user instructions such as handling, transport, storage, preparation; checks to be made before the work started; information about how to install (operations)-, to maintain-, to train and to use; safety measures etc.)

|                                       | Original measurement          | Verification measurement        | Margin                         |
|---------------------------------------|-------------------------------|---------------------------------|--------------------------------|
| Impedance, transformend to feed point | 54.2 $\Omega$ - 1.8 $j\Omega$ | 52.91 $\Omega$ + 5.48 $j\Omega$ | 1.29 $\Omega$ + 7.28 $j\Omega$ |
| Return Loss                           | -27.1 dB                      | -29.22 dB                       | -7.82 %                        |
| Tissue Validation $\epsilon_r$        | 41.900                        | 41.746                          | -0.37 %                        |
| Tissue Validation $\sigma$ [S/m]      | 0.890                         | 0.873                           | -1.91 %                        |
| System validation                     | 8.52 W/kg (1g)                | 8.76 W/kg (1g)                  | -2.7 %                         |
| Date:                                 | 28.08.2014                    | 28.12.2021                      |                                |

#### 5.2 Measurement uncertainty

The reported expanded uncertainty of measurement is stated as the standard uncertainty multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.  
+/- 2.5 %

#### 5.3 Results of Validation

Validated   
Not validated

### 6 Operator

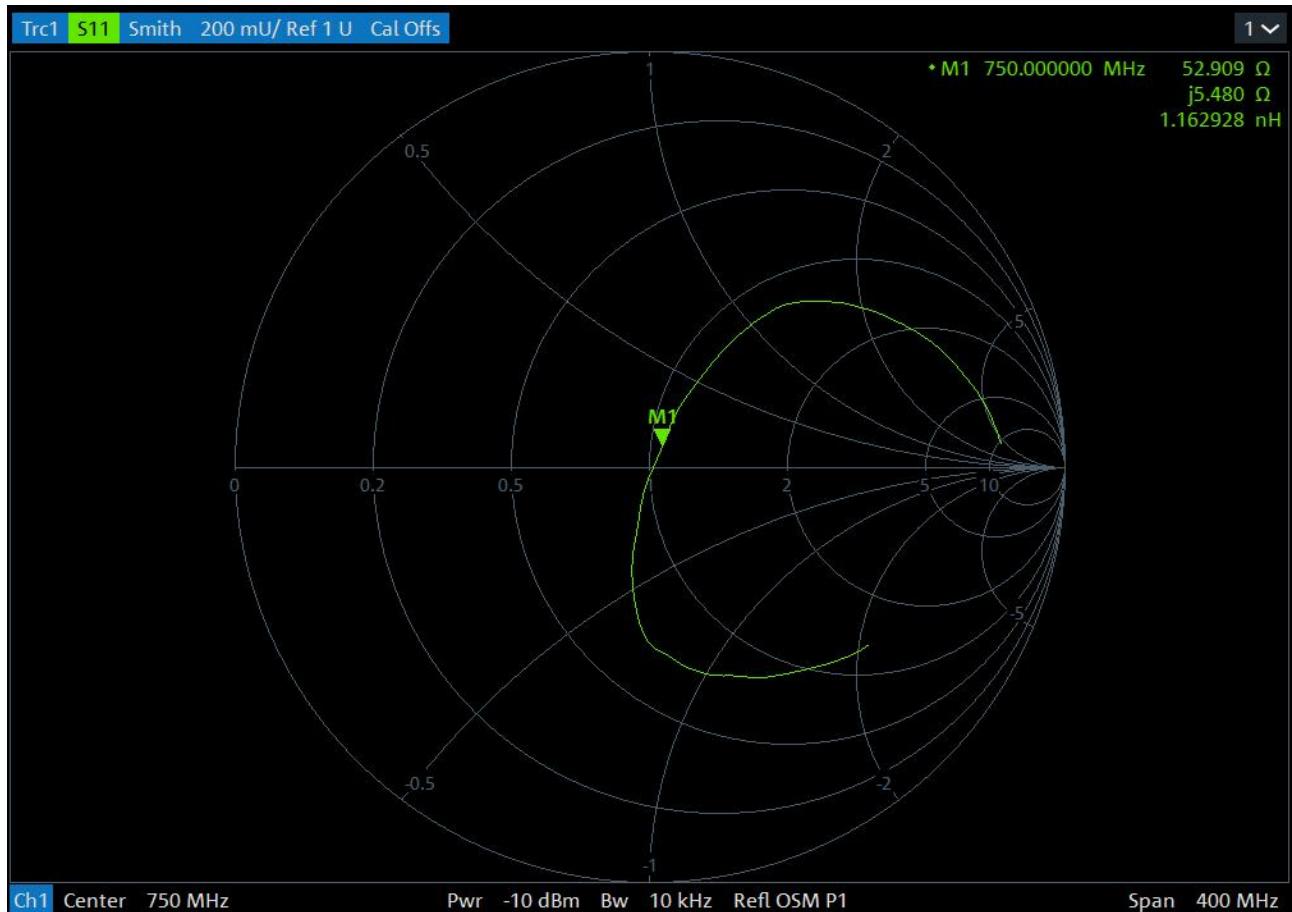
C.Graf  
Name



Signature

Place and Date of Verification: Reichenwalde, 28.12.2021

Attachment:

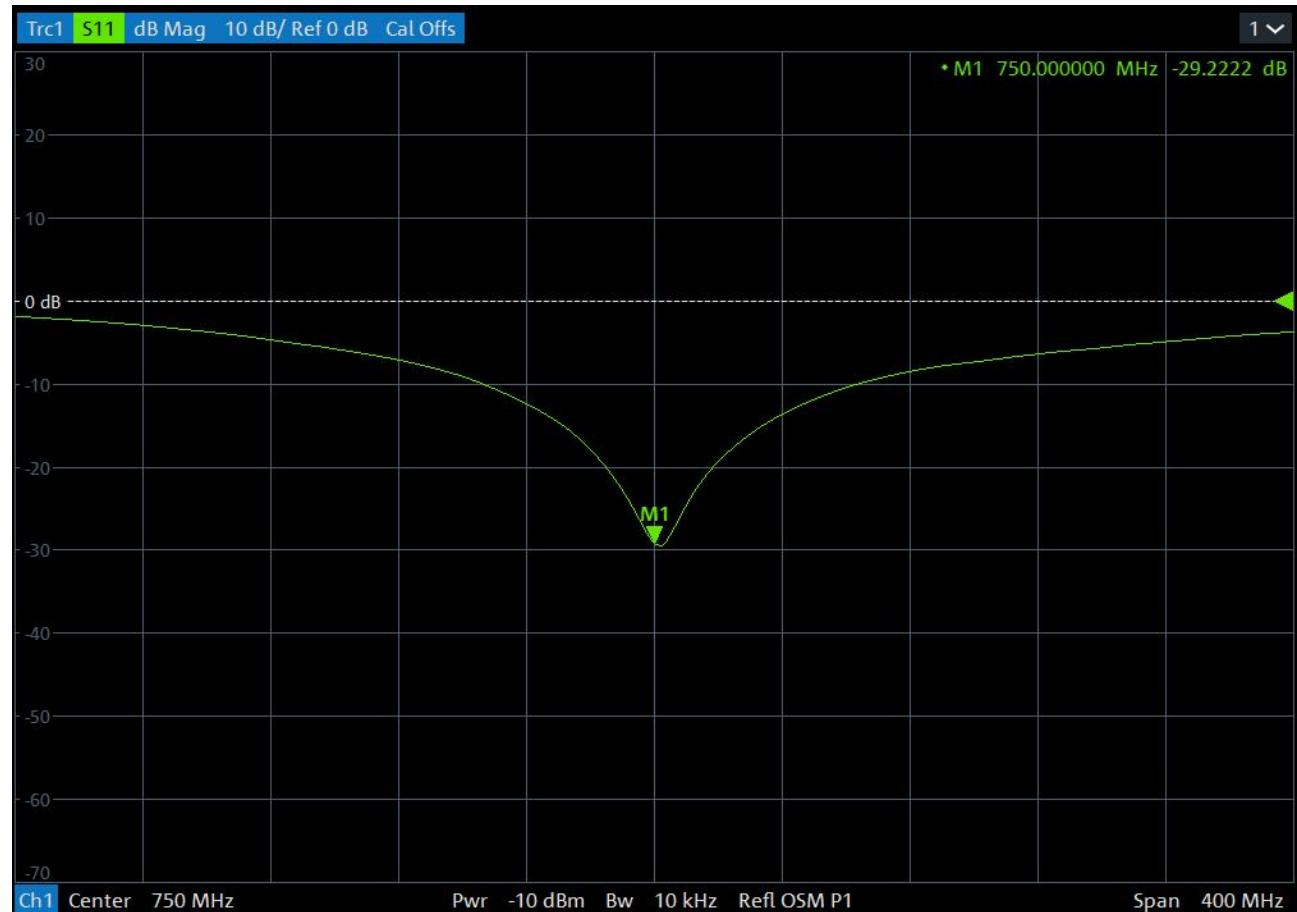

Impedance, Return Loss, System validierung

# Validation Report

## No. VAL\_0946\_EF 2021-12

Kind of doc.:  
QM Template

EUROFINS PRODUCT SERVICE GmbH  
Storkower Str. 38c, 15526 Reichenwalde, Germany




# Validation Report

## No. VAL\_0946\_EF 2021-12

Kind of doc.:  
QM Template

EUROFINS PRODUCT SERVICE GmbH  
Storkower Str. 38c, 15526 Reichenwalde, Germany



# Validation Report

## No. VAL\_0946\_EF 2021-12

Kind of doc.:  
QM Template

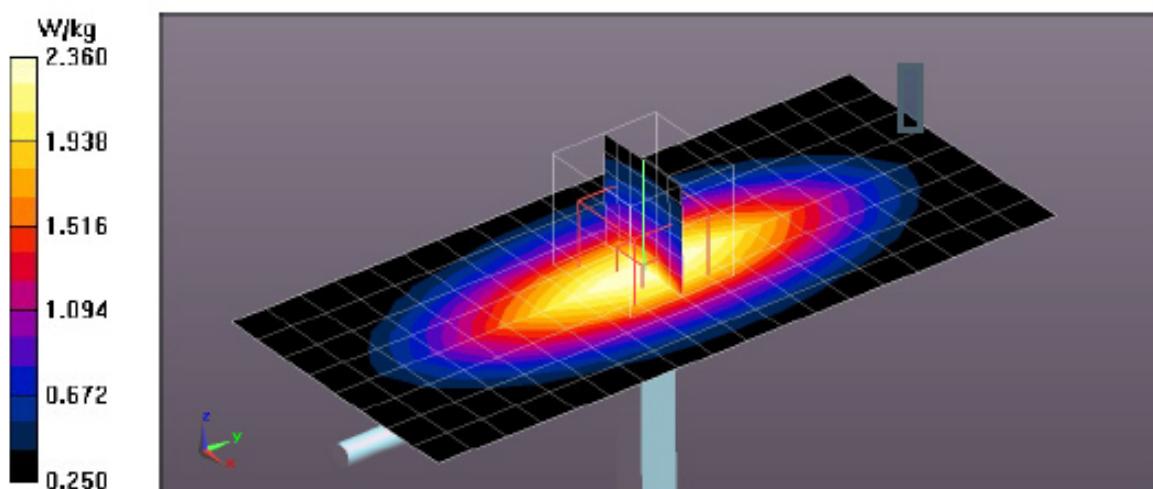
**EUROFINS PRODUCT SERVICE GmbH**  
Storkower Str. 38c, 15526 Reichenwalde, Germany

Date/Time: 28.12.2021 11:03:43

Test Laboratory: Eurofins Product Service GmbH

### Dipol Valid.750 (m)\_250mW ELI4 - 2021-12-28

DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN:1125


Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1  
Medium parameters used:  $f = 750$  MHz;  $\sigma = 0.906$  S/m;  $\epsilon_r = 41.707$ ;  $\rho = 1000$  kg/m<sup>3</sup>  
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3893; ConvF(10.54, 10.54, 10.54) @ 750 MHz; Calibrated: 20.10.2021
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 14.10.2021
- Phantom: ELI v4.0; Type: QDOVA001BB;
- Measurement SW: DASY52, Version 52.10 (2);

**System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=4.0mm (EX-Probe)/Area Scan (9x19x1):** Measurement grid: dx=10mm, dy=10mm  
Maximum value of SAR (measured) = 2.45 W/kg

**System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=4.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:**  
Measurement grid: dx=5mm, dy=5mm, dz=5mm  
Reference Value = 52.14 V/m; Power Drift = -0.16 dB  
Peak SAR (extrapolated) = 3.25 W/kg  
SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.46 W/kg  
Maximum value of SAR (measured) = 2.36 W/kg



# Validation Report

## No. VAL\_0947\_EF 2021-12

Kind of doc.:  
QM Template

**EUROFINS PRODUCT SERVICE GmbH**  
Storkower Str. 38c, 15526 Reichenwalde, Germany

### 1 Customer

Eurofins Product Service GmbH

### 2 Object

Equipment Number EF00947  
Equipment Name: System validation dipole  
Equipment Type: D1750V2  
Serial Number: 1126  
Manufacturer: Schmid & Partner Engineering AG

### 3 State of Measurement

Validation:   
Performance Control:   
Other:

### 4 Performance of Measurement

#### 4.1 Generals

(e.g. object of validation such as specific setup, non-standard method or SW, specification of the requirements, test set-up configuration, risk analysis etc.)

Dipol verification

#### 4.2 Validation procedure / measurement

(e.g. comparison of results achieved with other methods, interlaboratory comparison, systematic assessment of factors influencing the result, assessment of the uncertainty of the results based on scientific understanding of the theoretical principles of the method and practical experience; criteria/requirements for approval/rejection etc.)

According KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 3.2.2 Dipole calibration

Limits for the verification: return loss <20% to the original measurement or >20 dB minimum return-loss  
Impedance <5 Ω to the original measurement.

#### 4.3 Used reference equipment

| Equipment name      | Equipment type | Manufacturer | Equipment number | Cal. Date  | Cal. Due Date |
|---------------------|----------------|--------------|------------------|------------|---------------|
| RF Network analyzer | ZNB 40         | R&S          | EF01065          | 2021-07-27 | 2022-07-26    |

- new acquired (incl. calibration)
- new calibrated
- check reference standard

#### 4.4 Environmental conditions

Temperature:  $23^{\circ}\text{C} \pm 2^{\circ}\text{C}$   
Relative Air Humidity:  $50\text{ rH} \pm 5\%$   
Air Pressure:  $1020\text{ hPa} \pm 5\%$

# Validation Report

## No. VAL\_0947\_EF 2021-12

Kind of doc.:  
QM Template

EUROFINS PRODUCT SERVICE GmbH  
Storkower Str. 38c, 15526 Reichenwalde, Germany

### 5 Results

#### 5.1 General:

(e.g. measurement results, user instructions such as handling, transport, storage, preparation; checks to be made before the work started; information about how to install (operations)-, to maintain-, to train and to use; safety measures etc.)

|                                       | Original measurement          | Verification measurement        | Margin                         |
|---------------------------------------|-------------------------------|---------------------------------|--------------------------------|
| Impedance, transformend to feed point | 51.1 $\Omega$ + 0.9 $j\Omega$ | 50.55 $\Omega$ + 1.55 $j\Omega$ | 0.55 $\Omega$ + 0.65 $j\Omega$ |
| Return Loss                           | -36.90 dB                     | -35.57 dB                       | 3.60 %                         |
| Tissue Validation $\epsilon_r$        | 40.100                        | 40.079                          | 0.05 %                         |
| Tissue Validation $\sigma$ [S/m]      | 1.370                         | 1.371                           | -0.08 %                        |
| System validation                     | 36.6 W/kg (10g)               | 38.16 W/kg (1g)                 | -4.1 %                         |
| Date:                                 | 14.08.2014                    | 22.12.2021                      |                                |

#### 5.2 Measurement uncertainty

The reported expanded uncertainty of measurement is stated as the standard uncertainty multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.  
+/- 2.5 %

#### 5.3 Results of Validation

Validated   
Not validated

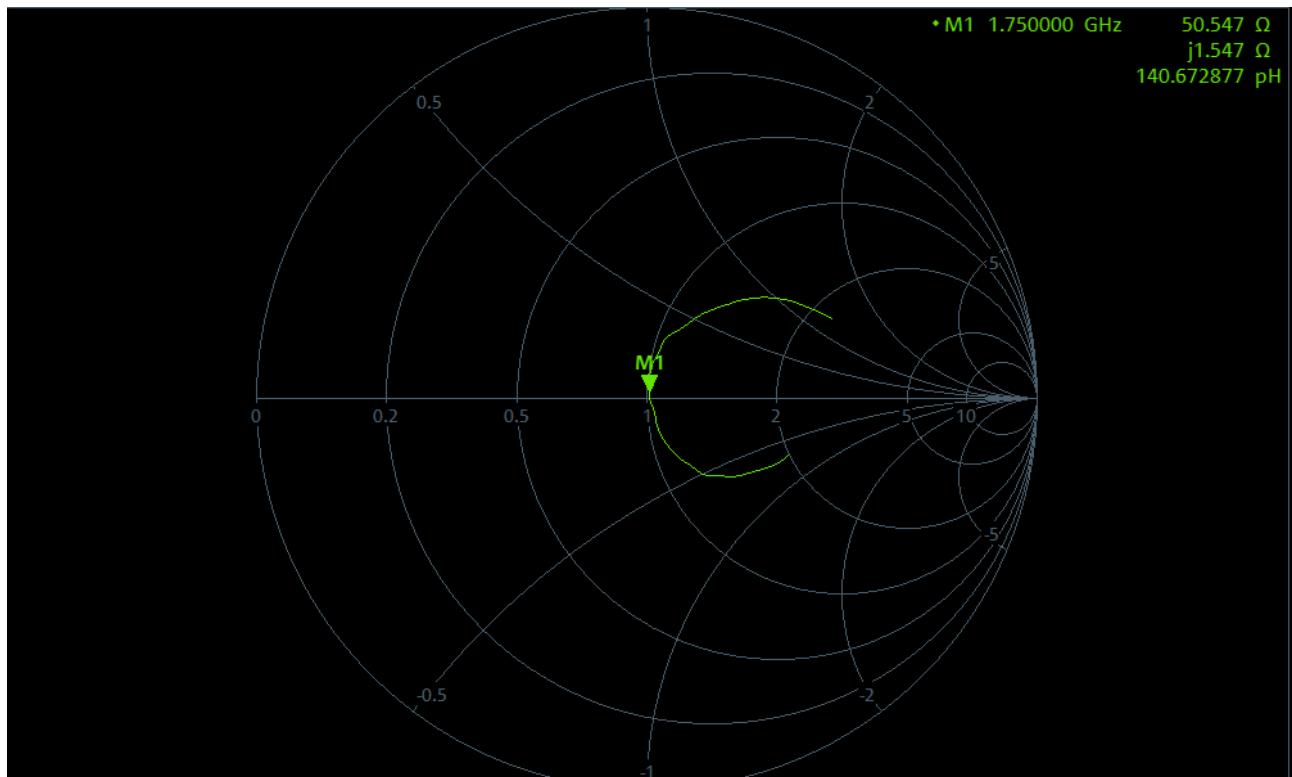
### 6 Operator

C.Graf  
Name

  
Signature

Place and Date of Verification: Reichenwalde, 22.12.2021

Attachment:

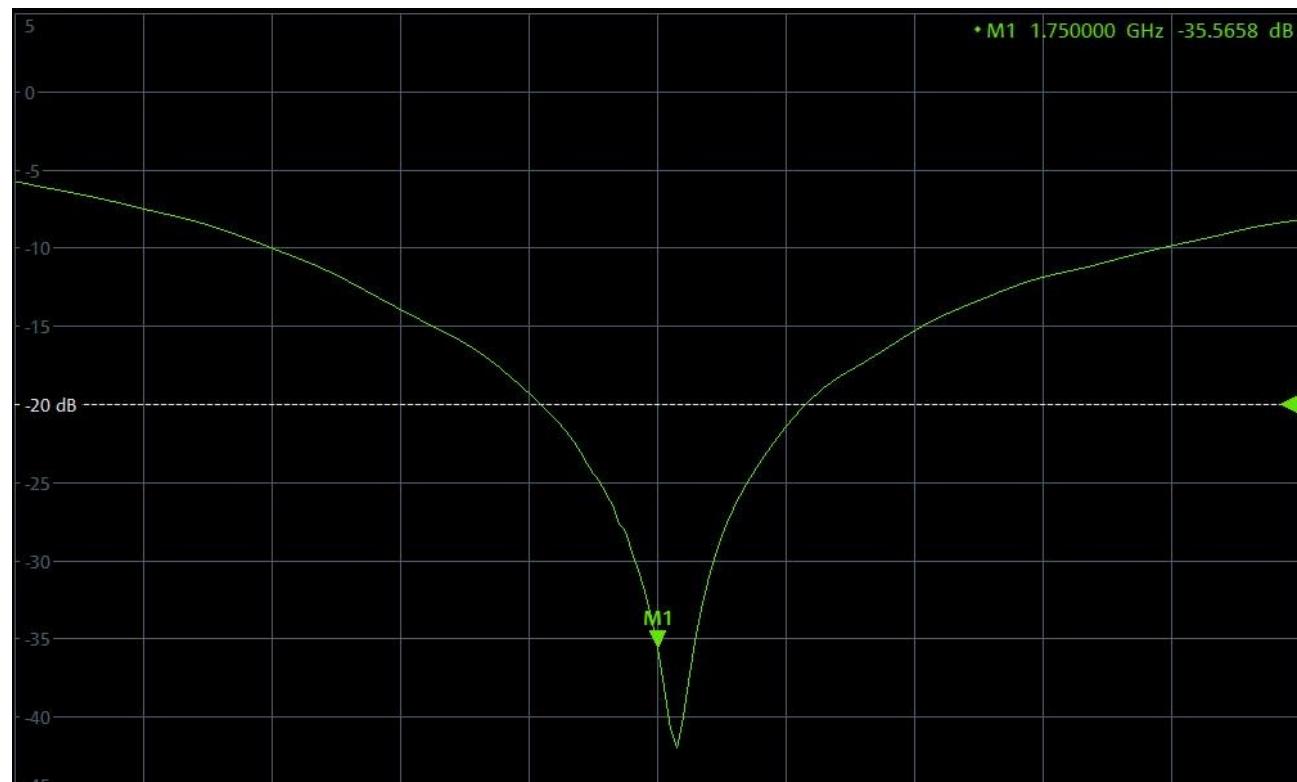

Impedance, Return Loss, System validierung

# Validation Report

## No. VAL\_0947\_EF 2021-12

Kind of doc.:  
QM Template

**EUROFINS PRODUCT SERVICE GmbH**  
Storkower Str. 38c, 15526 Reichenwalde, Germany




# Validation Report

## No. VAL\_0947\_EF 2021-12

Kind of doc.:  
QM Template

**EUROFINS PRODUCT SERVICE GmbH**  
Storkower Str. 38c, 15526 Reichenwalde, Germany



# Validation Report

## No. VAL\_0947\_EF 2021-12

Kind of doc.:  
QM Template

**EUROFINS PRODUCT SERVICE GmbH**  
Storkower Str. 38c, 15526 Reichenwalde, Germany

Date/Time: 22.12.2021 09:03:38

Test Laboratory: Eurofins Product Service GmbH

### Dipol Valid.1750 (m)\_250mW ELI4 - 2021-12-22

DUT: Dipole 1750 MHz D1750V3; Type: D1750V3; Serial: D1750V3 - SN:1126

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used:  $f = 1750$  MHz;  $\sigma = 1.371$  S/m;  $\epsilon_r = 40.079$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY5 Configuration:

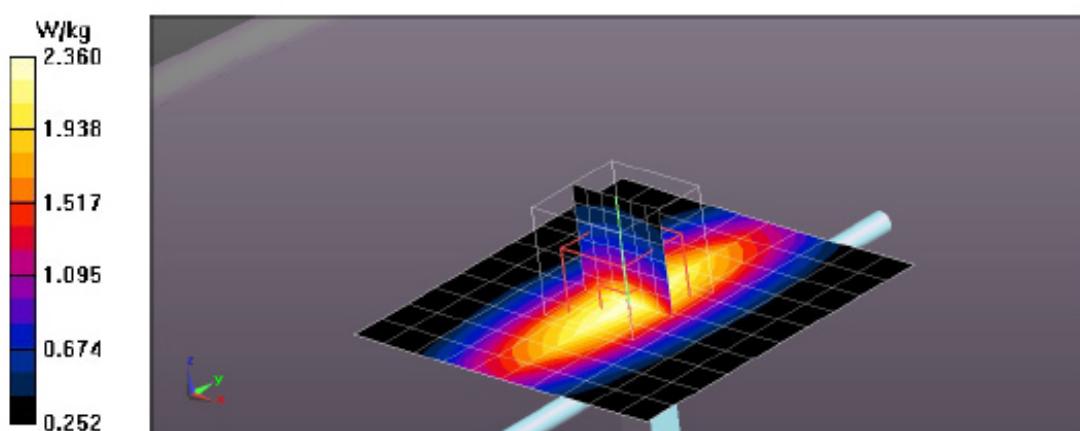
- Probe: EX3DV4 - SN3893; ConvF(10.28, 10.28, 10.28) @ 1750 MHz; Calibrated: 20.10.2021
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 14.10.2021
- Phantom: ELI v4.0; Type: QDOVA001BB;
- Measurement SW: DASY52, Version 52.10 (2);

### System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=4.0mm (EX-Probe)/Area Scan (11x11x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 10.71 W/kg

### System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=4.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.50 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 10.67 W/kg

SAR(1 g) = 9.54 W/kg; SAR(10 g) = 7.56 W/kg

Maximum value of SAR (measured) = 9.61 W/kg

