|                                  | こ<br>初<br>J<br>HNDLOGY                                                                       |                                                                                                           |
|----------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                  | <b>TEST REPO</b>                                                                             | RT                                                                                                        |
| FCC ID:                          | 2AUARTPMST600                                                                                |                                                                                                           |
| Test Report No::                 | TCT231101E102                                                                                |                                                                                                           |
| Date of issue:                   | Nov. 27, 2023                                                                                |                                                                                                           |
| Testing laboratory:              | SHENZHEN TONGCE TESTI                                                                        | ING LAB                                                                                                   |
| Testing location/ address:       | 2101 & 2201, Zhenchang Fac<br>Fuhai Subdistrict, Bao'an Dist<br>518103, People's Republic of |                                                                                                           |
| Applicant's name: :              | THINKCAR TECH CO., LTD.                                                                      |                                                                                                           |
| Address:                         | 2606, building 4, phase II, Tia<br>Bantian, Longgang District, Sl                            | nanYungu, Gangtou community, /<br>henzhen, China                                                          |
| Manufacturer's name :            | THINKCAR TECH CO., LTD.                                                                      |                                                                                                           |
| Address:                         | 2606, building 4, phase II, Tia<br>Bantian, Longgang District, Sl                            | nanYungu, Gangtou community,<br>henzhen, China                                                            |
| Standard(s):                     | FCC CFR Title 47 Part 15 Sul<br>FCC KDB 558074 D01 15.247<br>ANSI C63.10:2013                |                                                                                                           |
| Product Name::                   | TPMS Diagnostic Tool                                                                         |                                                                                                           |
| Trade Mark:                      | THINKCAR, XHINKCAR, MU                                                                       | CAR                                                                                                       |
| Model/Type reference :           | ТКТТ6                                                                                        |                                                                                                           |
| Rating(s):                       | Rechargeable Li-ion Battery D                                                                | DC 3.7V                                                                                                   |
| Date of receipt of test item     | Nov. 01, 2023                                                                                |                                                                                                           |
| Date (s) of performance of test: | Nov. 01, 2023 - Nov. 27, 2023                                                                |                                                                                                           |
| Tested by (+signature) :         | Yannie ZHONG                                                                                 | Vannie Zonecer                                                                                            |
| Check by (+signature) :          | Beryl ZHAO                                                                                   | Boyle TOT                                                                                                 |
| Approved by (+signature):        | Tomsin                                                                                       | Tomsmis                                                                                                   |
| TONGCE TESTING LAB. Th           | his document may be altered on<br>ly, and shall be noted in the re                           | the written approval of SHENZHEN<br>or revised by SHENZHEN TONGCE<br>evision section of the document. The |



# **Table of Contents**

TCT通测检测 TESTING CENTRE TECHNOLOGY

|      | General Prod                 |             |            |            |               |            |             |    |
|------|------------------------------|-------------|------------|------------|---------------|------------|-------------|----|
|      | I.2. Model(s) li             |             |            |            |               |            |             |    |
|      | I.3. Operation               |             |            |            |               |            |             |    |
| 2. 1 | Fest Result \$               | Summarv     |            |            | <u>(</u> (G)) |            | <u>(</u> C) | 5  |
|      | General Info                 |             |            |            |               |            |             |    |
|      | 3.1. Test envir              | onment an   | d mode     |            |               |            |             | 6  |
|      | 3.2. Descriptio              | n of Supp   | ort Units. |            |               |            |             | 7  |
|      | Facilities and               |             |            |            |               |            |             |    |
| 4    | 4.1. Facilities              |             |            |            |               |            |             | 8  |
| 4    | 4.2. Location                |             |            |            |               |            |             | 8  |
|      | 4.3. Measurem                |             |            |            |               |            |             |    |
| 5. 1 | <b>Fest Results</b>          | and Mea     | asureme    | nt Data .  |               | <u>(C)</u> |             | 9  |
| 5    | 5.1. Antenna re              | equiremen   | t          |            |               |            |             | 9  |
|      | 5.2. Conducted               |             |            |            |               |            |             |    |
| 5    | 5.3. Maximum                 | Conducte    | d (Averag  | e) Output  | Power         |            | <u>(6)</u>  | 14 |
|      | 5.4. Emission                |             |            |            |               |            |             |    |
| 65   | 5.5. Power Spe               | ectral Dens | sity       |            |               |            |             | 16 |
| Ę    | 5.6. Conducted               | d Band Ed   | ge and Sp  | ourious En | nission M     | easureme   | nt          | 17 |
| 5    | 5.7. Radiated S              | Spurious E  | mission l  | Measurem   | ent           |            |             | 19 |
| •••  | pendix A: Te<br>pendix B: Pł |             |            |            |               |            |             |    |
| Ap   | pendix C: Pł                 | notograp    | hs of El   | Л          |               |            |             |    |
|      |                              |             |            |            |               |            |             |    |
|      |                              |             |            |            |               |            |             |    |
|      |                              |             |            |            |               |            |             |    |



# **1. General Product Information**

# 1.1. EUT description

| Product Name:          | TPMS Diagnostic Tool                                                                                                                         |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Model/Type reference:  | тктте                                                                                                                                        |
| Sample Number:         | TCT231101E023-0101                                                                                                                           |
| Operation Frequency:   | 2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))<br>2422MHz~2452MHz (802.11n(HT40))                                                           |
| Channel Separation:    | 5MHz                                                                                                                                         |
| Number of Channel:     | 11 for 802.11b/802.11g/802.11n(HT20)<br>7 for 802.11n(HT40)                                                                                  |
| Modulation Technology: | 802.11b: Direct Sequence Spread Spectrum (DSSS)<br>802.11g/802.11n:<br>Orthogonal Frequency Division Multiplexing(OFDM)                      |
| Data speed:            | 802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps<br>802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps,<br>48Mbps, 54Mbps<br>802.11n: Up to 150Mbps |
| Antenna Type:          | Internal Antenna                                                                                                                             |
| Antenna Gain:          | 3.21dBi                                                                                                                                      |
| Rating(s):             | Rechargeable Li-ion Battery DC 3.7V                                                                                                          |

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

# 1.2. Model(s) list

None.

Page 3 of 83



# 1.3. Operation Frequency

### For 802.11b/g/n (HT20)

|   | Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| / | 1       | 2412MHz   | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |
| X | 2       | 2417MHz   | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |
|   | 3       | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

### For 802.11n (HT40)

| Channel      | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|--------------|-----------|---------|-----------|---------|-----------|---------|-----------|
|              |           | 4       | 2427MHz   | 7       | 2442MHz   |         | - (       |
| <u>(</u> G`) | (         | 5)5     | 2432MHz   | 8       | 2447MHz   | 6`)     | (20       |
| 3            | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         | <u> </u>  |

#### Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

#### 802.11b/802.11g/802.11n (HT20)

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2412MHz   |
| The middle channel  | 2437MHz   |
| The Highest channel | 2462MHz   |

#### 802.11n (HT40)

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2422MHz   |
| The middle channel  | 2437MHz   |
| The Highest channel | 2452MHz   |



# 2. Test Result Summary

| Requirement                         | CFR 47 Section      | Result |
|-------------------------------------|---------------------|--------|
| Antenna requirement                 | §15.203/§15.247 (c) | PASS   |
| AC Power Line Conducted<br>Emission | §15.207             | PASS   |
| Conducted Peak Output<br>Power      | §15.247 (b)(3)      | PASS   |
| 6dB Emission Bandwidth              | §15.247 (a)(2)      | PASS   |
| Power Spectral Density              | §15.247 (e)         | PASS   |
| Band Edge                           | §15.247(d)          | PASS   |
| Spurious Emission                   | §15.205/§15.209     | PASS   |
|                                     |                     |        |

#### Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

# 3. General Information

# 3.1. Test environment and mode

| Operating Environment:                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Condition                                                                                                                                                                                                                                                                                                                                                                                         | Conducted Emission                                                                                                                                                                                                                                                        | Radiated Emission                                                                                                                                                                                                                                                                                                                            |
| Temperature:                                                                                                                                                                                                                                                                                                                                                                                      | 23.5 °C                                                                                                                                                                                                                                                                   | 24.1 °C                                                                                                                                                                                                                                                                                                                                      |
| Humidity:                                                                                                                                                                                                                                                                                                                                                                                         | 52 % RH                                                                                                                                                                                                                                                                   | 54 % RH                                                                                                                                                                                                                                                                                                                                      |
| Atmospheric Pressure:                                                                                                                                                                                                                                                                                                                                                                             | 1010 mbar                                                                                                                                                                                                                                                                 | 1010 mbar                                                                                                                                                                                                                                                                                                                                    |
| Test Software:                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |
| Software Information:                                                                                                                                                                                                                                                                                                                                                                             | Engineering Mode                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                              |
| Power Level:                                                                                                                                                                                                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                              |
| Test Mode:                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |
| Engineering mode:                                                                                                                                                                                                                                                                                                                                                                                 | Keep the EUT in continuous channel and modulations with                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                              |
| above the ground plane of 3<br>polarities were performed. I<br>the EUT continuously work                                                                                                                                                                                                                                                                                                          | 8m & 1.5m for the measure<br>8m chamber. Measurements in<br>During the test, each emissior<br>ing, investigated all operating                                                                                                                                             | ment below & above 1GHz<br>h both horizontal and vertica<br>h was maximized by: having<br>modes, rotated about all 3                                                                                                                                                                                                                         |
| above the ground plane of 3<br>polarities were performed. I<br>the EUT continuously worki<br>axis (X, Y & Z) and cor<br>manipulating interconnectin<br>from 1m to 4m in both horiz                                                                                                                                                                                                                | 8m & 1.5m for the measure<br>m chamber. Measurements ir<br>During the test, each emissior                                                                                                                                                                                 | ment below & above 1GHz<br>both horizontal and vertica<br>was maximized by: having<br>modes, rotated about all 3<br>to obtain worst position<br>ble, varying antenna heigh                                                                                                                                                                   |
| above the ground plane of 3<br>polarities were performed. I<br>the EUT continuously worki<br>axis (X, Y & Z) and cor<br>manipulating interconnectin<br>from 1m to 4m in both horiz                                                                                                                                                                                                                | 8m & 1.5m for the measure<br>8m chamber. Measurements in<br>During the test, each emission<br>ing, investigated all operating<br>isidered typical configuration<br>g cables, rotating the turntal<br>ontal and vertical polarizations                                     | ment below & above 1GHz<br>both horizontal and vertica<br>was maximized by: having<br>modes, rotated about all 3<br>to obtain worst position<br>ble, varying antenna heigh                                                                                                                                                                   |
| above the ground plane of 3<br>polarities were performed. If<br>the EUT continuously working<br>axis (X, Y & Z) and con-<br>manipulating interconnection<br>from 1m to 4m in both horiz<br>(Z axis) are shown in Test R<br>We have verified the constru-<br>were carried out with the EU<br>report and defined as follows                                                                         | 8m & 1.5m for the measurer<br>8m chamber. Measurements in<br>During the test, each emission<br>ing, investigated all operating<br>hisidered typical configuration<br>g cables, rotating the turntal<br>ontal and vertical polarizations<br>esults of the following pages. | ment below & above 1GHz<br>h both horizontal and vertica<br>h was maximized by: having<br>modes, rotated about all 3<br>h to obtain worst position<br>ble, varying antenna heigh<br>s. The emissions worst-case<br>operation. All the test modes<br>hich was shown in this test                                                              |
| above the ground plane of 3<br>polarities were performed. If<br>the EUT continuously working<br>axis (X, Y & Z) and com-<br>manipulating interconnection<br>from 1m to 4m in both horized<br>(Z axis) are shown in Test R<br>We have verified the constru-<br>were carried out with the EU<br>report and defined as follows<br><b>Per-scan all kind of data ra</b>                                | 8m & 1.5m for the measure<br>8m chamber. Measurements in<br>During the test, each emission<br>ing, investigated all operating<br>hisidered typical configuration<br>g cables, rotating the turntal<br>ontal and vertical polarizations<br>esults of the following pages.  | ment below & above 1GHz<br>h both horizontal and vertica<br>h was maximized by: having<br>modes, rotated about all 3<br>h to obtain worst position<br>ble, varying antenna heigh<br>s. The emissions worst-case<br>operation. All the test modes<br>hich was shown in this test                                                              |
| above the ground plane of 3<br>polarities were performed. If<br>the EUT continuously working<br>axis (X, Y & Z) and com-<br>manipulating interconnection<br>from 1m to 4m in both horized<br>(Z axis) are shown in Test R<br>We have verified the constru-<br>were carried out with the EU<br>report and defined as follows<br><b>Per-scan all kind of data ra</b>                                | 8m & 1.5m for the measurer<br>8m chamber. Measurements in<br>During the test, each emission<br>ing, investigated all operating<br>hisidered typical configuration<br>g cables, rotating the turntal<br>ontal and vertical polarizations<br>esults of the following pages. | ment below & above 1GHz<br>h both horizontal and vertica<br>h was maximized by: having<br>modes, rotated about all 3<br>h to obtain worst position<br>ble, varying antenna heigh<br>s. The emissions worst-case<br>operation. All the test modes<br>hich was shown in this test                                                              |
| above the ground plane of 3<br>polarities were performed. If<br>the EUT continuously worki<br>axis (X, Y & Z) and cor-<br>manipulating interconnectin<br>from 1m to 4m in both horiz<br>(Z axis) are shown in Test R<br>We have verified the constru-<br>were carried out with the EU<br>report and defined as follow<br><b>Per-scan all kind of data ra</b><br>was worst case.                   | 8m & 1.5m for the measurer<br>8m chamber. Measurements in<br>During the test, each emission<br>ing, investigated all operating<br>hisidered typical configuration<br>g cables, rotating the turntal<br>ontal and vertical polarizations<br>esults of the following pages. | ment below & above 1GHz<br>h both horizontal and vertica<br>h was maximized by: having<br>modes, rotated about all 3<br>h to obtain worst position<br>ble, varying antenna heigh<br>s. The emissions worst-case<br>operation. All the test modes<br>hich was shown in this test                                                              |
| above the ground plane of 3<br>polarities were performed. If<br>the EUT continuously working<br>axis (X, Y & Z) and com-<br>manipulating interconnection<br>from 1m to 4m in both horized<br>(Z axis) are shown in Test R<br>We have verified the constru-<br>were carried out with the EU<br>report and defined as follows<br>Per-scan all kind of data ra-<br>was worst case.<br>Mode           | 8m & 1.5m for the measurer<br>8m chamber. Measurements in<br>During the test, each emission<br>ing, investigated all operating<br>hisidered typical configuration<br>g cables, rotating the turntal<br>ontal and vertical polarizations<br>esults of the following pages. | ment below & above 1GHz<br>h both horizontal and vertica<br>h was maximized by: having<br>modes, rotated about all 3<br>h to obtain worst position<br>ble, varying antenna heigh<br>s. The emissions worst-case<br>operation. All the test modes<br>hich was shown in this test<br><b>bund the follow list which i</b><br>Data rate          |
| above the ground plane of 3<br>polarities were performed. If<br>the EUT continuously working<br>axis (X, Y & Z) and com-<br>manipulating interconnection<br>from 1m to 4m in both horize<br>(Z axis) are shown in Test R<br>We have verified the constru-<br>were carried out with the EU<br>report and defined as follows<br>Per-scan all kind of data ra-<br>was worst case.<br>Mode<br>802.11b | 8m & 1.5m for the measurer<br>8m chamber. Measurements in<br>During the test, each emission<br>ing, investigated all operating<br>hisidered typical configuration<br>g cables, rotating the turntal<br>ontal and vertical polarizations<br>esults of the following pages. | ment below & above 1GHz<br>n both horizontal and vertica<br>n was maximized by: having<br>modes, rotated about all 3<br>n to obtain worst position<br>ble, varying antenna heigh<br>s. The emissions worst-case<br>operation. All the test modes<br>hich was shown in this test<br><b>bund the follow list which i</b><br>Data rate<br>1Mbps |



# 3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Equipment                     | Madal No  | Seriel No. |        | Trada Nama |
|-------------------------------|-----------|------------|--------|------------|
| Equipment                     | Model No. | Serial No. | FCC ID | Trade Name |
| $\langle \mathcal{C} \rangle$ |           |            | /      |            |
|                               |           |            |        |            |

#### Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.





# 4. Facilities and Accreditations

# 4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
  - SHENZHEN TONGCE TESTING LAB
  - CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

# 4.2. Location

### SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

# 4.3. Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                    | MU        |
|-----|-----------------------------------------|-----------|
| 1   | Conducted Emission                      | ± 3.10 dB |
| 2   | RF power, conducted                     | ± 0.12 dB |
| 3   | Spurious emissions, conducted           | ± 0.11 dB |
| 4   | All emissions, radiated(<1 GHz)         | ± 4.56 dB |
| 5   | All emissions, radiated(1 GHz - 18 GHz) | ± 4.22 dB |
| 6   | All emissions, radiated(18 GHz- 40 GHz) | ± 4.36 dB |



# 5. Test Results and Measurement Data

## 5.1. Antenna requirement

### Standard requirement: FCC Part15 C Sectio

FCC Part15 C Section 15.203 /247(c)

### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

### E.U.T Antenna:

The WIFI antenna is internal antenna which permanently attached, and the best case gain of the antenna is 3.21dBi.





# 5.2. Conducted Emission

### 5.2.1. Test Specification

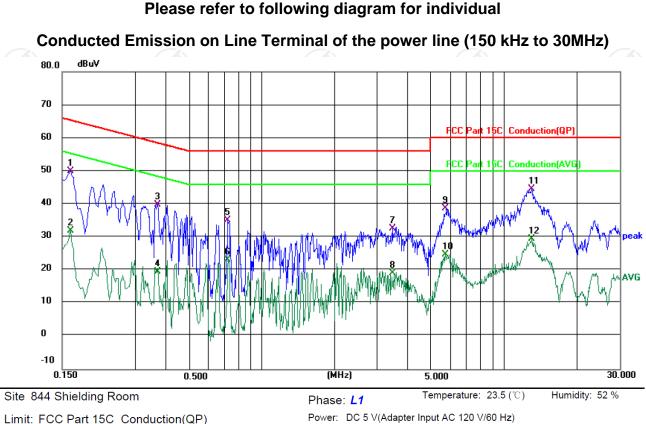
| Test Requirement: | FCC Part15 C Section                                                                                                                                                                                                                                                                           | 15.207                                                                                                                                                                                           | (c                                                                                                                                                                         |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.10:2013                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                  |                                                                                                                                                                            |  |
| Frequency Range:  | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                              | 150 kHz to 30 MHz                                                                                                                                                                                |                                                                                                                                                                            |  |
| Receiver setup:   | RBW=9 kHz, VBW=30                                                                                                                                                                                                                                                                              | ) kHz, Sweep time                                                                                                                                                                                | e=auto                                                                                                                                                                     |  |
|                   | Frequency range                                                                                                                                                                                                                                                                                | Limit (                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                      |  |
|                   | (MHz)                                                                                                                                                                                                                                                                                          | Quasi-peak                                                                                                                                                                                       | Average                                                                                                                                                                    |  |
| Limits:           | 0.15-0.5                                                                                                                                                                                                                                                                                       | 66 to 56*                                                                                                                                                                                        | 56 to 46*                                                                                                                                                                  |  |
|                   | 0.5-5                                                                                                                                                                                                                                                                                          | 56                                                                                                                                                                                               | 46                                                                                                                                                                         |  |
|                   | 5-30                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                               | 50                                                                                                                                                                         |  |
|                   | Referenc                                                                                                                                                                                                                                                                                       | e Plane                                                                                                                                                                                          |                                                                                                                                                                            |  |
| Test Setup:       | Remark:<br>E.U.T AC power<br>Test table/Insulation plane<br>Remark:<br>E.U.T: Equipment Under Test<br>LISN: Line Impedence Stabilization No<br>Test table height=0.8m                                                                                                                          | EMI<br>Receiver                                                                                                                                                                                  | r AC power                                                                                                                                                                 |  |
| Test Mode:        | Charging + Transmittir                                                                                                                                                                                                                                                                         | ng Mode                                                                                                                                                                                          |                                                                                                                                                                            |  |
| Test Procedure:   | <ol> <li>The E.U.T is connelline impedance staprovides a 500hm/smeasuring equipme</li> <li>The peripheral device power through a Licoupling impedance refer to the block photographs).</li> <li>Both sides of A.C. conducted interfered emission, the relative the interface cables</li> </ol> | bilization network<br>50uH coupling im<br>ent.<br>ces are also conne<br>ISN that provides<br>with 50ohm tern<br>diagram of the<br>line are checke<br>nce. In order to fin<br>re positions of equ | k (L.I.S.N.). This<br>pedance for the<br>ected to the main<br>a 50ohm/50uH<br>nination. (Please<br>test setup and<br>ed for maximum<br>nd the maximum<br>ipment and all of |  |
|                   | ANSI C63.10:2013                                                                                                                                                                                                                                                                               | on conducted mea                                                                                                                                                                                 | asurement.                                                                                                                                                                 |  |

Page 10 of 83





### 5.2.2. Test Instruments

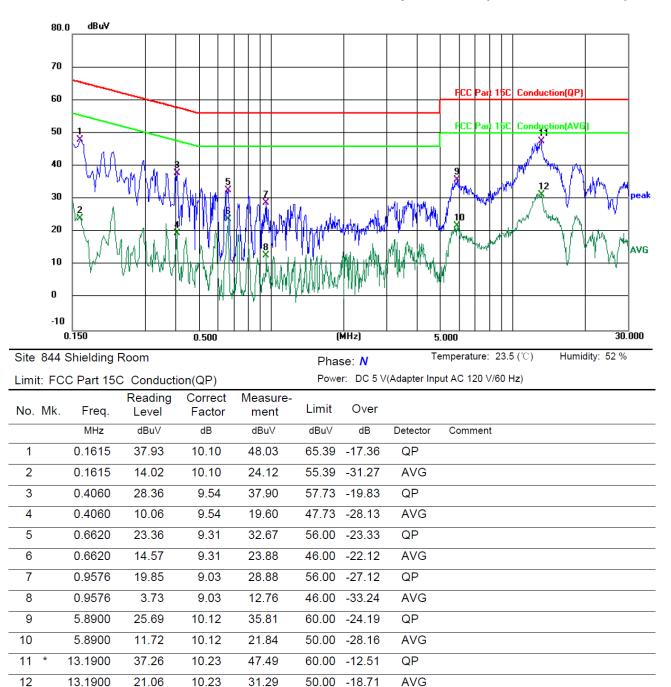

| Conducted Emission Shielding Room Test Site (843) |                       |           |               |                 |  |
|---------------------------------------------------|-----------------------|-----------|---------------|-----------------|--|
| Equipment                                         | Manufacturer          | Model     | Serial Number | Calibration Due |  |
| EMI Test Receiver                                 | R&S                   | ESCI3     | 100898        | Jun. 29, 2024   |  |
| Line Impedance<br>Stabilisation<br>Newtork(LISN)  | Schwarzbeck           | NSLK 8126 | 8126453       | Feb. 20, 2024   |  |
| Line-5                                            | ТСТ                   | CE-05     | /             | Jul. 03, 2024   |  |
| EMI Test Software                                 | Shurple<br>Technology | EZ-EMC    | 1             | 1               |  |



Page 11 of 83

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

### 5.2.3. Test data




|     |     |         |                  |                   |                  |       |        | × 1 1    | ,       |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |         |
|     |     | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector | Comment |
| 1   | *   | 0.1620  | 39.89            | 10.12             | 50.01            | 65.36 | -15.35 | QP       |         |
| 2   |     | 0.1620  | 21.87            | 10.12             | 31.99            | 55.36 | -23.37 | AVG      |         |
| 3   |     | 0.3700  | 30.18            | 9.57              | 39.75            | 58.50 | -18.75 | QP       |         |
| 4   |     | 0.3700  | 10.12            | 9.57              | 19.69            | 48.50 | -28.81 | AVG      |         |
| 5   |     | 0.7258  | 25.87            | 9.23              | 35.10            | 56.00 | -20.90 | QP       |         |
| 6   |     | 0.7258  | 13.89            | 9.23              | 23.12            | 46.00 | -22.88 | AVG      |         |
| 7   |     | 3.4660  | 22.67            | 10.04             | 32.71            | 56.00 | -23.29 | QP       |         |
| 8   |     | 3.4660  | 9.07             | 10.04             | 19.11            | 46.00 | -26.89 | AVG      |         |
| 9   |     | 5.7220  | 28.68            | 10.10             | 38.78            | 60.00 | -21.22 | QP       |         |
| 10  |     | 5.7220  | 14.68            | 10.10             | 24.78            | 50.00 | -25.22 | AVG      |         |
| 11  |     | 13.0500 | 34.39            | 10.16             | 44.55            | 60.00 | -15.45 | QP       |         |
| 12  |     | 13.0500 | 19.23            | 10.16             | 29.39            | 50.00 | -20.61 | AVG      |         |
|     |     |         |                  |                   |                  |       |        |          |         |

#### Note:

Freq. = Emission frequency in MHz Reading level  $(dB\mu V)$  = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement  $(dB\mu V)$  = Reading level  $(dB\mu V)$  + Corr. Factor (dB)Limit  $(dB\mu V)$  = Limit stated in standard Margin (dB) = Measurement  $(dB\mu V)$  – Limits  $(dB\mu V)$ Q.P. =Quasi-Peak AVG = average

\* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.



#### Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

TCT 通测检测 TCT 通测检测

#### Note:

Freq. = Emission frequency in MHz Reading level (dBµV) = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement (dBµV) = Reading level (dBµV) + Corr. Factor (dB) Limit (dBµV) = Limit stated in standard Margin (dB) = Measurement (dBµV) – Limits (dBµV) Q.P. =Quasi-Peak AVG =average \* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.



# 5.3. Maximum Conducted (Average) Output Power

## 5.3.1. Test Specification

| Test Requirement:           | FCC Part15 C Section 15.247 (b)(3)                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:                | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Limit:                      | 30dBm                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Test Setup:                 |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                             | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Test Mode:                  | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Test Procedure:             | <ol> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable and attenuator. The path loss<br/>was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Measure the conducted output power and record the<br/>results in the test report.</li> </ol> |  |  |  |  |  |
| Test Result:                | PASS                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| $(\widetilde{\mathcal{S}})$ |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |

### 5.3.2. Test Instruments

| RF Test Room      |              |           |               |                 |  |  |
|-------------------|--------------|-----------|---------------|-----------------|--|--|
| Equipment         | Manufacturer | Model     | Serial Number | Calibration Due |  |  |
| Spectrum Analyzer | Agilent      | N9020A    | MY49100619    | Jun. 28, 2024   |  |  |
| Combiner Box      | Ascentest    | AT890-RFB |               |                 |  |  |





# 5.4. Emission Bandwidth

## 5.4.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                                                                                                                                                                                                                                                                                                                              | (¿C                         |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                           |                             |
| Limit:            | >500kHz                                                                                                                                                                                                                                                                                                                                                                         |                             |
| Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                 | Ċ                           |
|                   | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                           | K                           |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                               |                             |
| Test Procedure:   | <ol> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Make the measurement with the spectrum analy resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to an accurate measurement. The 6dB bandwidth be greater than 500 kHz.</li> <li>Measure and record the results in the test report.</li> </ol> | vzer's<br>e<br>make<br>must |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                            |                             |

### 5.4.2. Test Instruments

| RF Test Room      |              |           |               |                 |  |  |
|-------------------|--------------|-----------|---------------|-----------------|--|--|
| Equipment         | Manufacturer | Model     | Serial Number | Calibration Due |  |  |
| Spectrum Analyzer | Agilent      | N9020A    | MY49100619    | Jun. 28, 2024   |  |  |
| Combiner Box      | Ascentest    | AT890-RFB | /             | 1               |  |  |





# 5.5. Power Spectral Density

## 5.5.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |
| Limit:            | The peak power spectral density sha<br>than 8dBm in any 3kHz band at any<br>continuous transmission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                        |
| Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected<br/>analyzer by RF cable and attenuator<br/>was compensated to the results for e<br/>measurement.</li> <li>Set to the maximum power setting an<br/>EUT transmit continuously.</li> <li>Make the measurement with the spectresolution bandwidth (RBW): 3 kHz skHz. Video bandwidth VBW ≥ 3 x RE<br/>to at least 1.5 times the OBW.</li> <li>Detector = RMS, Sweep time = autor<br/>5. Employ trace averaging (RMS) mode<br/>of 100 traces. Use the peak marker<br/>determine the maximum power level<br/>6. Measure and record the results in the</li> </ol> | r. The path loss<br>each<br>ad enable the<br>ctrum analyzer's<br>$\leq$ RBW $\leq$ 100<br>BW. Set the span<br>couple.<br>e over a minimum<br>function to |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |

# 5.5.2. Test Instruments

|   | RF Test Room      |              |           |               |                 |  |
|---|-------------------|--------------|-----------|---------------|-----------------|--|
|   | Equipment         | Manufacturer | Model     | Serial Number | Calibration Due |  |
| 1 | Spectrum Analyzer | Agilent      | N9020A    | MY49100619    | Jun. 28, 2024   |  |
|   | Combiner Box      | Ascentest    | AT890-RFB |               |                 |  |
|   |                   |              | •         | 201           |                 |  |

# 5.6. Conducted Band Edge and Spurious Emission Measurement

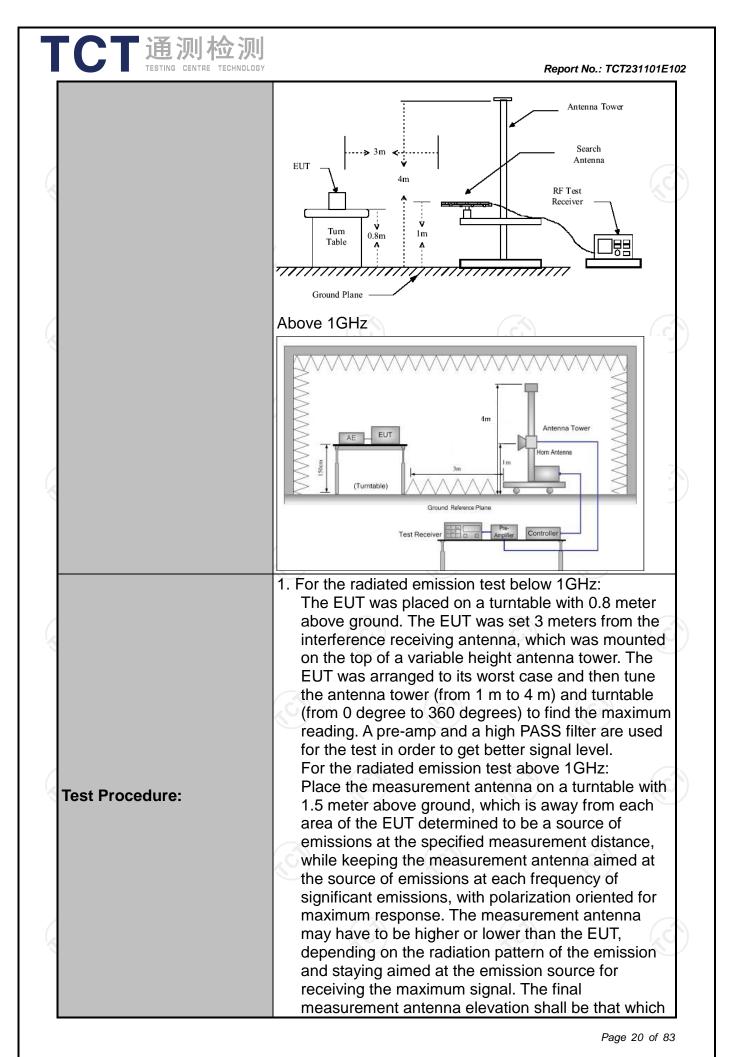
## 5.6.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB558074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Limit:            | In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).                                                                                                                                     |
| Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Toot Droood       | <ol> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable and attenuator. The path loss<br/>was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Set RBW = 100 kHz, VBW=300 kHz, Peak Detector.<br/>Unwanted Emissions measured in any 100 kHz<br/>bandwidth outside of the authorized frequency band<br/>shall be attenuated by at least 20 dB relative to the<br/>maximum in-band peak PSD level in 100 kHz when</li> </ol> |
| Test Procedure:   | <ul> <li>maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).</li> <li>4. Measure and record the results in the test report.</li> <li>5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.</li> </ul>                                                                                |



### 5.6.2. Test Instruments

|                |         | R                | F Test Room  |          |          |                 |         |
|----------------|---------|------------------|--------------|----------|----------|-----------------|---------|
| Equipm         | ent     | Manufacturer     | Model        | Serial   | Number   | Calibratio      | n Due   |
| Spectrum A     | nalyzer | Agilent          | N9020A       | MY49     | 100619   | Jun. 28, 2      | 2024    |
| Combine        | r Box   | Ascentest        | AT890-RFB    |          | /        | 1               |         |
|                |         |                  |              |          |          |                 |         |
|                |         |                  |              |          |          |                 |         |
|                |         |                  |              |          |          |                 |         |
|                |         |                  |              |          |          |                 |         |
|                |         |                  |              |          |          |                 |         |
|                |         |                  |              |          |          |                 |         |
|                |         |                  |              |          |          |                 |         |
|                |         |                  |              |          |          |                 |         |
|                |         |                  |              |          |          |                 |         |
|                |         |                  |              |          |          |                 |         |
|                |         |                  |              |          |          | Dana            | 18 of 8 |
| Hotline: 400-6 | CA4 440 | Tel: 86-755-2767 | 2220 Eave 00 | -755-276 | 70000 64 | tp://www.tct-la |         |




# 5.7. Radiated Spurious Emission Measurement

### 5.7.1. Test Specification

| Test Requirement:     | FCC Part15                            | C Section         | n 15.209                                    | <u>(</u> ) |                                     |  |  |
|-----------------------|---------------------------------------|-------------------|---------------------------------------------|------------|-------------------------------------|--|--|
| Test Method:          | ANSI C63.10                           | ANSI C63.10: 2013 |                                             |            |                                     |  |  |
| Frequency Range:      | 9 kHz to 25 (                         | GHz               |                                             |            |                                     |  |  |
| Measurement Distance: | 3 m                                   | 3 m               |                                             |            |                                     |  |  |
| Antenna Polarization: | Horizontal & Vertical                 |                   |                                             |            |                                     |  |  |
| Operation mode:       | Transmitting mode with modulation     |                   |                                             |            |                                     |  |  |
|                       | Frequency                             | Detector          | RBW                                         | VBW        | Remark                              |  |  |
| Receiver Setup:       | 9kHz- 150kHz                          | Quasi-peal        |                                             | 1kHz       | Quasi-peak Value                    |  |  |
|                       | 150kHz-<br>30MHz                      | Quasi-peal        |                                             | 30kHz      | Quasi-peak Value                    |  |  |
|                       | 30MHz-1GHz                            | Quasi-peal        | k 120KHz                                    | 300KHz     | Quasi-peak Value                    |  |  |
|                       |                                       | Peak              | 1MHz                                        | 3MHz       | Peak Value                          |  |  |
|                       | Above 1GHz                            | Peak              | 1MHz                                        | 10Hz       | Average Value                       |  |  |
|                       | Frequen                               | псу               | Field Stre<br>(microvolts                   |            | Measurement<br>Distance (meters)    |  |  |
|                       | 0.009-0.490                           |                   | 2400/F(I                                    | (Hz)       | 300                                 |  |  |
|                       | 0.490-1.705                           |                   | 24000/F(                                    | KHz)       | 30                                  |  |  |
|                       | 1.705-30                              |                   | 30                                          |            | 30                                  |  |  |
|                       | 30-88                                 |                   | 100                                         |            | 3                                   |  |  |
| _imit:                | 88-216                                |                   | 150                                         |            | 3                                   |  |  |
|                       | 216-960                               |                   | 200                                         |            | 3                                   |  |  |
|                       | Above 960                             |                   | 500                                         |            | 3                                   |  |  |
|                       | Frequency                             | (micro            | field Strength<br>(microvolts/meter)<br>500 |            | ment<br>ice Detector<br>rs) Average |  |  |
|                       | Above 1GHz                            |                   | 5000 3                                      |            | Peak                                |  |  |
|                       | For radiated                          | emission:         | s below 30                                  | )MHz       |                                     |  |  |
|                       | Distance = 3m                         |                   |                                             |            |                                     |  |  |
| Test setup:           | EUT<br>0.8m<br>Turn table<br>Receiver |                   |                                             |            |                                     |  |  |
|                       |                                       | Ground            | d Plane                                     |            |                                     |  |  |

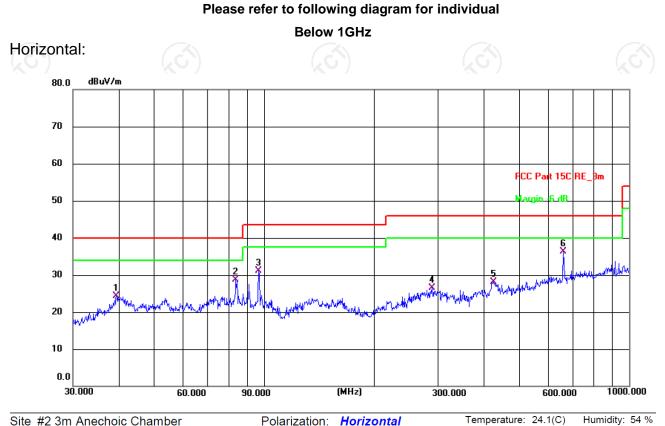
Page 19 of 83



| ٦ | <b>FCT</b> 通测检测<br>TESTING CENTRE TECHNOLOGY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | TESTING CENTRE TECHNOLOGY                    | Report No.: TCT231101E102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |                                              | <ul> <li>Report No.: TCT231101E102</li> <li>maximizes the emissions. The measurement<br/>antenna elevation for maximum emissions shall be<br/>restricted to a range of heights of from 1 m to 4 m<br/>above the ground or reference ground plane.</li> <li>Corrected Reading: Antenna Factor + Cable Loss +<br/>Read Level - Preamp Factor = Level</li> <li>For measurement below 1GHz, If the emission level<br/>of the EUT measured by the peak detector is 3 dB<br/>lower than the applicable limit, the peak emission<br/>level will be reported. Otherwise, the emission<br/>measurement will be repeated using the quasi-peak<br/>detector and reported.</li> <li>Use the following spectrum analyzer settings: <ol> <li>Span shall wide enough to fully capture the<br/>emission being measured;</li> <li>Set RBW=120 kHz for f &lt; 1 GHz; VBW ≥ RBW;<br/>Sweep = auto; Detector function = peak; Trace =<br/>max hold;</li> <li>Set RBW = 1 MHz, VBW= 3MHz for f &gt;1 GHz for<br/>peak measurement.</li> </ol> </li> <li>For average measurement: VBW = 10 Hz, when<br/>duty cycle is no less than 98 percent. VBW ≥ 1/T,<br/>when duty cycle is less than 98 percent where T is</li> </ul> |
|   |                                              | the minimum transmission duration over which the transmitter is on and is transmitting at its maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |                                              | power control level for the tested mode of operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Test results:                                | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



Page 21 of 83

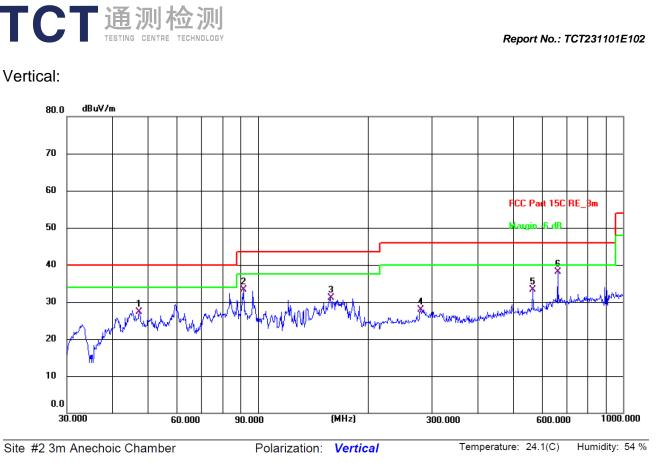

## 5.7.2. Test Instruments

|                      | Radiated En           | nission Test Site | e (966)            |                 |
|----------------------|-----------------------|-------------------|--------------------|-----------------|
| Name of<br>Equipment | Manufacturer          | Model             | Serial<br>Number   | Calibration Due |
| EMI Test Receiver    | R&S                   | ESIB7             | 100197             | Jun. 29, 2024   |
| Spectrum Analyzer    | R&S                   | FSQ40             | 200061             | Jun. 29, 2024   |
| Pre-amplifier        | SKET                  | LNPA_0118G-<br>45 | SK2021012<br>102   | Feb. 20, 2024   |
| Pre-amplifier        | SKET                  | LNPA_1840G-<br>50 | SK2021092<br>03500 | Feb. 20, 2024   |
| Pre-amplifier        | HP                    | 8447D             | 2727A05017         | Jun. 27, 2024   |
| Loop antenna         | Schwarzbeck           | FMZB1519B         | 00191              | Jul. 02, 2024   |
| Broadband Antenna    | Schwarzbeck           | VULB9163          | 340                | Jul. 01, 2024   |
| Horn Antenna         | Schwarzbeck           | BBHA 9120D        | 631                | Jul. 01, 2024   |
| Horn Antenna         | Schwarzbeck           | BBHA 9170         | 00956              | Feb. 24, 2024   |
| Antenna Mast         | Keleto                | RE-AM             | 1                  |                 |
| Coaxial cable        | SKET                  | RC-18G-N-M        | 1                  | Feb. 24, 2024   |
| Coaxial cable        | SKET                  | RC_40G-K-M        | 1                  | Feb. 24, 2024   |
| EMI Test Software    | Shurple<br>Technology | EZ-EMC            | PC)                | , «             |





### 5.7.3. Test Data




Site #2 3m Anechoic Chamber 

Polarization: *Horizontal* 

| Limit: F | FCC Part 15C F     | RE_3m             |                  |                   |                   | Power:         | DC 3.7 V |     |        |
|----------|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--------|
| No.      | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
| 1        | 39.4371            | 9.85              | 14.36            | 24.21             | 40.00             | -15.79         | QP       | Ρ   |        |
| 2        | 83.8155            | 18.60             | 10.02            | 28.62             | 40.00             | -11.38         | QP       | Ρ   |        |
| 3        | 96.7749            | 20.48             | 10.68            | 31.16             | 43.50             | -12.34         | QP       | Ρ   |        |
| 4        | 289.0020           | 12.09             | 14.33            | 26.42             | 46.00             | -19.58         | QP       | Ρ   |        |
| 5        | 425.0280           | 10.46             | 17.71            | 28.17             | 46.00             | -17.83         | QP       | Ρ   |        |
| 6 *      | 661.1503           | 13.55             | 22.73            | 36.28             | 46.00             | -9.72          | QP       | Ρ   |        |





| Limit: I | FCC Part 15C F     | RE_3m             |                  |                   |                   | Power:         | DC 3.7 V |     |        |
|----------|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--------|
| No.      | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
| 1        | 47.3470            | 13.53             | 13.74            | 27.27             | 40.00             | -12.73         | QP       | Ρ   |        |
| 2        | 91.5969            | 23.07             | 10.19            | 33.26             | 43.50             | -10.24         | QP       | Ρ   |        |
| 3        | 158.3755           | 16.10             | 14.91            | 31.01             | 43.50             | -12.49         | QP       | Ρ   |        |
| 4        | 279.6671           | 14.00             | 13.95            | 27.95             | 46.00             | -18.05         | QP       | Ρ   |        |
| 5        | 566.3001           | 12.61             | 20.67            | 33.28             | 46.00             | -12.72         | QP       | Ρ   |        |
| 6 *      | 663.2003           | 15.40             | 22.77            | 38.17             | 46.00             | -7.83          | QP       | Ρ   |        |

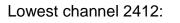
**Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode (Middle channel and 802.11g) was submitted only.

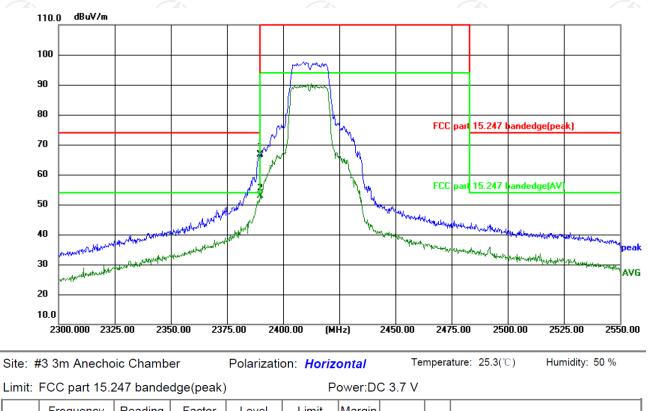
3. Freq. = Emission frequency in MHz

Measurement  $(dB\mu V/m) = Reading \ level \ (dB\mu V) + Corr. \ Factor \ (dB)$ 

Correction Factor= Antenna Factor + Cable loss - Pre-amplifier


Limit  $(dB\mu V/m) = Limit$  stated in standard

 $Margin (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$ 


\* is meaning the worst frequency has been tested in the test frequency range.



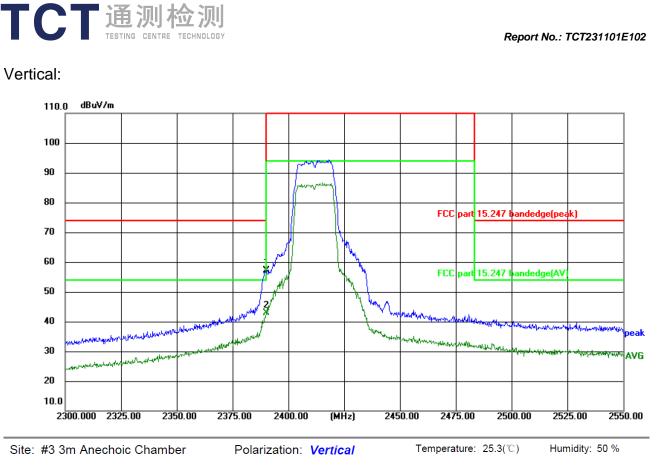
Test Result of Radiated Spurious at Band edges



#### Horizontal:



|   | No. | Frequency<br>(MHz) | Reading<br>(dBuV) |        | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
|---|-----|--------------------|-------------------|--------|-------------------|-------------------|----------------|----------|-----|--------|
| ĺ | 1   | 2390.000           | 83.16             | -16.53 | 66.63             | 74.00             | -7.37          | peak     | Ρ   |        |
|   | 2 * | 2390.000           | 69.41             | -16.53 | 52.88             | 54.00             | -1.12          | AVG      | Ρ   |        |
| 1 |     |                    |                   | - /    |                   |                   | /              |          |     |        |





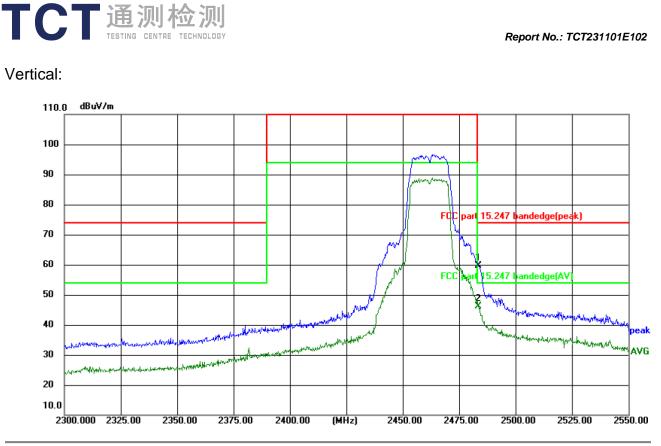





Page 25 of 83



Limit: FCC part 15.247 bandedge(peak)


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) |        | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|-------------------|--------|-------------------|-------|----------------|----------|-----|--------|
| 1   | 2390.000           | 73.73             | -16.53 | 57.20             | 74.00 | -16.80         | peak     | Ρ   |        |
| 2 * | 2390.000           | 59.45             | -16.53 | 42.92             | 54.00 | -11.08         | AVG      | Ρ   |        |

Power:DC 3.7 V

**Note:** Measurements were conducted in all two channels (high, low) and all modulation (802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode 802.11g was submitted only.



| izontal:                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                  |      | R          |                    |             |               |
|---------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|------------------|------|------------|--------------------|-------------|---------------|
|                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                  |      |            |                    |             |               |
|                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                  |      |            |                    |             |               |
|                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                  |      |            |                    |             |               |
| 100                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          | - mm             | ~    | _          |                    |             | -             |
| 90                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                  |      | -          |                    |             |               |
| 80                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                  | -    | _          |                    |             |               |
| 70                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          | ~{[              |      | art 15.247 | andedge(pe         | ak)         |               |
| 60                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          | ~                | ¥~   | NY         |                    |             |               |
| 50                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | المحمد                   |                  | FCCp | a 15.247   | andedge(AV         | <u> </u>    | _             |
|                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the property has       |                          |                  |      | 1 mm       | which was here and | whether and |               |
| 40                                                | newmenter                               | where where where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marine Marine Marine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                          | merthalt                 |                  |      | Mr. And    | have an and        |             | **** <b>P</b> |
| 30 Mayor Manager                                  | way way way the                         | and the and the state of the st | Contraction of the Contraction o |                            |                          |                  |      |            |                    | 1.444       | ~~~~^^        |
| 20                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          | _                |      |            |                    | +           |               |
| 10.0<br>2300.000 232                              | 5.00 2350                               | 0.00 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /<br>75.00 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D0.00 (MH                  | lz) 2                    | 2450.00          | 2475 | .00 250    | 0.00 25            | 25.00       | 2550          |
| :: FCC part 15.2                                  | ic Chambe<br>47 banded                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Po                         | ower:DC                  | 3.7 V            |      |            |                    |             |               |
|                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | Margin                   |                  | P/F  | Remark     |                    |             |               |
| : FCC part 15.2<br>Frequency<br>(MHz)<br>2483.500 | 47 banded<br>Reading<br>(dBuV)<br>80.42 | lge(peak)<br>Factor<br>(dB/m)<br>-16.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level<br>(dBuV/m)<br>63.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-10.01 | Detector<br>peak | P    | Remark     |                    |             |               |
| : FCC part 15.2<br>Frequency<br>(MHz)<br>2483.500 | 47 banded<br>Reading<br>(dBuV)          | lge(peak)<br>Factor<br>(dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Level<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit<br>(dBuV/m)          | Margin<br>(dB)           | Detector         |      | Remark     |                    |             | ( 6           |
| : FCC part 15.2<br>Frequency<br>(MHz)<br>2483.500 | 47 banded<br>Reading<br>(dBuV)<br>80.42 | lge(peak)<br>Factor<br>(dB/m)<br>-16.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level<br>(dBuV/m)<br>63.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-10.01 | Detector<br>peak | P    | Remark     |                    |             |               |
| : FCC part 15.2<br>Frequency<br>(MHz)<br>2483.500 | 47 banded<br>Reading<br>(dBuV)<br>80.42 | lge(peak)<br>Factor<br>(dB/m)<br>-16.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level<br>(dBuV/m)<br>63.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-10.01 | Detector<br>peak | P    | Remark     |                    | •)          | ( C           |
| : FCC part 15.2<br>Frequency<br>(MHz)<br>2483.500 | 47 banded<br>Reading<br>(dBuV)<br>80.42 | lge(peak)<br>Factor<br>(dB/m)<br>-16.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level<br>(dBuV/m)<br>63.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-10.01 | Detector<br>peak | P    | Remark     |                    | )           |               |
| : FCC part 15.2<br>Frequency<br>(MHz)<br>2483.500 | 47 banded<br>Reading<br>(dBuV)<br>80.42 | lge(peak)<br>Factor<br>(dB/m)<br>-16.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level<br>(dBuV/m)<br>63.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-10.01 | Detector<br>peak | P    | Remark     |                    | )           |               |
| : FCC part 15.2<br>Frequency<br>(MHz)<br>2483.500 | 47 banded<br>Reading<br>(dBuV)<br>80.42 | lge(peak)<br>Factor<br>(dB/m)<br>-16.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level<br>(dBuV/m)<br>63.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-10.01 | Detector<br>peak | P    | Remark     |                    | )           |               |



Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 25.3(°C) Humidity: 50 %

Limit: FCC part 15.247 bandedge(peak)

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|-------------------|------------------|-------------------|-------|----------------|----------|-----|--------|
| 1   | 2483.500           | 76.12             | -16.43           | 59.69             | 74.00 | -14.31         | peak     | Ρ   |        |
| 2 * | 2483.500           | 62.53             | -16.43           | 46.10             | 54.00 | -7.90          | AVG      | Ρ   |        |

Power:DC 3.7 V

#### Note:

- 1. Peak Final Emission Level=Peak Reading + Correction Factor;
- 2. Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 3. Measurements were conducted in all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode 802.11g was submitted only.

Page 28 of 83

|                    | Modulation Type: 802.11b |                           |                      |                                |                             |                           |                        |    |                |  |  |  |  |  |
|--------------------|--------------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----|----------------|--|--|--|--|--|
|                    |                          |                           | L                    | ow channe.                     | I: 2412 MH                  | Z                         |                        |    |                |  |  |  |  |  |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V         | Peak<br>reading<br>(dBµV) | AV reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) |    | Margin<br>(dB) |  |  |  |  |  |
| 4824               | Н                        | 45.87                     |                      | 0.75                           | 46.62                       |                           | 74                     | 54 | -7.38          |  |  |  |  |  |
| 7236               | Н                        | 34.53                     |                      | 9.87                           | 44.40                       |                           | 74                     | 54 | -9.60          |  |  |  |  |  |
|                    | Н                        |                           |                      |                                |                             |                           |                        |    |                |  |  |  |  |  |
| 4824               | V                        | 45.69                     |                      | 0.75                           | 46.44                       | ~                         | 74                     | 54 | -7.56          |  |  |  |  |  |
| 7236               | V                        | 36.41                     | +2G                  | 9.87                           | 46.28                       | (j)                       | 74                     | 54 | -7.72          |  |  |  |  |  |
|                    | V                        |                           |                      |                                | <                           |                           |                        |    |                |  |  |  |  |  |

Above 1GHz

|                    |                  |                           | Μ                    | iddle chann                    | el: 2437 Mł                 | Ηz                        |                        |                      |                |
|--------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4874               | Н                | 45.28                     |                      | 0.97                           | 46.25                       |                           | 74                     | 54                   | -7.75          |
| 7311               | Н                | 34.38                     |                      | 9.83                           | 44.21                       |                           | 74                     | 54                   | -9.79          |
|                    | H                |                           |                      |                                | (                           |                           |                        |                      |                |
|                    |                  |                           | KO.                  |                                | X                           | 0                         |                        | KO /                 |                |
| 4874               | V                | 43.04                     | (                    | 0.97                           | 44.01                       | <u> </u>                  | 74                     | 54                   | -9.99          |
| 7311               | V                | 34.33                     |                      | 9.83                           | 44.16                       |                           | 74                     | 54                   | -9.84          |
|                    | V                |                           |                      |                                |                             |                           |                        |                      |                |
|                    |                  |                           |                      | (.0                            |                             |                           |                        |                      |                |

|                    |                  |                           | н                    | igh channe                     | el: 2462 MH                 | 7                         |                        |                      | KY /           |
|--------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4924               | H                | 45.16                     |                      | 1.18                           | 46.34                       |                           | 74                     | 54                   | -7.66          |
| 7386               | Ŧ                | 35.82                     |                      | 10.07                          | 45.89                       | <u> </u>                  | 74                     | 54                   | -8.11          |
|                    | Н                |                           |                      |                                |                             |                           |                        |                      |                |
|                    |                  |                           |                      |                                |                             |                           |                        |                      |                |
| 4924               | V                | 43.25                     |                      | 1.18                           | 44.43                       |                           | 74                     | 54                   | -9.57          |
| 7386               | V                | 34.91                     |                      | 10.07                          | 44.98                       |                           | 74                     | 54                   | -9.02          |
|                    | V                |                           |                      | (                              | ノ                           |                           |                        |                      |                |

#### Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

|                    | TESTI            | NG CENTRE TEC             | HNOLOGY              |                                |                             |                           | Repo                   | ort No.: TCT23       | 1101E102       |
|--------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|
|                    |                  |                           | Μ                    | odulation T                    | ype: 802.11                 | lg                        |                        |                      |                |
|                    |                  |                           | L                    | ow channe                      | I: 2412 MH                  | Z                         |                        |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4824               | Н                | 44.78                     |                      | 0.75                           | 45.53                       |                           | 74                     | 54                   | -8.47          |
| 7236               | Н                | 34.28                     |                      | 9.87                           | 44.15                       |                           | 74                     | 54                   | -9.85          |
|                    | Н                |                           |                      | 0                              | · · · ·                     |                           | <u> </u>               |                      |                |
| 4824               | V                | 45.10                     |                      | 0.75                           | 45.85                       |                           | 74                     | 54                   | -8.15          |
| 7236               | V                | 34.82                     | ( )                  | 9.87                           | 44.69                       | ~                         | 74                     | 54                   | -9.31          |
|                    | V                |                           | <del>(</del> _C      | •)                             |                             | G`}                       |                        | (2G)                 |                |
|                    |                  |                           |                      |                                | 7                           |                           | •                      |                      |                |

|                    |                  |                           | Mi                   | iddle chann                    | el: 2437 Mł                 | Ηz                        |                        |                      |                |
|--------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4874               | Н                | 44.12                     |                      | 0.97                           | 45.09                       |                           | 74                     | 54                   | -8.91          |
| 7311               | Н                | 34.63                     |                      | 9.83                           | 44.46                       |                           | 74                     | 54                   | -9.54          |
|                    | Н                |                           |                      |                                |                             |                           |                        |                      |                |
|                    |                  |                           |                      | 6                              | (                           |                           |                        |                      |                |
| 4874               | V                | 45.00                     |                      | 0.97                           | 45.97                       |                           | 74                     | 54                   | -8.03          |
| 7311               | V                | 35.13                     | ()                   | 9.83                           | 44.96                       |                           | 74                     | 54                   | -9.04          |
|                    | V                |                           |                      |                                |                             |                           |                        |                      |                |

|                     |                  | ()                        | F                    | ligh channe                    | el: 2462 MH                 | z                         | $(\mathbf{c})$         |                      |                |
|---------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|
| Frequency<br>(MHz)  | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4924                | H                | 44.59                     |                      | 1.18                           | 45.77                       |                           | 74                     | 54                   | -8.23          |
| 7386                | Н                | 35.12                     |                      | 10.07                          | 45.19                       | <u> </u>                  | 74                     | 54                   | -8.81          |
|                     | H                |                           |                      | /                              | (                           | · · · ·                   |                        |                      |                |
| 4924                | V                | 45.68                     |                      | 1.18                           | 46.86                       |                           | 74                     | 54                   | -7.14          |
| 7386                | V                | 35.20                     |                      | 10.07                          | 45.27                       |                           | 74                     | 54                   | -8.73          |
| $(\mathbf{\Theta})$ | V                | - <del>[2</del> 6]        |                      | (, (                           | 5                           |                           | 2G <del>-}</del>       |                      | (              |
| Matai               |                  |                           | 7                    |                                |                             |                           |                        |                      |                |

#### Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

○T 通测检测

| TC                 |                  | <b>的</b> 加枪               |                      |                                |                             |                           | Rep                    | ort No.: TCT23       | 81101E102      |
|--------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|
|                    |                  |                           | Modu                 | lation Type                    | : 802.11n (H                | HT20)                     |                        |                      |                |
|                    |                  |                           | L                    | ow channe                      | I: 2412 MH                  | Z                         |                        |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4824               | Н                | 45.74                     |                      | 0.75                           | 46.49                       |                           | 74                     | 54                   | -7.51          |
| 7236               | Н                | 34.61                     |                      | 9.87                           | 44.48                       |                           | 74                     | 54                   | -9.52          |
|                    | Н                |                           |                      | V                              | · · · ·                     |                           |                        |                      |                |
| 4824               | V                | 44.97                     |                      | 0.75                           | 45.72                       |                           | 74                     | 54                   | -8.28          |
| 7236               | V                | 34.16                     | 6                    | 9.87                           | 44.03                       | · ·                       | 74                     | 54                   | -9.97          |
|                    | V                |                           |                      | )                              |                             | G`)                       |                        | $(2G^2)$             |                |
|                    |                  |                           |                      |                                |                             |                           |                        |                      |                |

|                    |                  |                           | Mi                   | iddle chann                    | el: 2437 Mł                 | Ηz                        |                        |                      |                |
|--------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4874               | Н                | 44.22                     |                      | 0.97                           | 45.19                       |                           | 74                     | 54                   | -8.81          |
| 7311               | Н                | 35.18                     |                      | 9.83                           | 45.01                       |                           | 74                     | 54                   | -8.99          |
|                    | Н                |                           |                      |                                |                             |                           |                        |                      |                |
|                    |                  |                           |                      | 6                              | (                           |                           |                        |                      |                |
| 4874               | V                | 45.02                     |                      | 0.97                           | 45.99                       | 0)                        | 74                     | 54                   | -8.01          |
| 7311               | V                | 35.68                     |                      | 9.83                           | 45.51                       |                           | 74                     | 54                   | -8.49          |
|                    | V                |                           |                      |                                |                             |                           |                        |                      |                |

| (c)                |                  | ()                        | F                    | ligh channe                    | el: 2462 MH                 | Z                         |                        |                      |                |
|--------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4924               | H_               | 45.77                     |                      | 1.18                           | 46.95                       |                           | 74                     | 54                   | -7.05          |
| 7386               | H                | 34.45                     |                      | 10.07                          | 44.52                       | <u> </u>                  | 74                     | 54                   | -9.48          |
|                    | H                |                           |                      | /                              | (                           | <u> </u>                  |                        |                      |                |
| 4924               | V                | 44.38                     |                      | 1.18                           | 45.56                       |                           | 74                     | 54                   | -8.44          |
| 7386               | V                | 34.11                     |                      | 10.07                          | 44.18                       |                           | 74                     | 54                   | -9.82          |
| $(-\Theta)$        | V                | Ú <del>,</del>            |                      | (20                            | 5)                          |                           | <u> </u>               |                      |                |
| Mater              |                  |                           | 7                    |                                |                             |                           |                        |                      |                |

#### Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

| TC                 |                  | MG CENTRE TEC             |                      |                                |                             |                           | Rep                    | ort No.: TCT23       | 31101E102      |
|--------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|
|                    |                  |                           | Modu                 | lation Type                    | : 802.11n (I                | HT40)                     |                        |                      |                |
|                    |                  |                           | L                    | ow channe                      | I: 2422 MH                  | Z                         |                        |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4844               | Н                | 45.23                     |                      | 0.75                           | 45.98                       |                           | 74                     | 54                   | -8.02          |
| 7266               | Н                | 35.96                     |                      | 9.87                           | 45.83                       |                           | 74                     | 54                   | -8.17          |
|                    | Н                |                           |                      | ()                             | · · · ·                     |                           | <u> </u>               |                      |                |
| 4824               | V                | 44.54                     |                      | 0.75                           | 45.29                       |                           | 74                     | 54                   | -8.71          |
| 7236               | V                | 34.78                     | 6                    | 9.87                           | 44.65                       |                           | 74                     | 54                   | -9.35          |
|                    | V                |                           | <del>(</del> _C      | )                              |                             | G`)                       |                        | (2G)                 |                |
|                    |                  |                           |                      |                                |                             |                           |                        |                      |                |

|                    |                  |                           | Mi                   | ddle chann                     | el: 2437 Mł                 | Ηz                        |                        |                      |                |
|--------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4874               | Н                | 44.45                     |                      | 0.97                           | 45.42                       |                           | 74                     | 54                   | -8.58          |
| 7311               | Н                | 34.26                     |                      | 9.83                           | 44.09                       |                           | 74                     | 54                   | -9.91          |
|                    | Н                |                           |                      |                                |                             |                           |                        |                      |                |
|                    |                  |                           |                      | 2                              | (                           |                           |                        |                      |                |
| 4874               | V                | 45.35                     |                      | 0.97                           | 46.32                       | <u> </u>                  | 74                     | 54                   | -7.68          |
| 7311               | V                | 35.18                     |                      | 9.83                           | 45.01                       |                           | 74                     | 54                   | -8.99          |
|                    | V                |                           |                      |                                |                             |                           |                        |                      |                |

|                    |                  |                           | F                    | ligh channe                    | el: 2452 MH                 | Z                         |                        |                      |                |
|--------------------|------------------|---------------------------|----------------------|--------------------------------|-----------------------------|---------------------------|------------------------|----------------------|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4904               | H                | 44.80                     |                      | 1.18                           | 45.98                       |                           | 74                     | 54                   | -8.02          |
| 7356               | H                | 34.51                     |                      | 10.07                          | 44.58                       | <u> </u>                  | 74                     | 54                   | -9.42          |
|                    | H                |                           |                      | /                              | ×                           | )                         |                        |                      |                |
| 1001               |                  | 1= 0 1                    |                      |                                |                             | 1                         |                        |                      |                |
| 4904               | V                | 45.94                     |                      | 1.18                           | 47.12                       |                           | 74                     | 54                   | -6.88          |
| 7356               | V                | 35.13                     |                      | 10.07                          | 45.20                       |                           | 74                     | 54                   | -8.80          |
|                    | V                | U <del>t</del>            |                      | (, (                           |                             |                           | <u> </u>               |                      |                |
| Mada               |                  |                           | 7                    |                                |                             |                           |                        |                      |                |

#### Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.



# Appendix A: Test Result of Conducted Test

|           |      | Duty Cycle         |                   |
|-----------|------|--------------------|-------------------|
| Condition | Mode | Frequency<br>(MHz) | Duty Cycle<br>(%) |
| NVNT      | b    | 2412               | 100               |
| NVNT      | b    | 2437               | 100               |
| NVNT      | b    | 2462               | 100               |
| NVNT      | g    | 2412               | 100               |
| NVNT      | g    | 2437               | 100               |
| NVNT      | g    | 2462               | 100               |
| NVNT      | n20  | 2412               | 100               |
| NVNT      | n20  | 2437               | 100               |
| NVNT      | n20  | 2462               | 100               |
| NVNT      | n40  | 2422               | 100               |
| NVNT      | n40  | 2437               | 100               |
| NVNT      | n40  | 2452               | 100               |

Page 33 of 83

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

| Keysight Spectrum Anal<br>R RF | yzer - Swept SA<br>50 Ω AC | SENSE           | INT                           | ALIGN AUTO     |             | 03:19:05 PM Nov     |          |
|--------------------------------|----------------------------|-----------------|-------------------------------|----------------|-------------|---------------------|----------|
|                                | 137000000 GHz              | PNO Fast +++ Tr | rig: Free Run<br>Atten: 40 dB |                | pe: Log-Pwr | TRACE               | 234      |
| 0 dB/div Ref 3                 | fset 2.31 dB<br>0.00 dBm   |                 |                               |                |             | Mkr1 50.00<br>16.11 | 0m<br>dB |
| og v<br>20.0                   |                            |                 | 1                             |                |             |                     |          |
| 10.0                           |                            |                 |                               |                |             |                     |          |
| 0.00                           |                            |                 |                               |                |             |                     |          |
| 0.0                            |                            |                 |                               |                |             |                     |          |
| 20.0                           |                            |                 |                               |                |             |                     |          |
| 10.0                           |                            |                 |                               |                |             |                     |          |
| 50.0                           |                            |                 |                               |                |             |                     |          |
| 60.0                           |                            |                 |                               |                |             |                     |          |
| enter 2.437000                 | 000 CH-                    |                 |                               |                |             | Spar                | . 0 1    |
| es BW 8 MHz                    | 000 GH2                    | #VBW 8.         | 0 MHz                         |                | Sweep       | 100.0 ms (1000      | 1 pt     |
| KR MODE TRC SCL                | ×<br>50.00 n               | ۲<br>16.11 dBm  | FUNCTION                      | FUNCTION WIDTH | F           | UNCTION VALUE       |          |
| 2                              | 30.00 11                   |                 |                               |                |             |                     |          |
| 4                              |                            |                 |                               |                |             |                     |          |
| 6                              |                            |                 |                               |                |             |                     |          |
|                                |                            |                 |                               |                |             |                     |          |
| 8                              |                            |                 |                               |                |             |                     |          |
| 7<br>8<br>9<br>0               |                            |                 |                               |                |             |                     |          |
| 7<br>8<br>9                    |                            |                 | IT                            |                |             |                     | •        |



#VBW 8.0 MHz

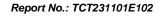
**Test Graphs** Duty Cycle NVNT b 2412MHz

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 40 dB

ALIGN AUTO Avg Type: Log-Pwr



10 dB/di Log**√** 


10 11

Keysight Spectrum Analyzer - Swept SA

Center 2.412000000 GHz Res BW 8 MHz

Center Freq 2.412000000 GHz

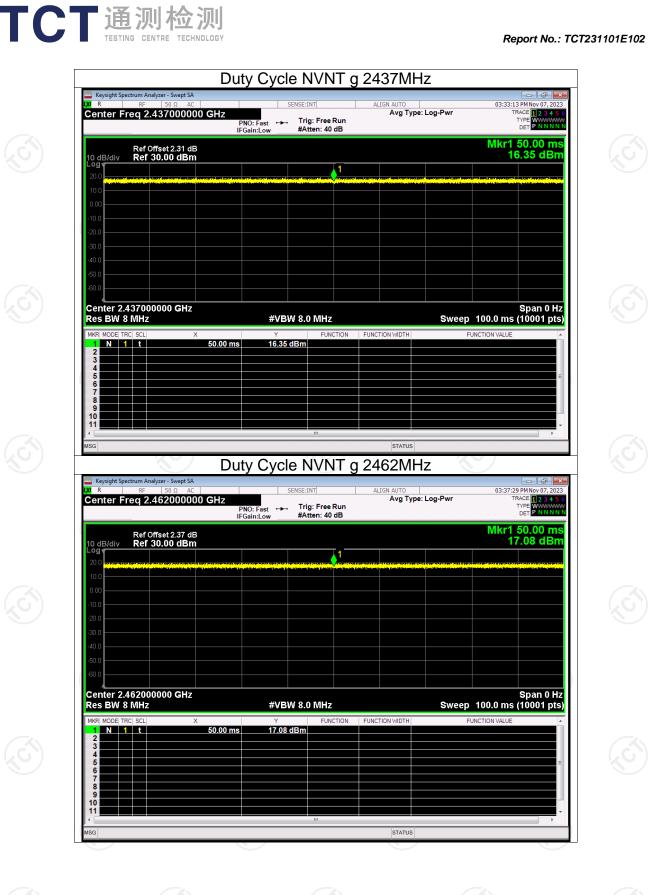
Ref Offset 2.22 dB Ref 30.00 dBm



03:14:09 PM Nov 07, 2023 TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N

Mkr1 50.00 ms 15.70 dBm

Span 0 Hz Sweep 100.0 ms (10001 pts)


#### Duty Cycle NVNT b 2462MHz Keysight Spe K/R 03:22:55 PM Nov 07, 2 TRACE 1 2 3 4 Avg Type: Log-Pwr Center Freq 2.462000000 GHz Trig: Free Run #Atten: 40 dB TYP PNO: Fast +++ Mkr1 50.00 ms 16.12 dBm Ref Offset 2.37 dB Ref 30.00 dBm 10 d Log Center 2.462000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (10001 pts) #VBW 8.0 MHz 50.00 ms 16.12 dBr N 1 t Duty Cycle NVNT g 2412MHz Keysight Spectrum Analyzer - Swept SA 03:29:36 PM N Center Freg 2.412000000 GHz Avg Type: Log-Pwr Trig: Free Run #Atten: 40 dB TYP PNO: Fast ↔→→ IFGain:Low Mkr1 50.00 ms 15.09 dBm Ref Offset 2.22 dB Ref 30.00 dBm 10 dB/div Log**√** <u>|</u>1 Center 2.412000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (10001 pts) #VBW 8.0 MHz FUNCTION WIDTH FUNCTION 50.00 ms N 1 t 15.09 dBm 10 11 STATUS

TCT通测检测 TESTING CENTRE TECHNOLOGY



Report No.: TCT231101E102





Duty Cycle NVNT n20 2412MHz Keysight Spe K/R 03:44:57 PM Nov 07, 2 TRACE 1 2 3 4 Avg Type: Log-Pwr Center Freg 2.412000000 GHz Trig: Free Run #Atten: 40 dB TYP DE PNO: Fast +++ Mkr1 50.00 ms 15.10 dBm Ref Offset 2.22 dB Ref 30.00 dBm 1 Center 2.412000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (10001 pts) #VBW 8.0 MHz 50.00 ms 15.10 dBr N 1 t

TCT通测检测 TESTING CENTRE TECHNOLOGY

# Duty Cycle NVNT n20 2437MHz

Page 37 of 83

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

03:54:59 PM Nov 07, 20 TRACE 1234 K/R Avg Type: Log-Pwr Center Freg 2.462000000 GHz Trig: Free Run #Atten: 40 dB TYP PNO: Fast ↔→ IFGain:Low Mkr1 50.00 ms 17.32 dBm Ref Offset 2.37 dB Ref 30.00 dBm 1 Center 2.462000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (10001 pts) #VBW 8.0 MHz 50.00 ms 17.32 dBr N 1 t

Duty Cycle NVNT n20 2462MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spe

Keysight Spectrum Analyzer - Swept SA

## Duty Cycle NVNT n40 2422MHz

Page 38 of 83

TCT通测检测 Duty Cycle NVNT n40 2437MHz

Keysight Spe

10 d Log

Center Freg 2.437000000 GHz

Ref Offset 2.31 dB Ref 30.00 dBm Report No.: TCT231101E102

04:06:45 PM Nov 07, 20 TRACE 1 2 3 4

Mkr1 50.00 ms 13.58 dBm

TYP DE

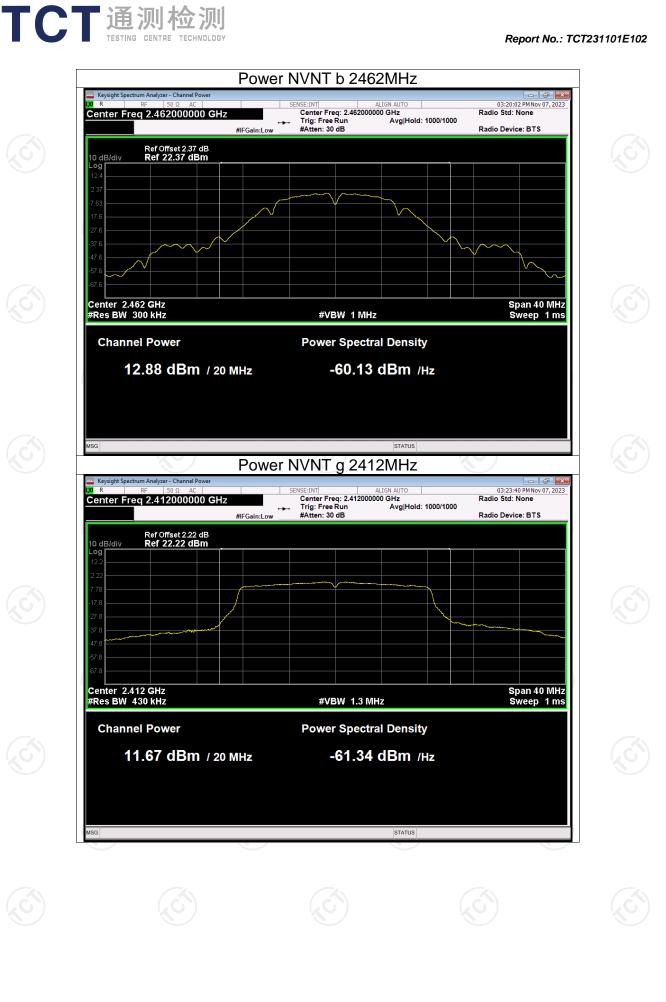
Avg Type: Log-Pwr

Trig: Free Run #Atten: 40 dB

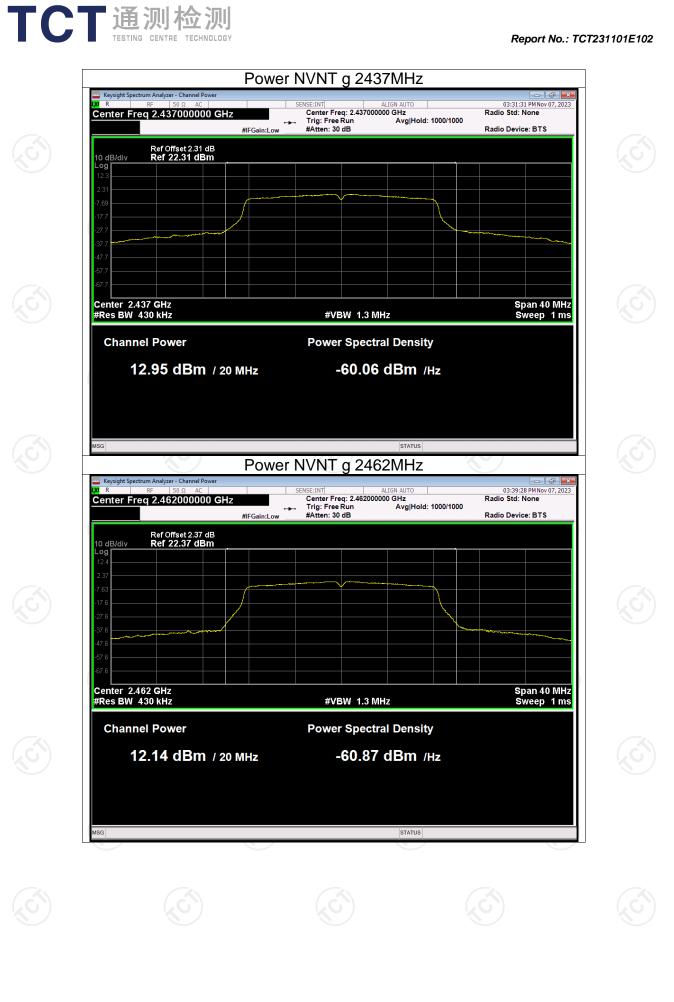
**↓**1

PNO: Fast ↔→ IFGain:Low

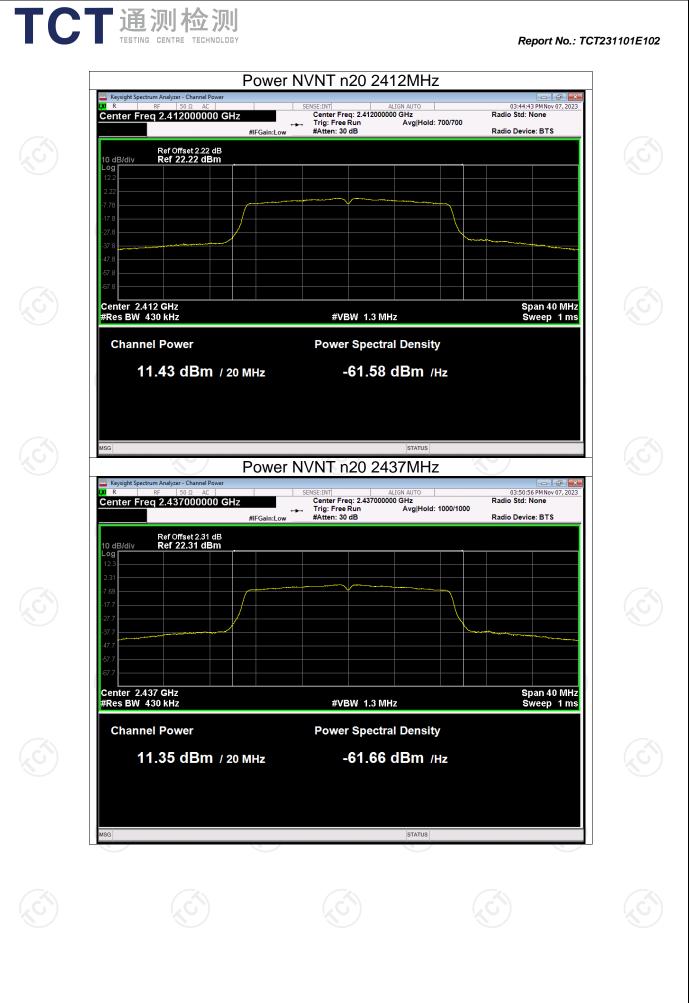

Page 39 of 83


| Condition | Mode | Frequency<br>(MHz) | Conducted<br>Power (dBm) | Total<br>Power<br>(dBm) | Limit<br>(dBm) | Verdict |
|-----------|------|--------------------|--------------------------|-------------------------|----------------|---------|
| NVNT      | b    | 2412               | 11.49                    | 11.49                   | 30             | Pass    |
| NVNT      | b    | 2437               | 12.04                    | 12.04                   | 30             | Pass    |
| NVNT      | b    | 2462               | 12.88                    | 12.88                   | 30             | Pass    |
| NVNT      | g    | 2412               | 11.67                    | 11.67                   | 30             | Pass    |
| NVNT      | g    | 2437               | 12.95                    | 12.95                   | 30             | Pass    |
| NVNT      | g    | 2462               | 12.14                    | 12.14                   | 30             | Pass    |
| NVNT      | n20  | 2412               | 11.43                    | 11.43                   | 30             | Pass    |
| NVNT      | n20  | 2437               | 11.35                    | 11.35                   | 30             | Pass    |
| NVNT      | n20  | 2462               | 11.77                    | 11.77                   | 30             | Pass    |
| NVNT      | n40  | 2422               | 11.90                    | 11.90                   | 30             | Pass    |
| NVNT      | n40  | 2437               | 11.75                    | 11.75                   | 30             | Pass    |
| NVNT      | n40  | 2452               | 11.56                    | 11.56                   | 30             | Pass    |

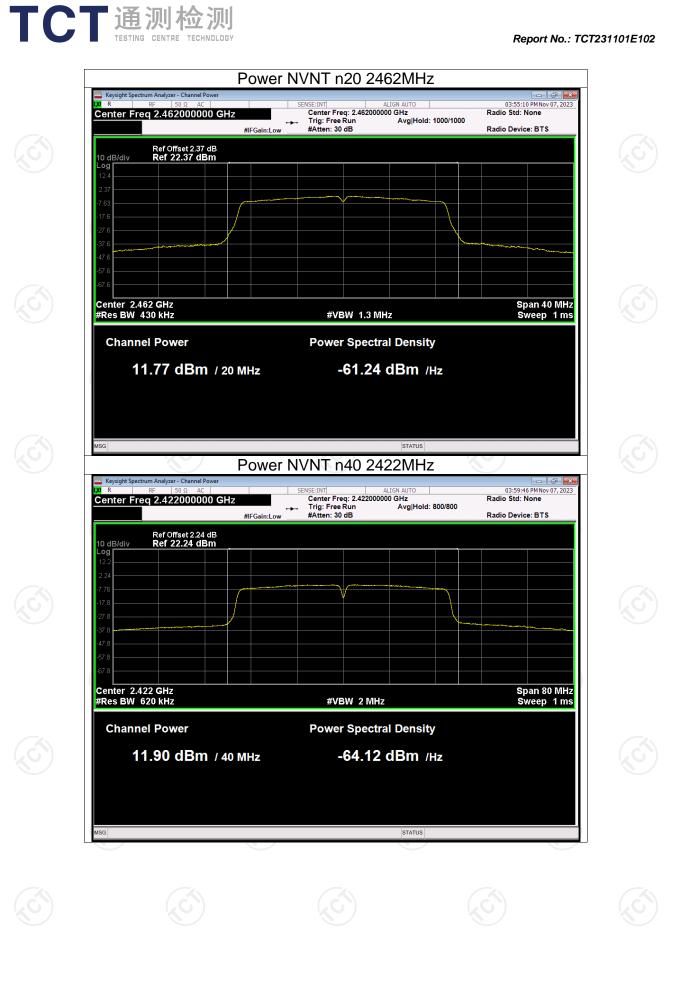
## **Maximum Conducted Output Power**


TCT通测检测 TESTING CENTRE TECHNOLOGY

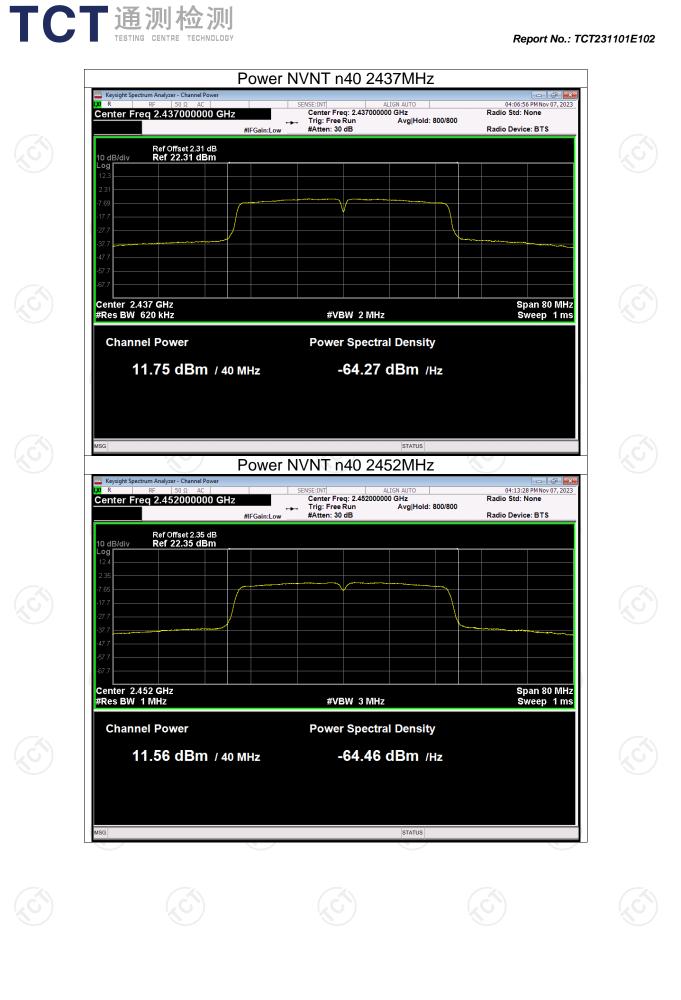








Page 42 of 83




Page 43 of 83



Page 44 of 83



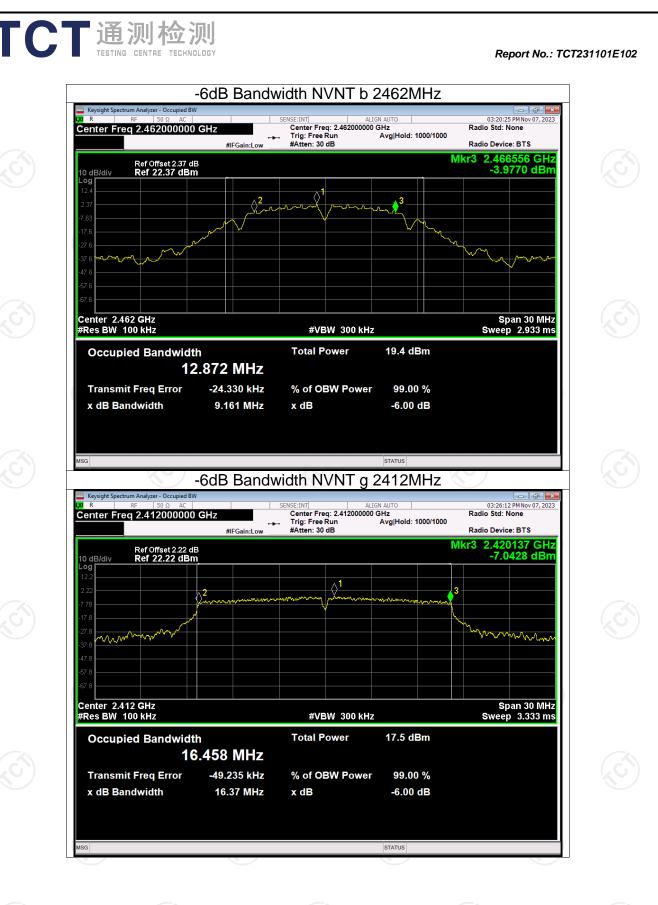
Page 45 of 83

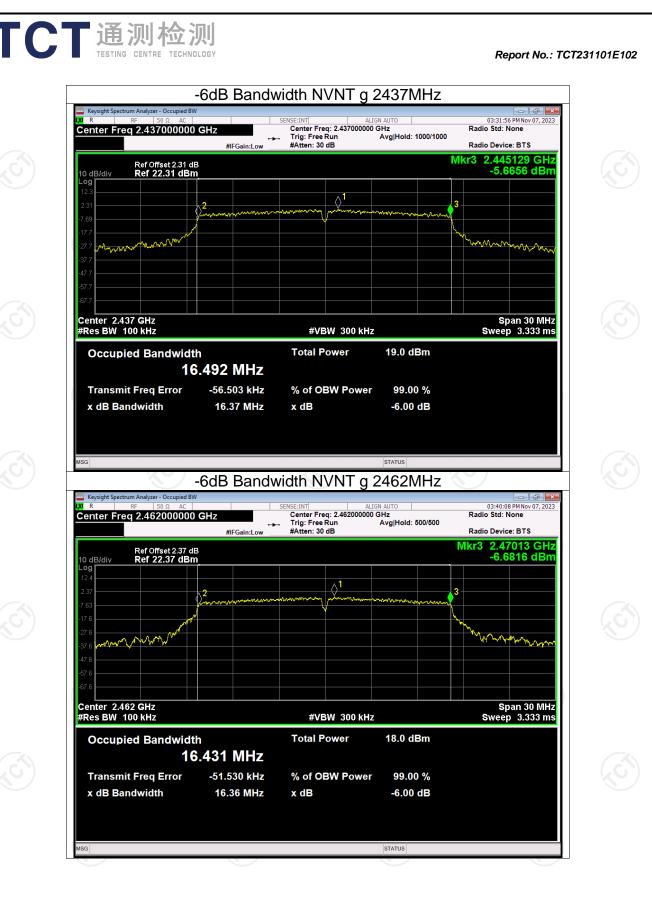


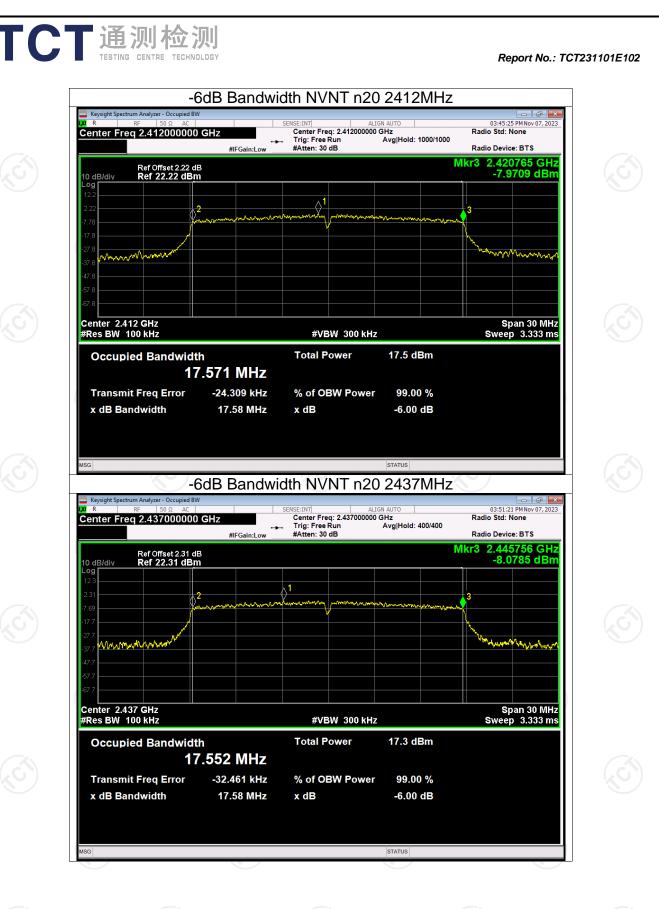
Page 46 of 83

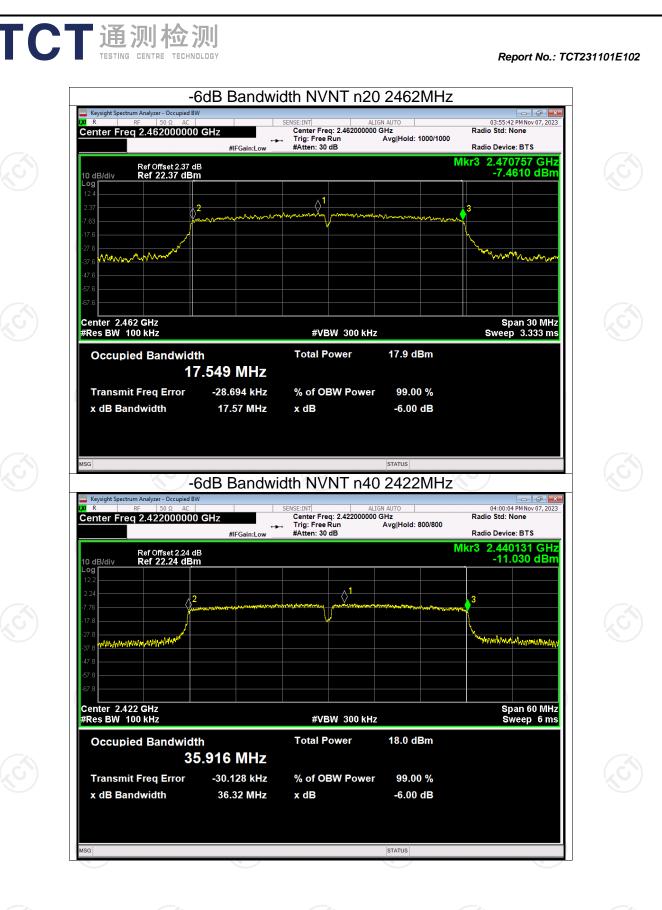
| TCT | 通测检测                      |
|-----|---------------------------|
|     | TESTING CENTRE TECHNOLOGY |

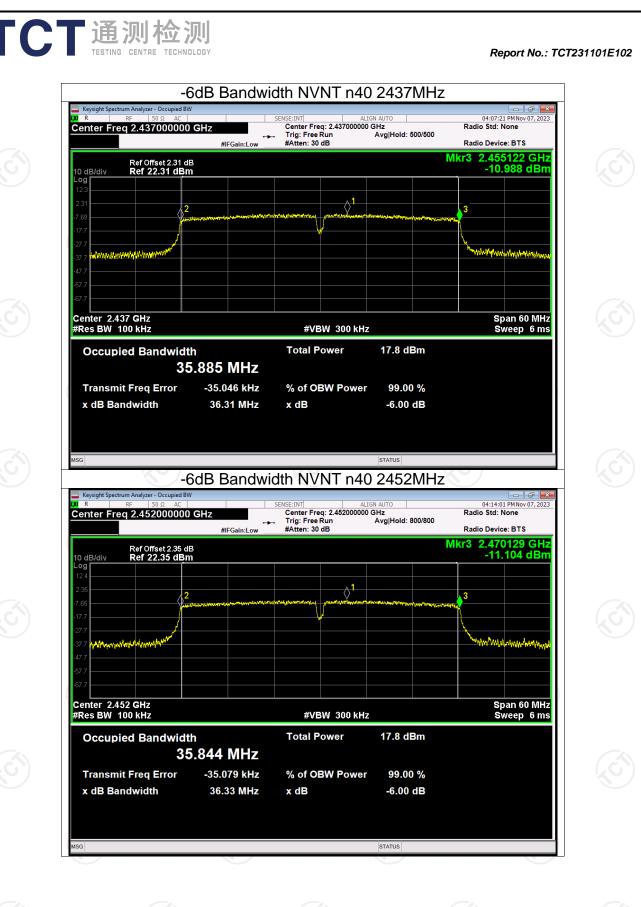
Report No.: TCT231101E102


| Condition | Mode | Frequency<br>(MHz) | -6 dB Bandwidth<br>(MHz) | Limit -6 dB<br>Bandwidth (MHz) | Verdict |  |
|-----------|------|--------------------|--------------------------|--------------------------------|---------|--|
| NVNT      | b    | 2412               | 9.160                    | 0.5                            | Pass    |  |
| NVNT      | b    | 2437               | 9.162                    | 0.5                            | Pass    |  |
| NVNT      | b    | 2462               | 9.161                    | 0.5                            | Pass    |  |
| NVNT      | g    | 2412               | 16.373                   | 0.5                            | Pass    |  |
| NVNT      | g    | 2437               | 16.371                   | 0.5                            | Pass    |  |
| NVNT      | g    | 2462               | 16.364                   | 0.5                            | Pass    |  |
| NVNT      | n20  | 2412               | 17.578                   | 0.5                            | Pass    |  |
| NVNT      | n20  | 2437               | 17.577                   | 0.5                            | Pass    |  |
| NVNT      | n20  | 2462               | 17.572                   | 0.5                            | Pass    |  |
| NVNT      | n40  | 2422               | 36.323                   | 0.5                            | Pass    |  |
| NVNT      | n40  | 2437               | 36.313                   | 0.5                            | Pass    |  |
| NVNT      | n40  | 2452               | 36.329                   | 0.5                            | Pass    |  |
|           | - n. |                    |                          |                                |         |  |


## -6dB Bandwidth


Page 47 of 83





Page 48 of 83



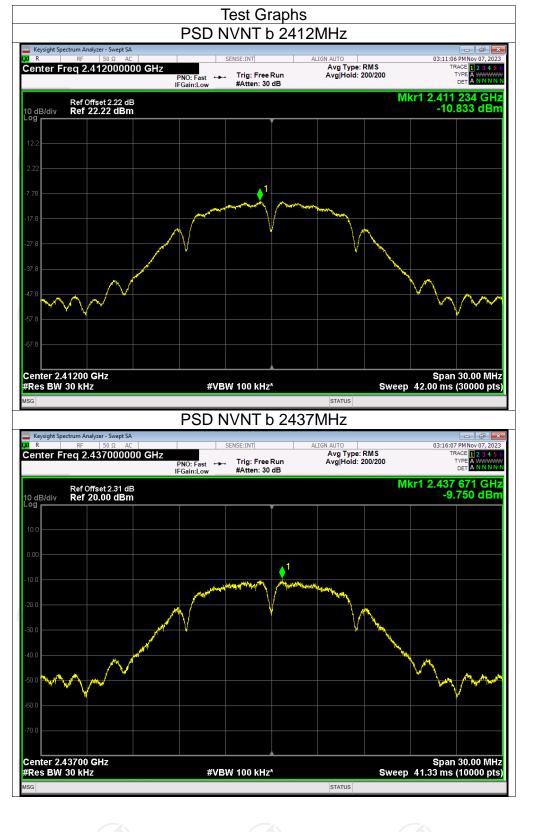


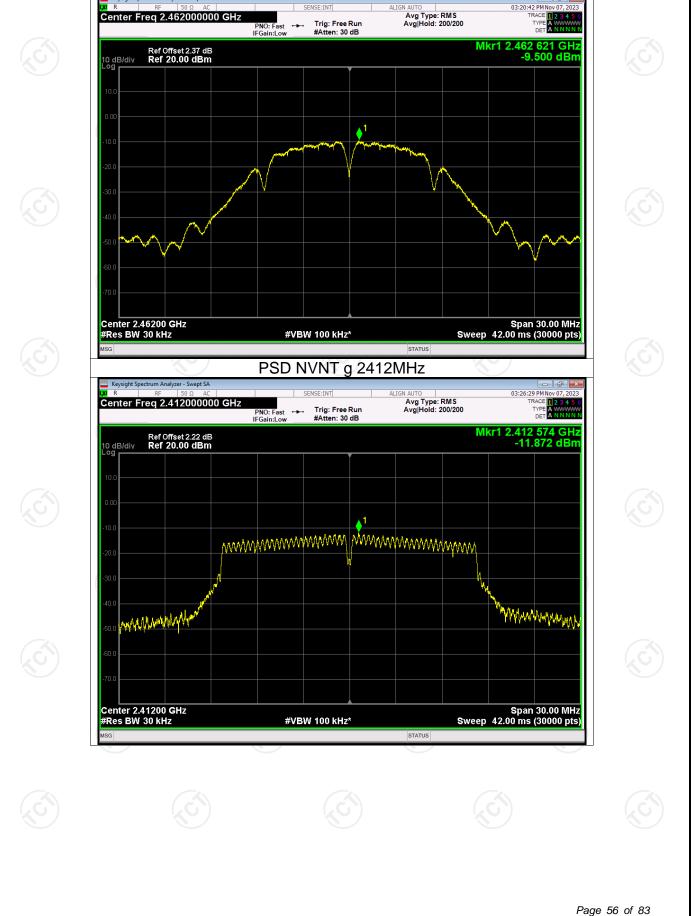






| TCT | 通测检测                      |
|-----|---------------------------|
|     | TESTING CENTRE TECHNOLOGY |

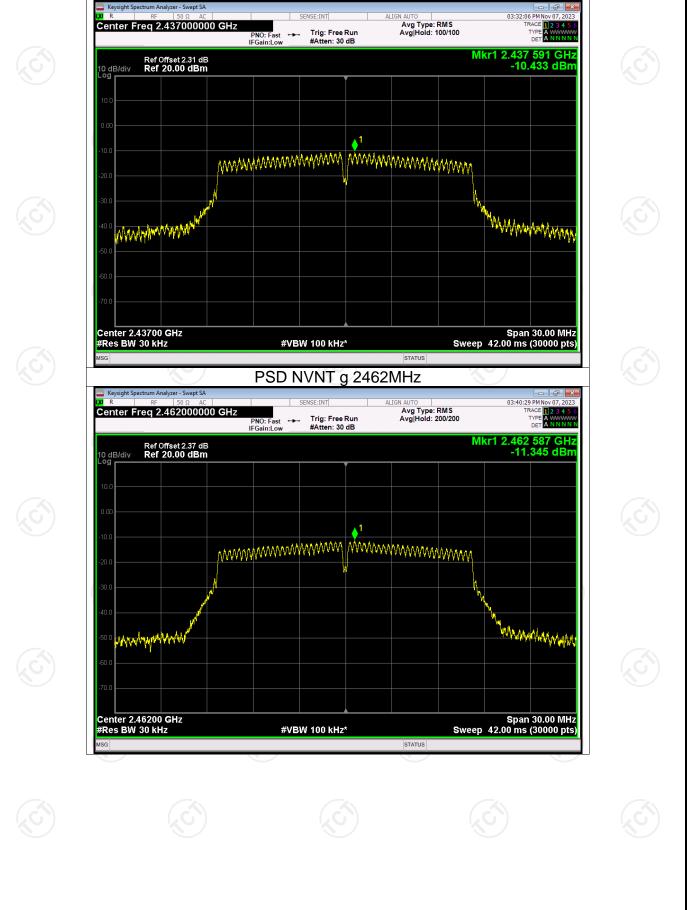

### **Maximum Power Spectral Density Level**


| Maximum i ower opectial Density Level |       |                          |                        |                          |                         |                     |         |  |
|---------------------------------------|-------|--------------------------|------------------------|--------------------------|-------------------------|---------------------|---------|--|
| Condition                             | Mode  | Frequency<br>(MHz)       | Conducted<br>PSD (dBm) | Total PSD<br>(dBm/30kHz) | Total PSD<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) | Verdict |  |
| NVNT                                  | b     | 2412                     | -10.83                 | -10.83                   | -20.83                  | 8                   | Pass    |  |
| NVNT                                  | b     | 2437                     | -9.75                  | -9.75                    | -19.75                  | 8                   | Pass    |  |
| NVNT                                  | b     | 2462                     | -9.50                  | -9.50                    | -19.50                  | 8                   | Pass    |  |
| NVNT                                  | g     | 2412                     | -11.87                 | -11.87                   | -21.87                  | 8                   | Pass    |  |
| NVNT                                  | g     | 2437                     | -10.43                 | -10.43                   | -20.43                  | 8                   | Pass    |  |
| NVNT                                  | g     | 2462                     | -11.35                 | -11.35                   | -21.35                  | 8                   | Pass    |  |
| NVNT                                  | n20   | 2412                     | -12.41                 | -12.41                   | -22.41                  | 8                   | Pass    |  |
| NVNT                                  | n20   | 2437                     | -12.16                 | -12.16                   | -22.16                  | 8                   | Pass    |  |
| NVNT                                  | n20   | 2462                     | -12.03                 | -12.03                   | -22.03                  | 8                   | Pass    |  |
| NVNT                                  | n40   | 2422                     | -15.14                 | -15.14                   | -25.14                  | 8                   | Pass    |  |
| NVNT                                  | n40   | 2437                     | -15.32                 | -15.32                   | -25.32                  | 8                   | Pass    |  |
| NVNT                                  | n40   | 2452                     | -16.24                 | -16.24                   | -26.24                  | 8                   | Pass    |  |
| Note Total                            | PSD ( | $\frac{1}{2}$ Bm/2kHz) = | - Total PSD            | (dBm/30kHz)              |                         | 30kH2)              |         |  |

Note: Total PSD (dBm/3kHz) = Total PSD (dBm/30kHz) +10log(3kHz/30kHz)










PSD NVNT b 2462MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spectrum Analyzer - Swept SA



PSD NVNT g 2437MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY



Report No.: TCT231101E102

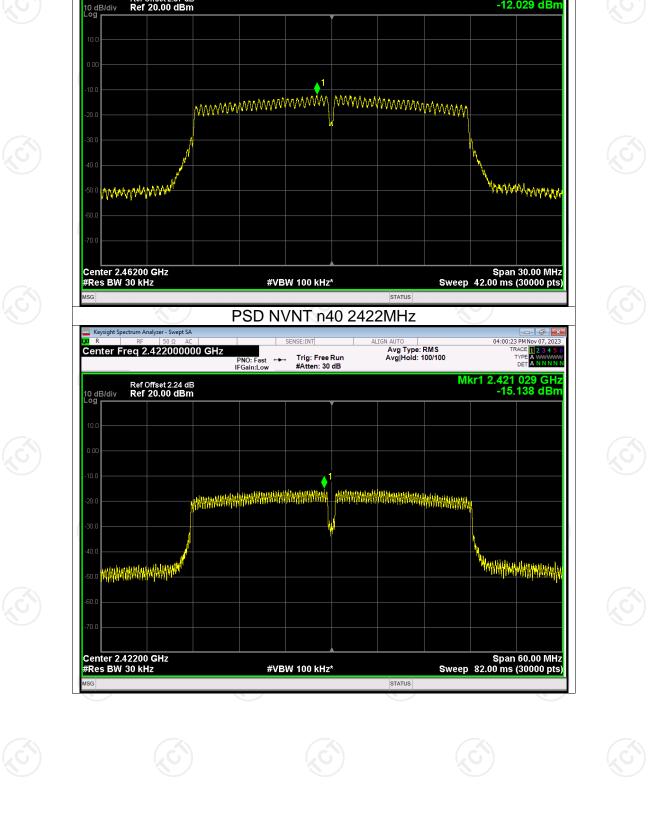
Page 58 of 83

03:45:43 PM Nov 07, 20 TRACE 1 2 3 4 TYPE A WWW DET A N N N

TCT 通测检测 TESTING CENTRE TECHNOLOGY

> PNO: Fast ↔→ IFGain:Low

Keysight Spectrum Analyzer - Swept SA


Center Freg 2.412000000 GHz

0 R

PSD NVNT n20 2412MHz

Trig: Free Run #Atten: 30 dB AI IGN

Avg Type: RMS Avg|Hold: 200/200



PSD NVNT n20 2462MHz

Avg Type: RMS Avg|Hold: 200/200

AI IGN

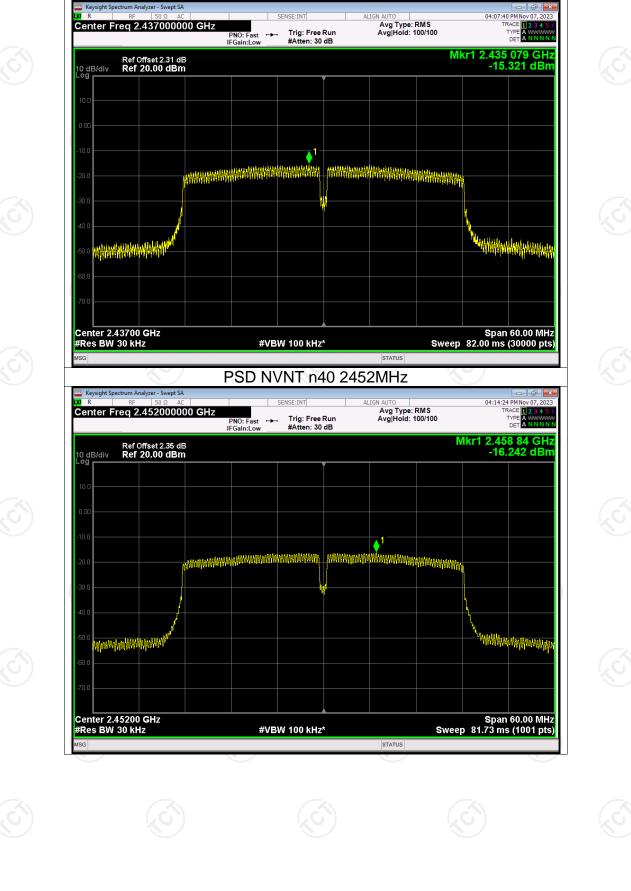
Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low

#### Report No.: TCT231101E102

03:56:03 PM Nov 07, 20 TRACE 1 2 3 4 TYPE A WWW DET A N N N

Mkr1 2.461 038 GHz -12.029 dBm


Keysight Spectrum Analyzer - Swept SA

Center Freg 2.462000000 GHz

Ref Offset 2.37 dB Ref 20.00 dBm

0 R

Page 59 of 83



PSD NVNT n40 2437MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

#### Report No.: TCT231101E102

Page 60 of 83

| Bana Eage |      |                 |                 |             |         |  |  |
|-----------|------|-----------------|-----------------|-------------|---------|--|--|
| Condition | Mode | Frequency (MHz) | Max Value (dBc) | Limit (dBc) | Verdict |  |  |
| NVNT      | b    | 2412            | -55.80          | -30         | Pass    |  |  |
| NVNT      | b    | 2462            | -55.73          | -30         | Pass    |  |  |
| NVNT      | g    | 2412            | -37.09          | -30         | Pass    |  |  |
| NVNT      | g    | 2462            | -40.76          | -30         | Pass    |  |  |
| NVNT      | n20  | 2412            | -35.69          | -30         | Pass    |  |  |
| NVNT      | n20  | 2462            | -39.00          | -30         | Pass    |  |  |
| NVNT 🔨    | n40  | 2422            | -31.20          | -30         | Pass    |  |  |
| NVNT      | n40  | 2452            | -34.76          | -30         | Pass    |  |  |



TCT通测检测 TESTING CENTRE TECHNOLOGY



Page 61 of 83

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com





Band Edge NVNT b 2462MHz Ref 🔤 Keysight Sp 03:21:01 PM Nov 07, 20 TRACE 1 2 3 4 TYPE M WWW DET P N N N 0 R Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.462000000 GHz Trig: Free Run #Atten: 30 dB TYP DE PNO: Fast ↔→ IFGain:Low Mkr1 2.461 46 GHz 2.708 dBm Ref Offset 2.37 dB Ref 20.00 dBm 10 dB/div Loa ê 20 N ጉለ W mm mm Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS

**FCT**通测检测 TESTING CENTRE TECHNOLOGY

zer - Swept SA

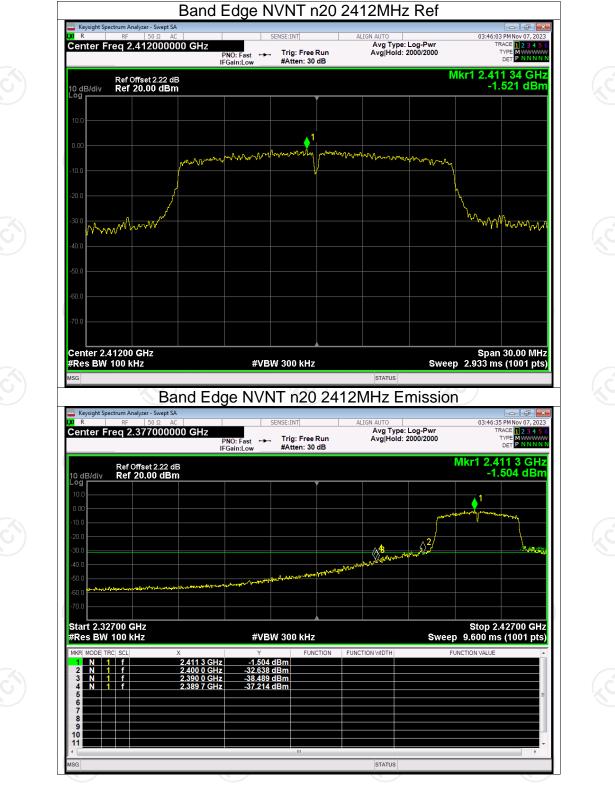
Keysight Sp d R

Band Edge NVNT b 2462MHz Emission

Page 63 of 83

#### 🔤 Keysight Sp 04:20:39 PM Nov 07, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N K/R Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.412000000 GHz Trig: Free Run #Atten: 30 dB TYP DE PNO: Fast ↔→ IFGain:Low Mkr1 2.411 01 GHz -2.906 dBm Ref Offset 2.22 dB Ref 22.22 dBm 10 dB/div Loa <mark>آ</mark> ا mour www Center 2.41200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT g 2412MHz Emission ım Analyzer - Swept SA Keysight Spe 0 R 04:21:12 PM N Center Freq 2.377000000 GHz Avg Type: Log-Pwr Avg|Hold: 2000/2000 12345 MWWW PNNNN Trig: Free Run #Atten: 30 dB TYPE PNO: Fast ↔→→ IFGain:Low Mkr1 2.411 0 GHz -2.880 dBm Ref Offset 2.22 dB Ref 22.22 dBm 10 dB/div Log **r** <u> ▲</u>1 ţ 2 Start 2.32700 GHz #Res BW 100 kHz Stop 2.42700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH 1 f 1 f 1 f -2.880 dBm -35.911 dBm -42.759 dBm -40.003 dBm N 2.389 8 GH; 10 11 STATUS

Band Edge NVNT g 2412MHz Ref


**FCT**通测检测 TESTING CENTRE TECHNOLOGY

## 🔤 Keysight Sp 03:40:48 PM Nov 07, 2 TRACE 1 2 3 4 TYPE M WWW DET P N N N K/R Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.462000000 GHz Trig: Free Run #Atten: 30 dB TYP DE PNO: Fast ↔→ IFGain:Low Mkr1 2.462 60 GHz -1.061 dBm Ref Offset 2.37 dB Ref 20.00 dBm 10 dB/div Loa Within mm Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT g 2462MHz Emission zer - Swept SA Keysight Sp (I R 03:41:21 PM N Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.497000000 GHz 12345 MWWWW PNNNN Trig: Free Run #Atten: 30 dB TYPE PNO: Fast ↔→ IFGain:Low Mkr1 2.462 6 GHz -1.071 dBm Ref Offset 2.37 dB Ref 20.00 dBm 10 dB/div Log **r** $\Diamond^3$ Start 2.44700 GHz #Res BW 100 kHz Stop 2.54700 GHz Sweep 9.600 ms (1001 pts)

Band Edge NVNT g 2462MHz Ref

**FCT**通测检测 TESTING CENTRE TECHNOLOGY





**FCT**通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight Sp 03:56:26 PM Nov 07, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N K/R Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.462000000 GHz Trig: Free Run #Atten: 30 dB TYP DE PNO: Fast ↔→ IFGain:Low Mkr1 2.461 34 GHz -1.082 dBm Ref Offset 2.37 dB Ref 20.00 dBm 10 dB/div Loa ø w/w www. Sh-maryar ᢉᡙ᠁ mm. mmmm Mary Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS

Band Edge NVNT n20 2462MHz Ref

**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Keysight Sp

# Band Edge NVNT n20 2462MHz Emission

#### Report No.: TCT231101E102

03:56:59 PM N

### Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Mkr1 2.425 48 GHz -7.604 dBm Ref Offset 2.24 dB Ref 20.00 dBm 10 dB/div Loa **♦**<sup>1</sup> Malpho Center 2.42200 GHz #Res BW 100 kHz Span 60.00 MHz Sweep 5.800 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT n40 2422MHz Emission zer - Swept SA Keysight Spe 0 R 04:05:44 PM N Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freg 2.402000000 GHz 12345 MWWWW PNNNN Trig: Free Run #Atten: 30 dB TYPE PNO: Fast IFGain:Low -----Mkr1 2.424 1 GHz -7.400 dBm Ref Offset 2.24 dB Ref 20.00 dBm 10 dB/div Log **r** 1 ⟨<mark>4</mark>3 $\delta^2$ Start 2.35200 GHz #Res BW 100 kHz Stop 2.45200 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH TION N 1 f N 1 f N 1 f N 1 f -7.400 dBm -38.869 dBm -41.004 dBm -38.802 dBm 2.388 8 GH; 10 11 STATUS

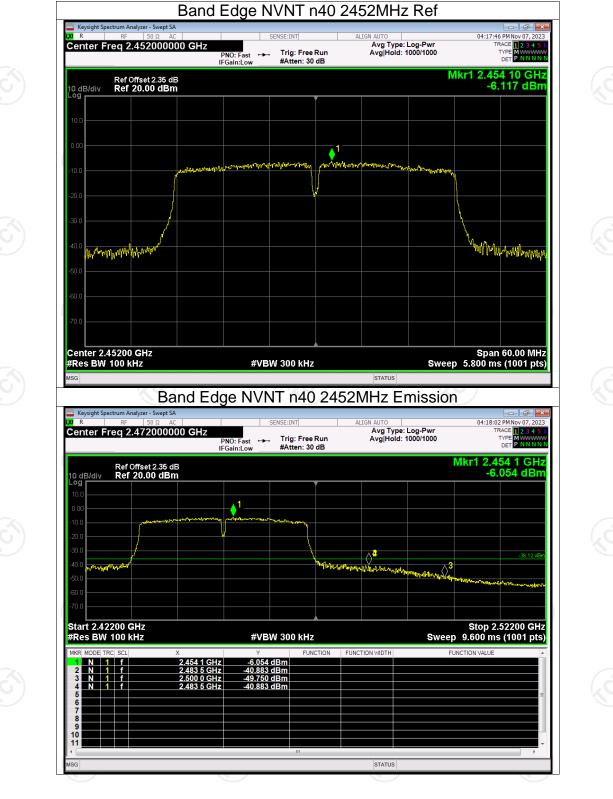
Band Edge NVNT n40 2422MHz Ref

Avg Type: Log-Pwr Avg|Hold: 2000/2000

**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Center Freg 2.422000000 GHz

🔤 Keysight Sp


K/R

Report No.: TCT231101E102

04:05:12 PM Nov 07, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N

TYPE DET





**FCT**通测检测 TESTING CENTRE TECHNOLOGY



## **Conducted RF Spurious Emission**

| Condition | Mode | Frequency (MHz) | Max Value (dBc) | Limit (dBc) | Verdict |  |  |  |
|-----------|------|-----------------|-----------------|-------------|---------|--|--|--|
| NVNT      | b    | 2412            | -46.51          | -30         | Pass    |  |  |  |
| NVNT      | b    | 2437            | -46.54          | -30         | Pass    |  |  |  |
| NVNT      | b    | 2462            | -48.12          | -30         | Pass    |  |  |  |
| NVNT      | g    | 2412            | -43.34          | -30         | Pass    |  |  |  |
| NVNT      | g    | 2437            | -44.67          | -30         | Pass    |  |  |  |
| NVNT      | g    | 2462            | -43.60          | -30         | Pass    |  |  |  |
| NVNT 🔨    | n20  | 2412            | -43.98          | -30         | Pass    |  |  |  |
| NVNT      | n20  | 2437            | -43.45          | -30         | Pass    |  |  |  |
| NVNT      | n20  | 2462            | -43.35          | -30         | Pass    |  |  |  |
| NVNT      | n40  | 2422            | -40.73          | -30         | Pass    |  |  |  |
| NVNT      | n40  | 2437            | -40.54          | -30         | Pass    |  |  |  |
| NVNT      | n40  | 2452            | -40.62          | -30         | Pass    |  |  |  |

























Page 70 of 83

-45.172 dBm -56.240 dBm -55.869 dBm -56.235 dBm

2.412 3 GHz 25.134 1 GHz 5.022 2 GHz

7.129 3 GHz 9.469 2 GHz

N 1 f N 1 f N 1 f N 1 f N 1 f

**Test Graphs** Tx. Spurious NVNT b 2412MHz Ref

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

NM

Avg Type: Log-Pwr Avg|Hold: 1000/1000

M

**FCT**通测检测 TESTING CENTRE TECHNOLOGY

10 dB/div \_og

Keysight Spectrum Analyzer - Swept SA

Center Freq 2.412000000 GHz

Ref Offset 2.22 dB Ref 20.00 dBm

# Report No.: TCT231101E102

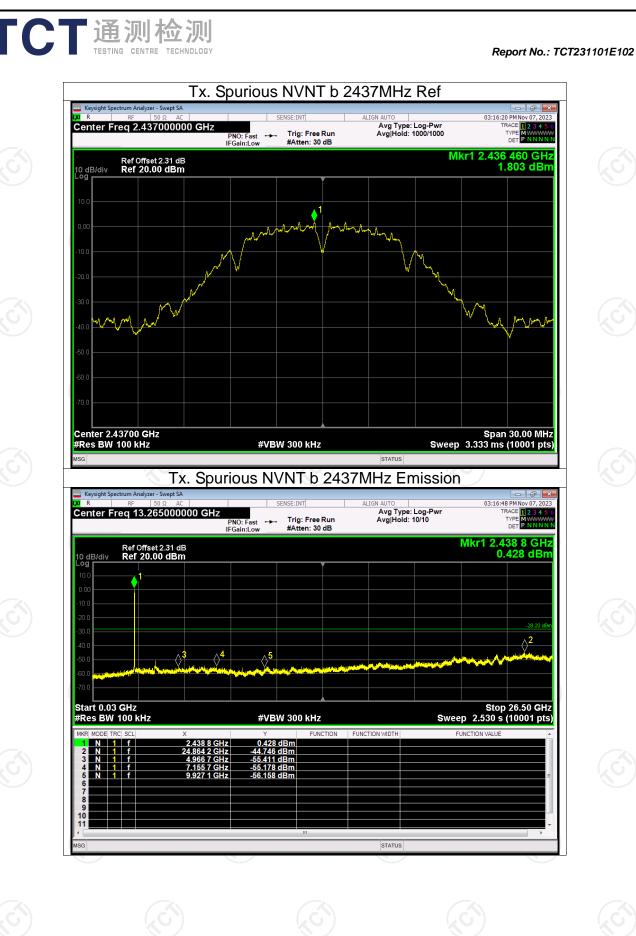
03:12:10 PM Nov 07, 2023

Mkr1 2.411 466 GHz 1.335 dBm

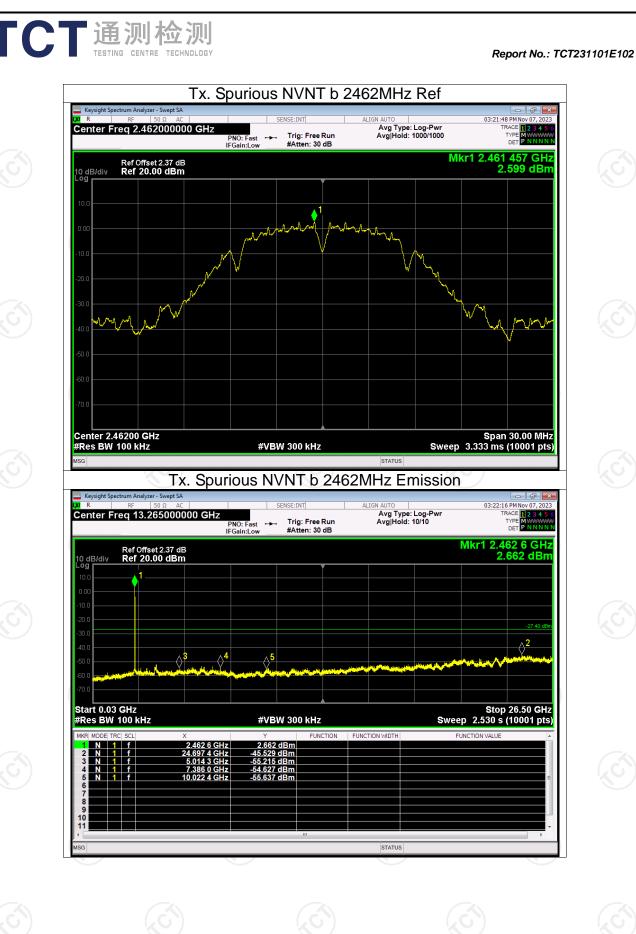
w

٨

mm


12345 MWWWW

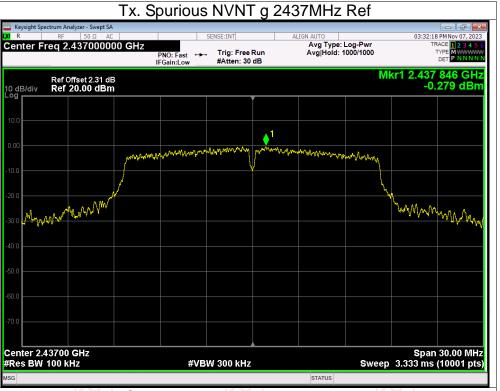
**∂**<sup>2</sup>


TYPE NNNN DET PNNNN

Page 71 of 83

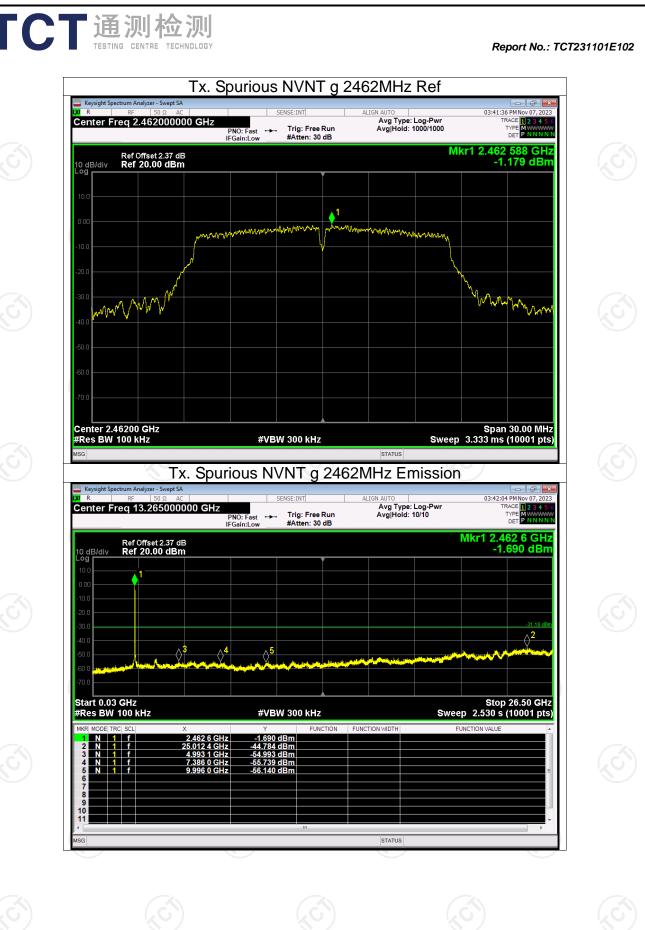
STATUS

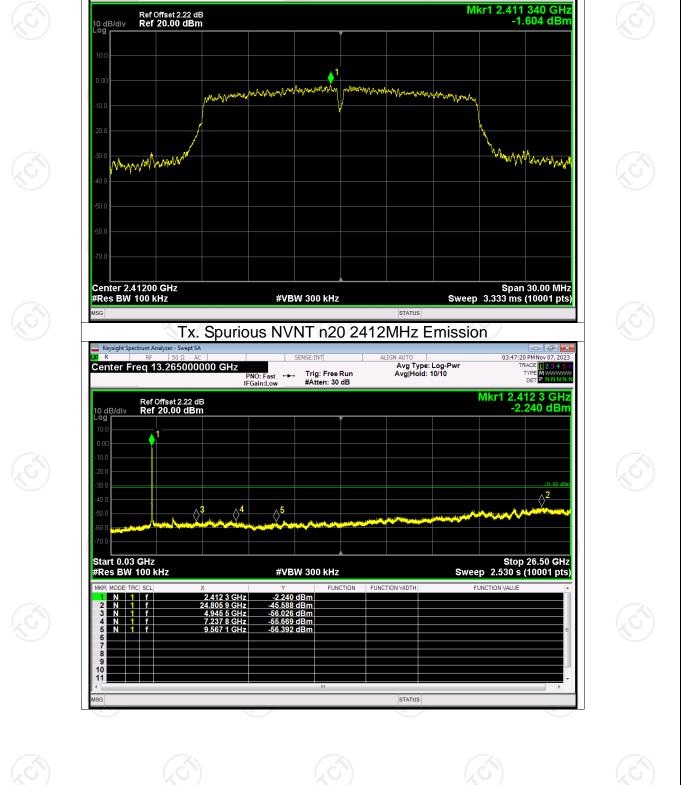



Page 72 of 83



Page 73 of 83





Page 74 of 83



**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Page 75 of 83





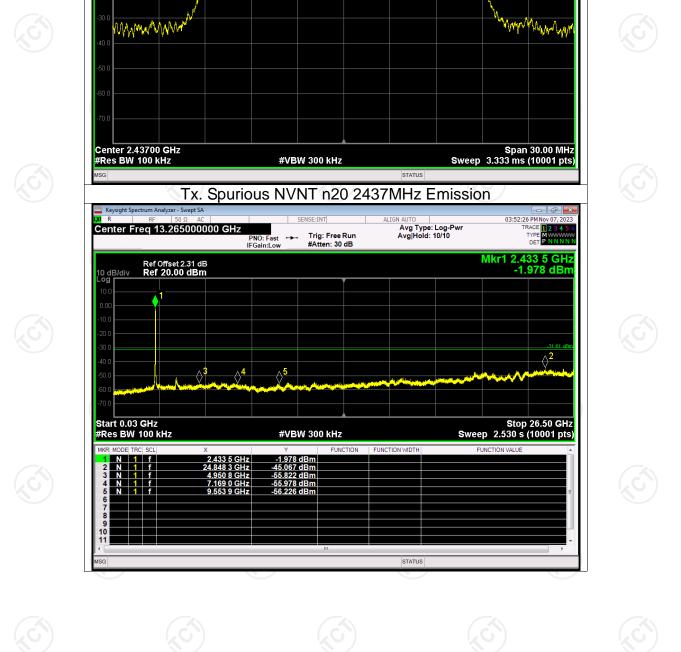
Tx. Spurious NVNT n20 2412MHz Ref

Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low Avg Type: Log-Pwr Avg|Hold: 1000/1000

**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Center Freg 2.412000000 GHz


🔤 Keysight Sp

K/R

Report No.: TCT231101E102

03:46:51 PM Nov 07, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N

Page 77 of 83



Tx. Spurious NVNT n20 2437MHz Ref

Trig: Free Run #Atten: 30 dB

mannan

PNO: Fast ↔→ IFGain:Low

www.www

Your Mary Mary

**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Center Freg 2.437000000 GHz

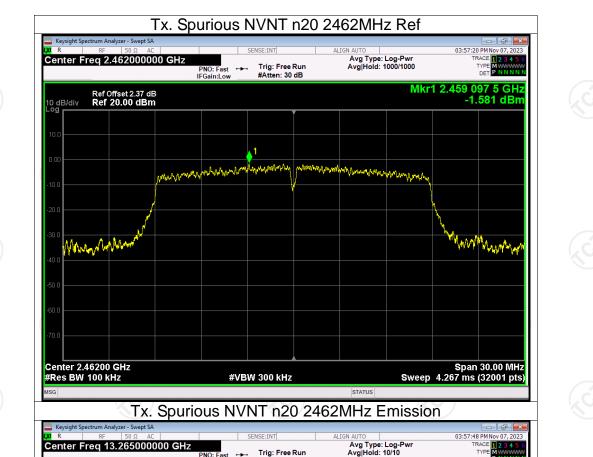
Ref Offset 2.31 dB Ref 20.00 dBm

🔤 Keysight Sp

10 dB/div Loa

K/R

Report No.: TCT231101E102


Avg Type: Log-Pwr Avg|Hold: 1000/1000 03:51:58 PM Nov 07, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N

Mkr1 2.436 337 GHz -1.606 dBm

Page 78 of 83

Trig: Free Run #Atten: 30 dB

PNO: Fast IFGain:Low

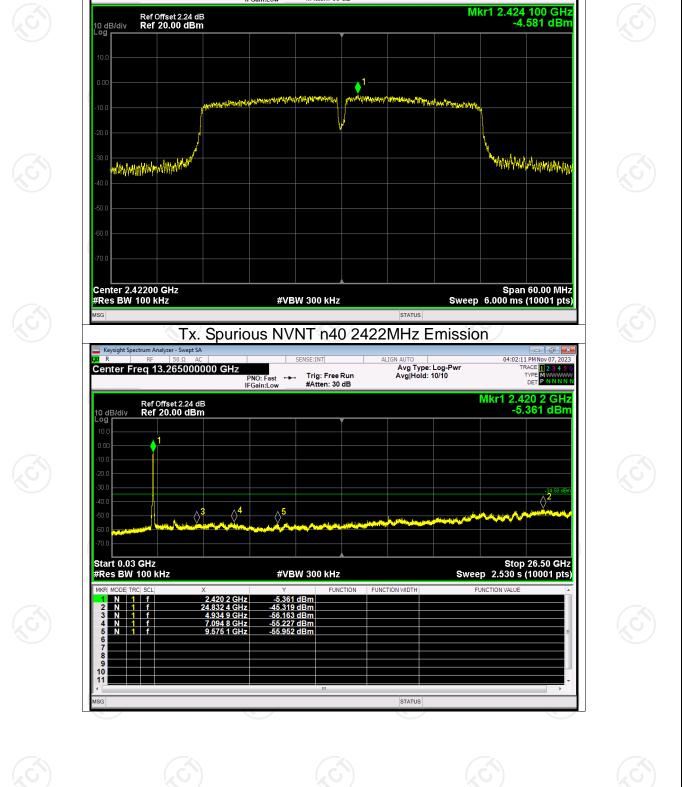


**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Center Freg 13.265000000 GHz

Ref Offset 2.37 dB Ref 20.00 dBm

10 dB/div Log **r** 


Page 79 of 83

Report No.: TCT231101E102

12345 MWWWW PNNNN

TYPE

Mkr1 2.462 8 GHz -1.763 dBm



Tx. Spurious NVNT n40 2422MHz Ref

Trig: Free Run #Atten: 30 dB

PNO: Fast ↔→ IFGain:Low

Avg Type: Log-Pwr Avg|Hold: 1000/1000

**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Center Freg 2.422000000 GHz

🔤 Keysight Sp

K/R



04:01:43 PM Nov 07, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N

TYPE DET

Page 80 of 83

#VBW 300 kHz

**FCT**通测检测 TESTING CENTRE TECHNOLOGY Tx. Spurious NVNT n40 2437MHz Ref

Center Freg 2.437000000 GHz

www.www.www.www.ww

Center 2.43700 GHz #Res BW 100 kHz

Ref Offset 2.31 dB Ref 20.00 dBm

🔤 Keysight Sp

10 dB/div Loa

K/R

Report No.: TCT231101E102

04:07:59 PM Nov 07, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N

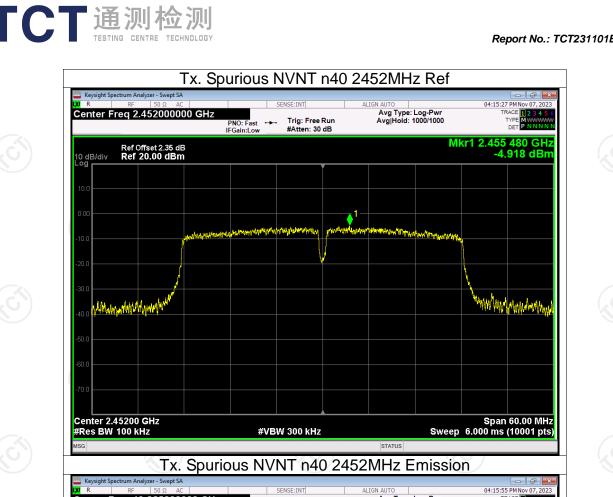
TYP DE

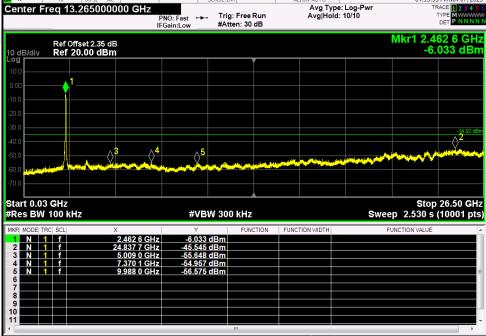
Wanth Mala Mala Manage

Span 60.00 MHz Sweep 6.000 ms (10001 pts)

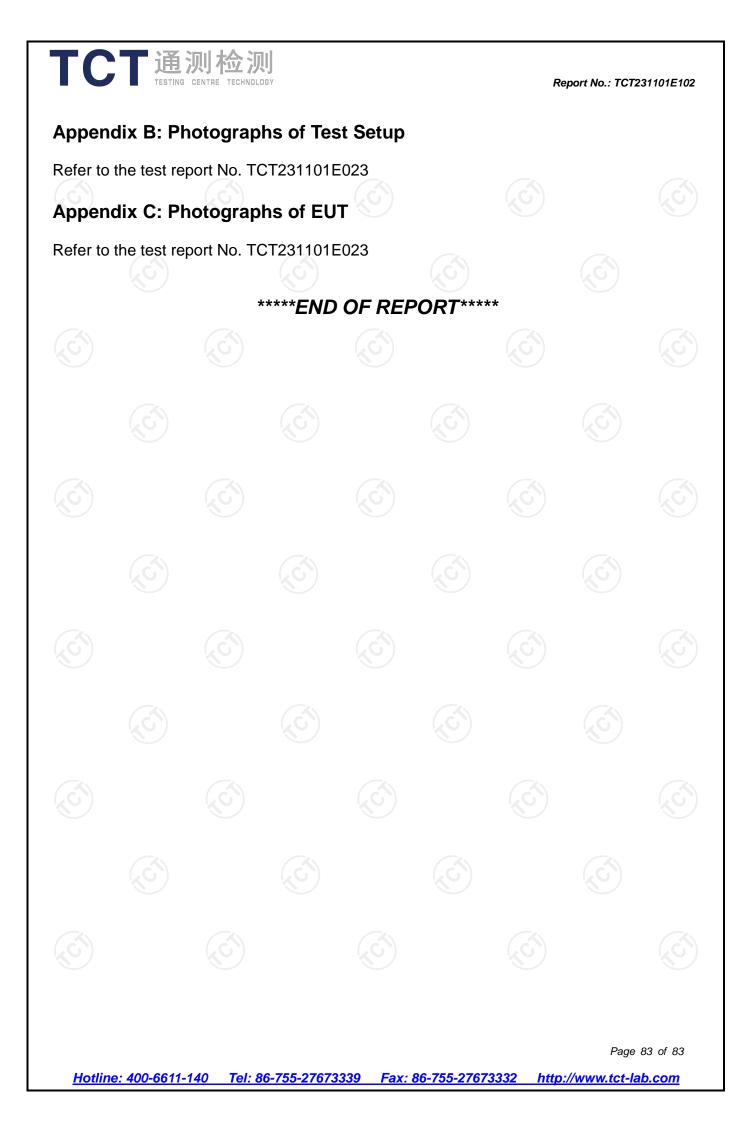
Mkr1 2.440 480 GHz -4.792 dBm

Avg Type: Log-Pwr Avg|Hold: 1000/1000


STATUS


Trig: Free Run #Atten: 30 dB

**∳**<sup>1</sup>


PNO: Fast ↔→ IFGain:Low

Page 81 of 83





Page 82 of 83

