TCT 通测检	测						
TESTING CENTRE TEC		RT.					
FCC ID	2AUARTKX12						
Test Report No:	TCT230816E006						
Date of issue:	Oct. 07, 2023						
Testing laboratory: :	SHENZHEN TONGCE TESTIN	IG LAB					
Testing location/ address:		2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China					
Applicant's name: :	THINKCAR TECH CO., LTD.						
	2606, building 4, phase II, Tian Bantian, Longgang District, She		mmunity,				
Manufacturer's name :	THINKCAR TECH CO., LTD.						
	2606, building 4, phase II, Tian Bantian, Longgang District, She		mmunity,				
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013						
Product Name:	Modular Comprehensive Auton	notive Diagnostic Tool					
Trade Mark:	THINKCAR, XHINKCAR, MUC	AR					
	TKX12, THINKTOOL Platinum THINKTOOL Expert 394	394, THINKTOOL Eur	o 394,				
Rating(s):	Adapter Information: Model: PSYB0502500 Input: AC 100-240V, 50/60Hz, 0 Output: DC 5.0V, 2.5A, 12.5W Rechargeable Li-ion Battery DC		Ś				
Date of receipt of test item	Aug. 16, 2023						
Date (s) of performance of test:	Aug. 16, 2023 - Oct. 07, 2023						
Tested by (+signature) :	Rieo LIU						
Check by (+signature) :	Beryl ZHAO						
Approved by (+signature):	Tomsin	Tomsmes 8					

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	General Pro	oduct Info	rmation.	<u></u>				3
	1.1. EUT desc	cription						3
	1.2. Model(s)							
	1.3. Operation	n Frequenc	y					3
2.	Test Result	Summary	,					4
3.	General Info	ormation.						5
	3.1. Test envi	ronment an	d mode	<u>(</u> <u>(</u> <u>(</u>))		<u>(a)</u>		5
	3.2. Descripti	on of Supp	ort Units					5
4.	Facilities ar	nd Accred	itations.					6
	4.1. Facilities		<u>(0)</u>		<u>(</u> (C))		(\mathbf{C})	6
	4.2. Location							6
	4.3. Measure	ment Uncer	tainty					6
5.	Test Result	s and Mea	asureme	nt Data		<u>v</u>		
	5.1. Antenna	requiremen	t					7
	5.2. Conducte	ed Emissior	n					8
	5.3. Conducte	ed Output P	ower		\sim		\sim	12
	5.4. Emission							
	5.5. Power Sp	pectral Dens	sity					14
	5.6. Conducte	ed Band Ed	ge and Sp	ourious En	nission Me	easureme	nt	15
	5.7. Radiated	Spurious E	imission M	leasurem	ent			17
Α	opendix A: T	est Resul	t of Con	ducted T	est			
A	opendix B: F	Photograp	hs of Te	st Setup				
A	opendix C: F	Photograp	hs of EU	T				
K.)							

1. General Product Information

1.1. EUT description

Product Name:	: Modular Comprehensive Automotive Diagnostic Tool				
Model/Type reference:	ТКХ12		S		
Sample Number:	TCT230816E005-0101	<u>_</u> 1.			
Bluetooth Version:	V5.0 (This report is for BLE)				
Operation Frequency:	2402MHz~2480MHz				
Channel Separation:	2MHz		(\mathbf{c})		
Number of Channel:	40				
Modulation Type:	GFSK				
Antenna Type:	Internal Antenna				
Antenna Gain:	3.72dBi				
Rating(s):	Adapter Information: Model: PSYB0502500 Input: AC 100-240V, 50/60Hz, 0.6A Max Output: DC 5.0V, 2.5A, 12.5W Rechargeable Li-ion Battery DC 7.6V		(C)		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Mode	el(s) list	
No.	Model No.	Tested with
1	TKX12	
Other models	THINKTOOL Platinum 394, THINKTOOL Euro 394, THINKTOOL Expert 394	
	ested model, other models are derivative models. The models are identical in rent on the model names and trademarks. So the test data of TKX12 can report on the model names and trademarks.	

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
····		×	/	X		X	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Channel 0, 1	9 & 39 ha	ave been tes	sted.			

Page 3 of 47

2. Test Result Summary

Requirement	uirement CFR 47 Section			
Antenna requirement	§15.203/§15.247 (c)	PASS		
AC Power Line Conducted Emission	§15.207	PASS		
Conducted Peak Output Power	§15.247 (b)(3)	PASS		
6dB Emission Bandwidth	§15.247 (a)(2)	PASS		
Power Spectral Density	§15.247 (e)	PASS		
Band Edge	§15.247(d)	PASS		
Spurious Emission	§15.205/§15.209	PASS		

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Report No.: TCT230816E006

3. General Information

3.1. Test environment and mode

Operating Environment:						
Condition	Radiated Emission					
Temperature:	23.5 °C	24.3 °C				
Humidity:	52 % RH	50 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				
Test Software:						
Software Information:	Engineering Mode					
Power Level:	Default					
Test Mode:						

Test Mode:

AC mode	Keep the EUT in continuous transmitting by select
Battery mode	channel and modulations with Fully-charged battery.

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
		\neg		/

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

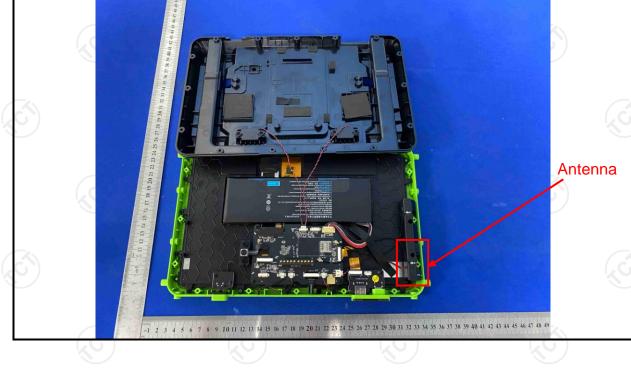
	No.	Item	MU
	1	Conducted Emission	± 3.10 dB
ſ	2	RF power, conducted	± 0.12 dB
	3	Spurious emissions, conducted	± 0.11 dB
J	4	All emissions, radiated(<1 GHz)	± 4.56 dB
	5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
	6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is internal antenna which permanently attached, and the best case gain of the antenna is 3.72dBi.

5.2. Conducted Emission

5.2.1. Test Specification

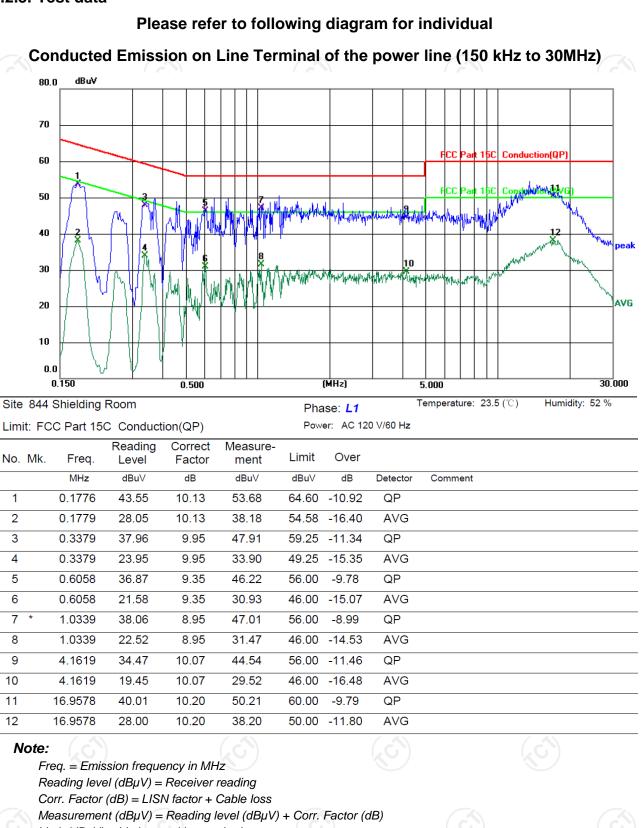
Test Requirement:	FCC Part15 C Section	15 207				
-						
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Referenc	e Plane				
Test Setup:	40cm E.U.T AC powe	r 80cm LISN				
Test Mode:	Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m AC Mode	EMI Receiver	- AC power			
•	Remark: E.U.T: Equipment Under Test LISN Line Impedence Stabilization N Test table height=0.8m AC Mode 1. The E.U.T is conner impedance stabiliz provides a 500hm/s measuring equipme 2. The peripheral device power through a Li coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative the interface cables	EMI Receiver etwork etwork etwork etwork etwork etwork etwork etwork etwork etwork foull coupling im nt. ces are also conner SN that provides e with 50ohm term diagram of the line are checked nce. In order to fir e positions of equ s must be chang	er through a line (L.I.S.N.). This pedance for the ected to the main a 500hm/50ul- hination. (Please test setup and ed for maximum ipment and all o ed according to			
Test Mode:	Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization N Test table height=0.8m AC Mode 1. The E.U.T is conner impedance stabiliz provides a 50ohm/s measuring equipme 2. The peripheral device power through a Li coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative	EMI Receiver etwork etwork etwork etwork etwork etwork etwork etwork etwork etwork foull coupling im nt. ces are also conner SN that provides e with 50ohm term diagram of the line are checked nce. In order to fir e positions of equ s must be chang	er through a line (L.I.S.N.). This pedance for the a 50ohm/50ul- nination. (Please test setup and ed for maximun ipment and all c ed according to			

Page 8 of 47

Hotline: 400-6611-140 Tel: 86-755-27673339

Report No.: TCT230816E006

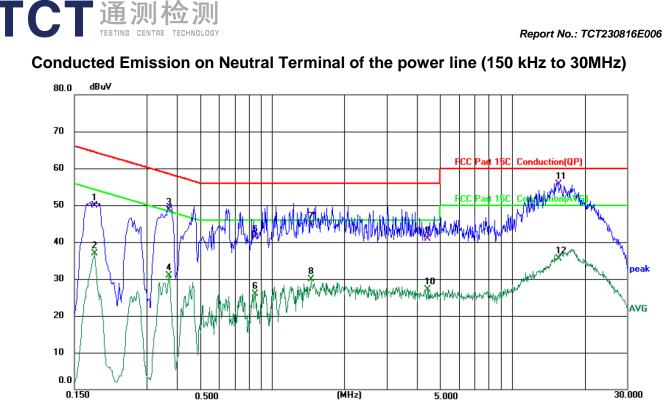
Page 9 of 47


http://www.tct-lab.com

Fax: 86-755-27673332

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)									
Equipment	Manufacturer	Model	Serial Number	Calibration Due					
EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024					
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 20, 2024					
Line-5	ТСТ	CE-05	/	Jul. 03, 2024					
EMI Test Software	Shurple Technology	EZ-EMC	1	1					



 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Site 844 Shielding Room Phase: N Temperature: 23.5 (°C) Humidity: 52 %

Limit: FCC Part 15C Conduction(QP)

Phase: **N** Power: AC 120 V/60 Hz

			ei. Au 12	0 0/00 112				
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	Comment
1	0.1819	39.86	10.13	49.99	64.40	-14.41	QP	
2	0.1819	26.72	10.13	36.85	54.40	-17.55	AVG	
3	0.3700	39.11	9.57	48.68	58.50	-9.82	QP	
4	0.3700	21.41	9.57	30.98	48.50	-17.52	AVG	
5	0.8500	32.14	9.14	41.28	56.00	-14.72	QP	
6	0.8500	16.81	9.14	25.95	46.00	-20.05	AVG	
7	1.4539	34.89	10.01	44.90	56.00	-11.10	QP	
8	1.4539	19.92	10.01	29.93	46.00	-16.07	AVG	
9	4.4420	30.72	10.09	40.81	56.00	-15.19	QP	
10	4.4420	17.11	10.09	27.20	46.00	-18.80	AVG	
11 *	15.5459	45.35	10.26	55.61	60.00	-4.39	QP	
12	15.5459	25.20	10.26	35.46	50.00	-14.54	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 11 of 47

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	: KDB 558074 D01 v05r02					
Limit:	30dBm					
Test Setup:						
T N	Spectrum Analyzer EUT					
Test Mode:	Refer to item 3.1					
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 					
Test Result:	PASS					

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

5.4. Emission Bandwidth

5.4.1. Test Specification

FCC Part15 C Sectio	n 15.247 (a)(2)	N.
KDB 558074 D01 v05	5r02	
>500kHz		
Spectrum Analyzer	EUT	
Refer to item 3.1		
EUT transmit cont 2. Make the measure resolution bandwi Video bandwidth (an accurate meas be greater than 50	tinuously. ment with the spe dth (RBW) = 100 (VBW) = 300 kHz surement. The 6dB 00 kHz.	ectrum analyzer's kHz. Set the In order to make 3 bandwidth must
PASS		
	KDB 558074 D01 v08 >500kHz Spectrum Analyzer Refer to item 3.1 1. Set to the maximum EUT transmit cont 2. Make the measure resolution bandwidth (an accurate meass be greater than 50 3. Measure and recont	Spectrum Analyzer EUT Spectrum Analyzer EUT Refer to item 3.1 1. Set to the maximum power setting a EUT transmit continuously. 2. Make the measurement with the spectrum bandwidth (RBW) = 100 Video bandwidth (VBW) = 300 kHz. an accurate measurement. The 6dB be greater than 500 kHz. 3. Measure and record the results in the

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	9	

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	1

5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per
	15.247(d).4. Measure and record the results in the test report.5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Analyzer Combiner Box		ent	N9020A	MY4	9100619	Jun. 28, 2024 /	
		ntest	AT890-RFB		/		
	halyzer biner Box	halyzer biner Box Asce CO CO CO CO CO CO CO CO CO CO CO CO CO	halyzer Agnent biner Box Ascentest Image: Comparison of the second	Agrierit N9020A biner Box Ascentest AT890-RFB	halyzer Agilent N9020A W114 biner Box Ascentest AT890-RFB	halyzer Agilent H9020A MI149100019 biner Box Ascentest AT890-RFB /	halyzer Agreentest AT890-RFB / / biner Box Ascentest AT890-RFB / /

Model No.

Serial Number

5.6.2. Test Instruments

Name Spectrum

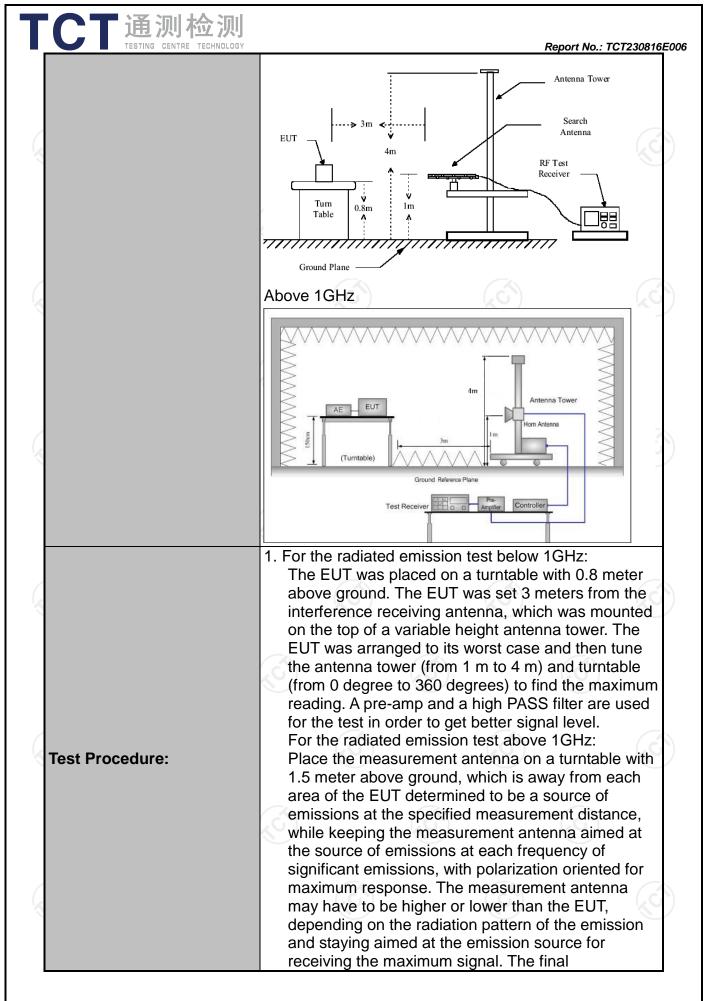
TCT通测检测 TCT通测检测

Manufacturer

Report No.: TCT230816E006

Calibration Due

Page 16 of 47


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

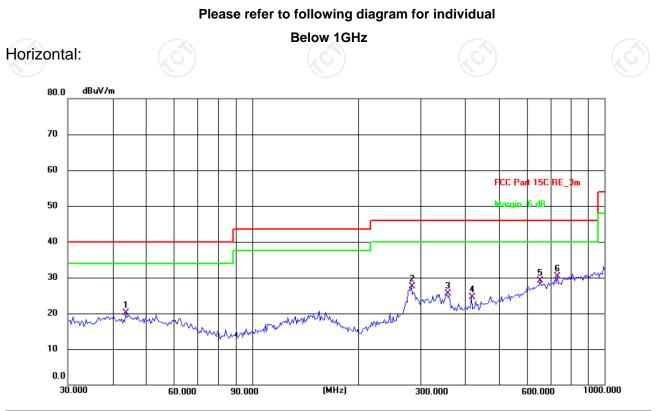
5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Frequency Range:	9 kHz to 25 GHz						
Measurement Distance:	3 m	K	9		S		
Antenna Polarization:	Horizontal & Vertical						
Operation mode:	Refer to item 3.1						
	Frequency 9kHz- 150kHz 150kHz-	Detector Quasi-peak Quasi-peak		VBW 1kHz 30kHz	Quasi-p	emark beak Value beak Value	
Receiver Setup:	30MHz 30MHz-1GHz	Quasi-peak	d)	300KHz 3MHz	Quasi-p	beak Value	
	Above 1GHz	Peak	1MHz	10Hz		ge Value	
	Frequen		Field Strength (microvolts/meter)		Measurement Distance (meters)		
	0.009-0.4		2400/F(KHz) 24000/F(KHz)		300		
	1.705-3		30		30		
	30-88		100		3		
	88-216		150		3		
Limit:	216-96		200	3			
	Above 9	60	500		3		
	Frequency		Field Strength (microvolts/meter)		ment ce ˈs)	Detector	
	Above 1GH	z —	500 3		6	Average	
			5000	3		Peak	
	For radiated	stance = 3m	S DEIOW 30	JMHZ	Computer	1	
Test setup:	EUT 0.Sm Turn table Receiver						
		Ground	Plane				

CT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT230816
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS


5.7.2. Test Instruments

Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024			
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024			
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 20, 2024			
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 20, 2024			
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024			
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024			
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024			
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024			
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 24, 2024			
Antenna Mast	Keleto	RE-AM	1				
Coaxial cable	SKET	RC-18G-N-M) /	Feb. 24, 2024			
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024			
EMI Test Software	Shurple Technology	EZ-EMC		1			

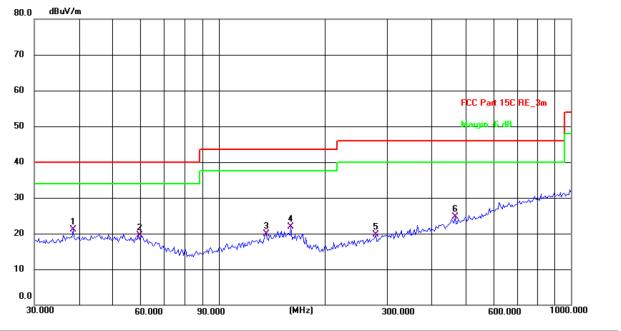
Page 20 of 47

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.7.3. Test Data

Site: #1 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.3(C) Humidity: 50 %

Limit: FCC Part 15C RE_3m


Power: DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	43.8119	6.31	13.84	20.15	40.00	-19.85	QP	Ρ	
2	282.9852	14.19	13.40	27.59	46.00	-18.41	QP	Р	
3	356.6758	10.15	15.26	25.41	46.00	-20.59	QP	Ρ	
4	419.1081	7.66	16.86	24.52	46.00	-21.48	QP	Ρ	
5	656.5300	7.42	21.67	29.09	46.00	-16.91	QP	Ρ	
6 *	734.4913	8.01	22.35	30.36	46.00	-15.64	QP	Ρ	

Page 21 of 47

Report No.: TCT230816E006

Vertical:

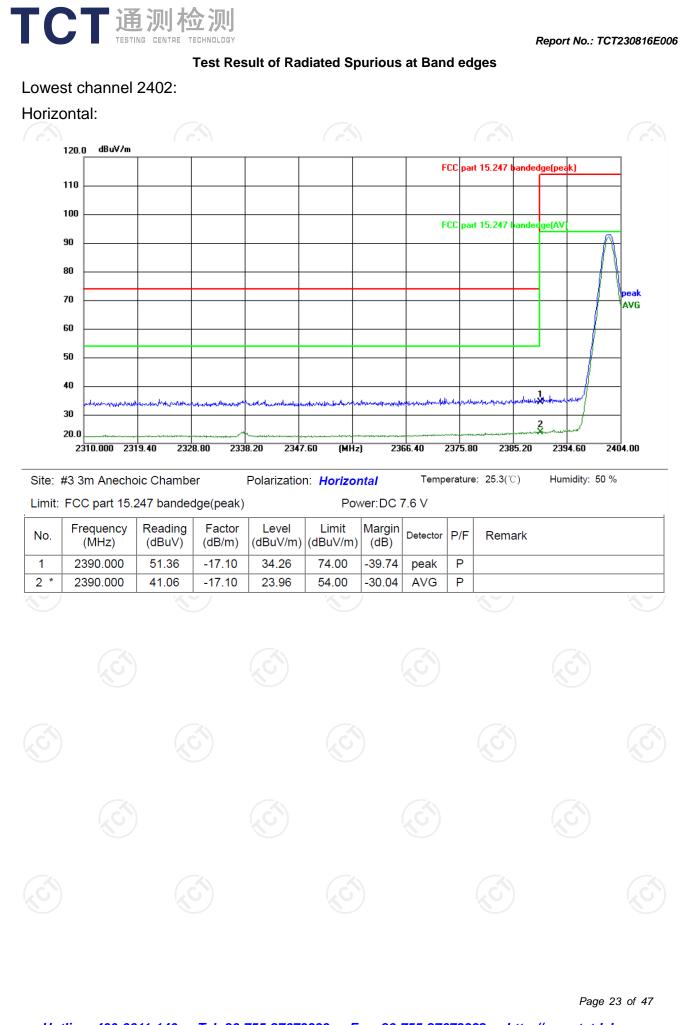
Temperature: 24.3(C) Humidity: 50 % Site: #1 3m Anechoic Chamber Polarization: Vertical

Limit: FCC Part 15C RE_3m

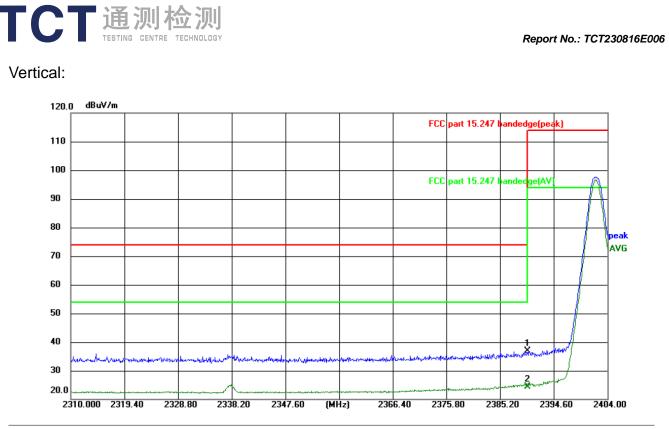
Power: DC 7.6 V Frequency Reading Factor Level Limit Margin Detector P/F Remark No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 38.6160 7.15 14.05 21.20 40.00 -18.80 QP Ρ 2 -20.46 QP Р 59.2325 6.56 12.98 19.54 40.00 QP 6.38 43.50 Ρ 136.4598 13.54 19.92 -23.58 3 Ρ 4 160.3456 7.26 14.55 21.81 43.50 -21.69 QP 5 279.0436 6.51 13.28 19.79 46.00 -26.21 QP Ρ 468.8762 -21.34 QP Ρ 6 6.61 18.05 24.66 46.00

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Highest channel) was submitted only.


- 3. Freq. = Emission frequency in MHz
 - Measurement $(dB\mu V/m) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$

Correction Factor= Antenna Factor + Cable loss - Pre-amplifier


- Limit $(dB\mu V/m) = Limit$ stated in standard
- Margin (dB) = Measurement (dB μ V/m) Limits (dB μ V/m)
- * is meaning the worst frequency has been tested in the test frequency range
- 4. Both AC mode and Battery mode were tested, only the worse mode (Battery mode) is reported.

Page 22 of 47

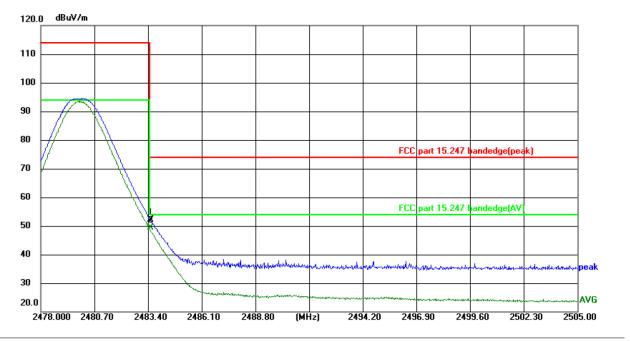
Report No.: TCT230816E006

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 25.3(°C) Humidity: 50 %

Limit: FCC part 15.247 bandedge(peak)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2390.000	54.01	-17.10	36.91	74.00	-37.09	peak	Р	
2 *	2390.000	41.47	-17.10	24.37	54.00	-29.63	AVG	Ρ	


Power:DC 7.6 V

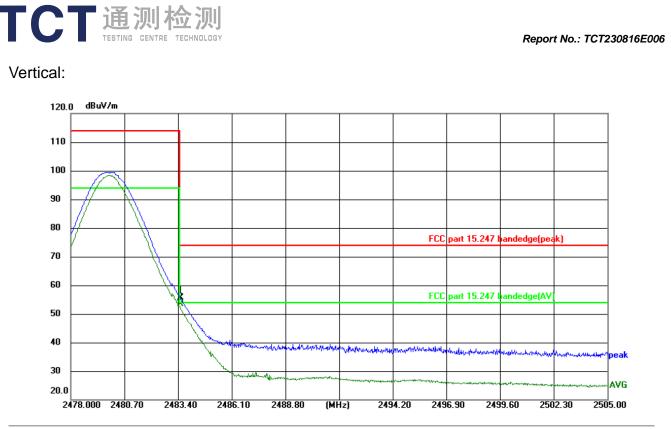
Page 24 of 47

Highest channel 2480:

Horizontal:

Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.3(°C) Humidity: 50 %

Limit: FCC part 15.247 bandedge(peak)


Power:DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2483.500	69.10	-16.88	52.22	74.00	-21.78	peak	Р	
2 *	2483.500	66.18	-16.88	49.30	54.00	-4.70	AVG	Ρ	

Report No.: TCT230816E006

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 25.3(°C) Humidity: 50 %

Limit: FCC part 15.247 bandedge(peak)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	72.43	-16.88	55.55	74.00	-18.45	peak	Ρ	
2 *	2483.500	70.31	-16.88	53.43	54.00	-0.57	AVG	Ρ	

Power: DC 7.6 V

Page 26 of 47

Report N	Vo.: '	TCT230816	E006
----------	---------------	-----------	------

Above 1GHz

Low chann	el: 2402 IV	IHZ							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	A\/	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	43.80		0.66	44.46		74	54	-9.54
7206	Н	34.24		9.50	43.74		74	54	-10.26
	Н								
4804	V	43.07		0.66	43.73		74	54	-10.27
7206	V	34.91		9.50	44.41	- U	74	54	-9.59
	V								

Middle channel: 2440 MHz

Frequency	Ant Pol	Peak	AV	Correction	Emissic	on Level	Peak limit	AV/ limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)			(dBµV/m)	(dB)
4880	Н	45.73		0.99	46.72		74	54	-7.28
7320	Н	35.16		9.87	45.03		74	54	-8.97
	Н			·	(
			KO.						
4880	V	44.39		0.99	45.38	<u> </u>	74	54	-8.62
7320	V	35.58		9.87	45.45		74	54	-8.55
	V								

High channel: 2480 MHz

Frequency	Ant Pol	Peak	AV	Correction	Emissic	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)		(dBu)/m	(dBµV/m)	(dB)
4960	Н	42.65	-6.0	1.33	43.98		74	54	-10.02
7440	Н	32.42		10.22	42.64	<u> </u>	74	54	-11.36
	Н								
4960	V	43.97		1.33	45.30		74	54	-8.70
7440	V	33.21		10.22	43.43		74	54	-10.57
<u> </u>	V			2	/		· · · ·		

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

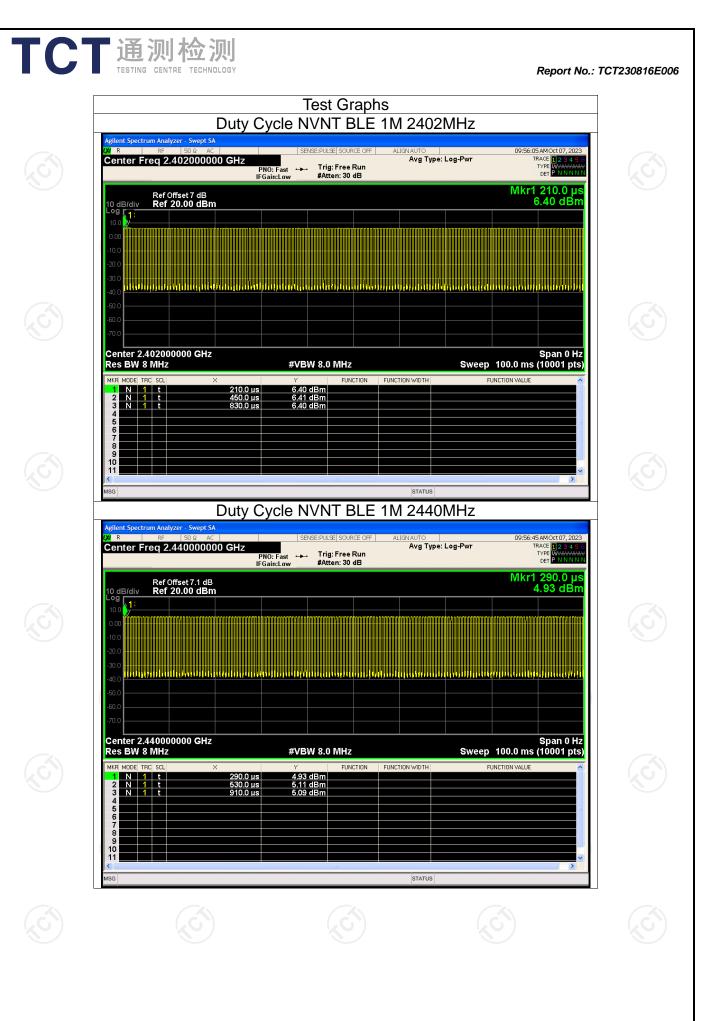
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

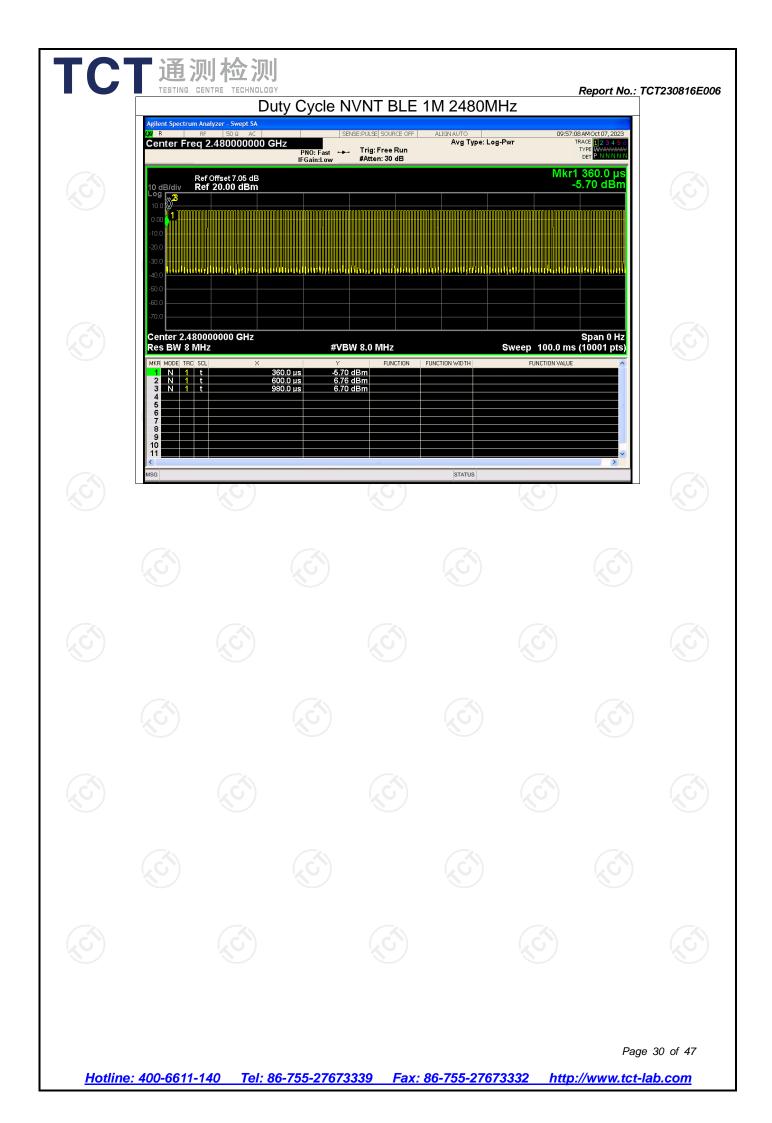
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

7. Both AC mode and Battery mode were tested, only the worse mode (Battery mode) is reported.

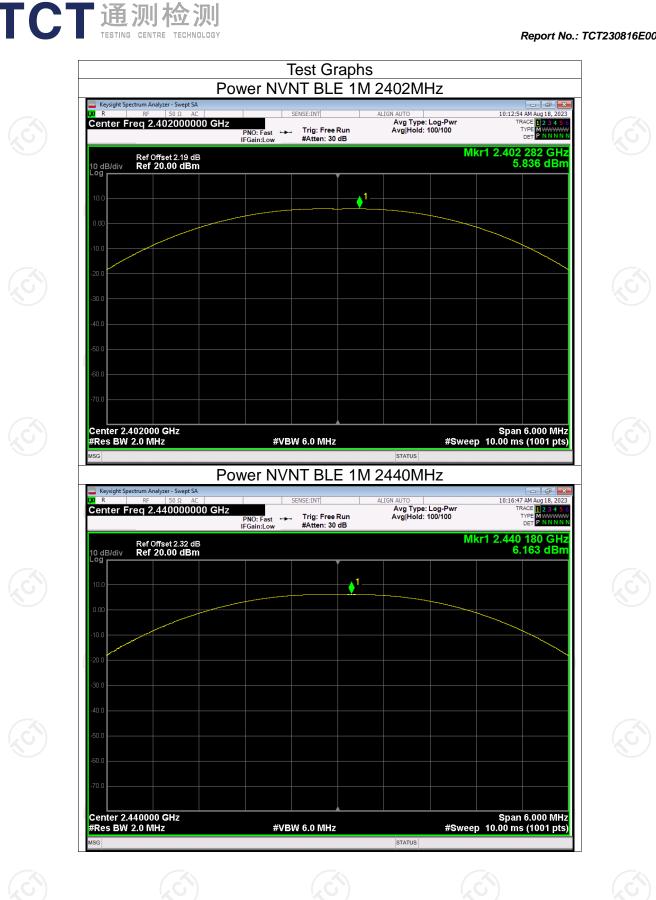

Page 27 of 47

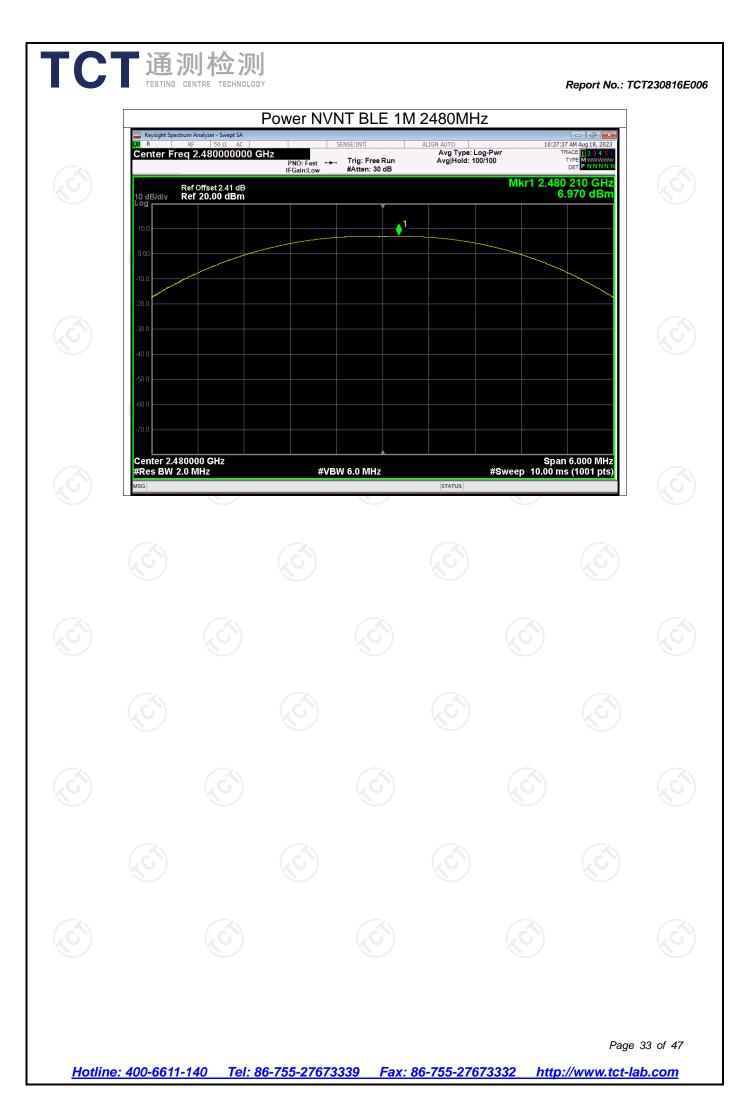

	Duty	y Cycle		
Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
BLE 1M	2402	62.4	2.05	2.63
BLE 1M	2440	63.2	1.99	2.63
BLE 1M	2480	63.2	1.99	2.63
	BLE 1M BLE 1M	ModeFrequency (MHz)BLE 1M2402BLE 1M2440	Mode (MHz) (%) BLE 1M 2402 62.4 BLE 1M 2440 63.2	ModeFrequency (MHz)Duty Cycle (%)Correction Factor (dB)BLE 1M240262.42.05BLE 1M244063.21.99

Page 28 of 47

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 29 of 47


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict	
NVNT NVNT NVNT	BLE 1M BLE 1M BLE 1M	2402 2440 2480	5.84 6.16 6.97	30 30 30 30	Pass Pass Pass	
					Рапе	31 of 47

Maximum Conducted Output Power

TCT通测检测 TESTING CENTRE TECHNOLOGY

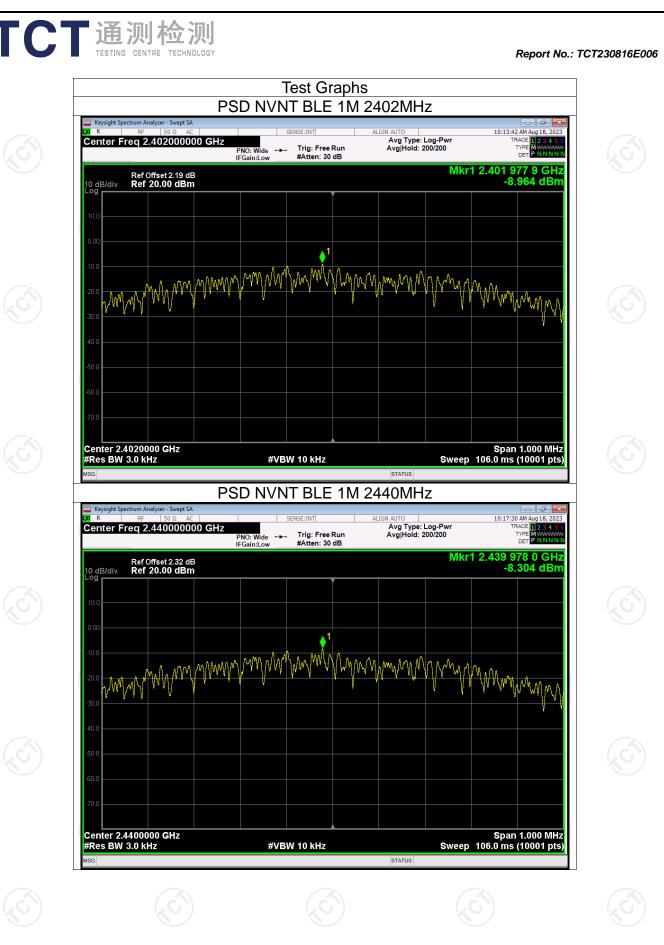
Report No.: TCT230816E006

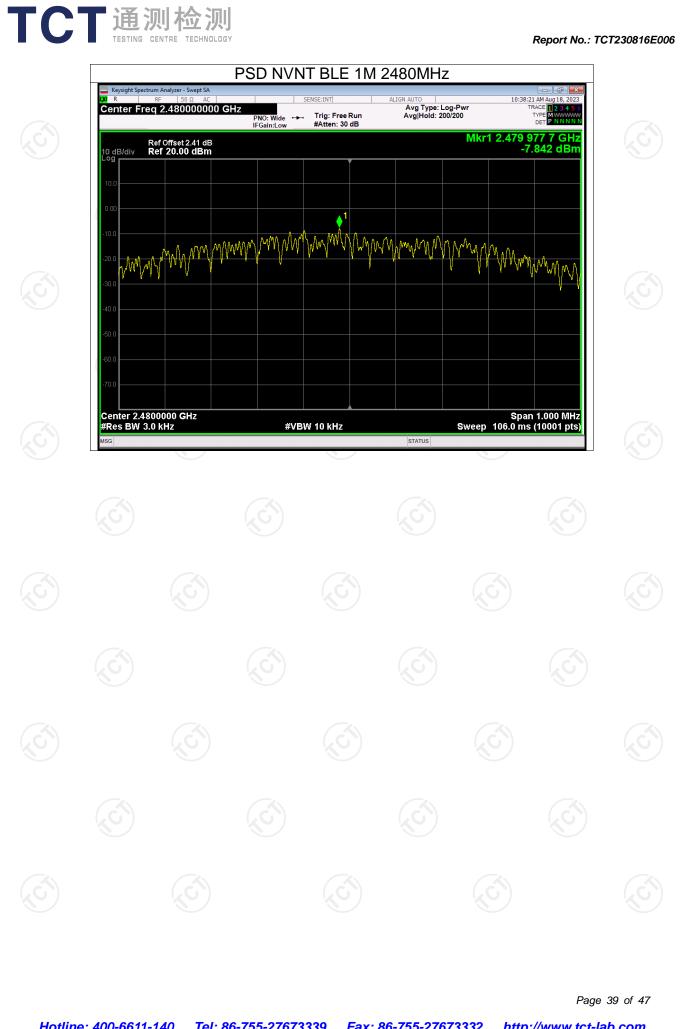


			Page	34 of 47

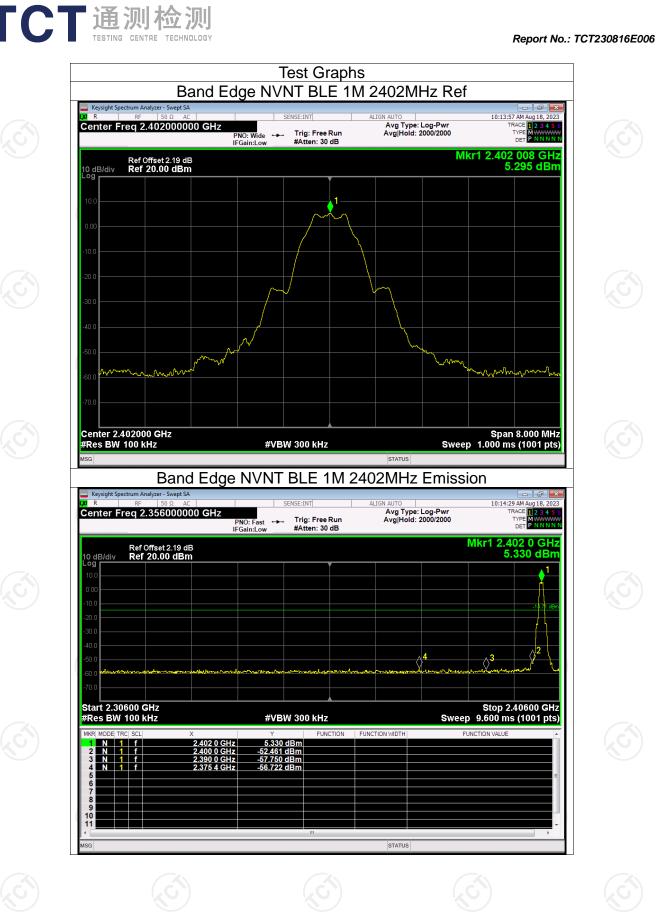
-6dB Bandwidth Frequency Limit -6 dB -6 dB Bandwidth Condition Mode Verdict Bandwidth (MHz) (MHz) (MHz) BLE 1M 2402 NVNT 0.686 0.5 Pass 2440 Pass NVNT BLE 1M 0.677 0.5 BLE 1M NVNT 2480 0.674 0.5 Pass

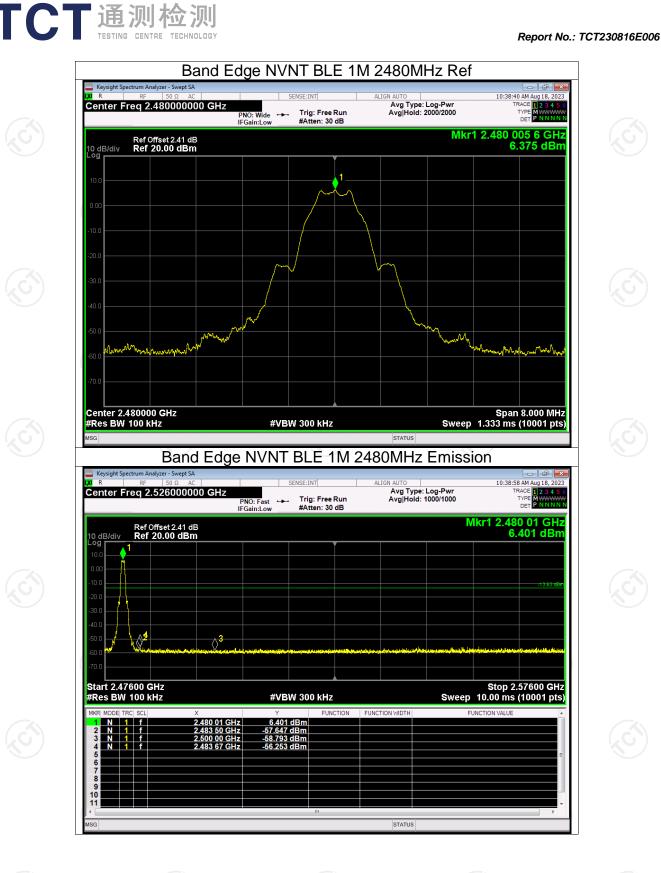
Report No.: TCT230816E006


Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	-8.96	8	Pass
NVNT	BLE 1M	2440	-8.30	8	Pass
NVNT	BLE 1M	2480	-7.84	8	Pass


Maximum Power Spectral Density Level

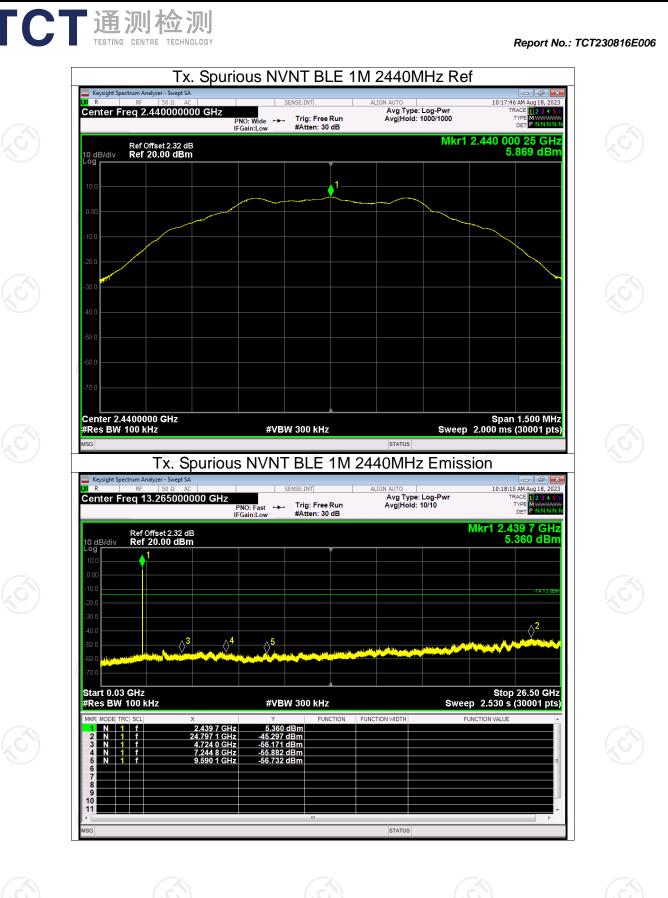
Page 37 of 47

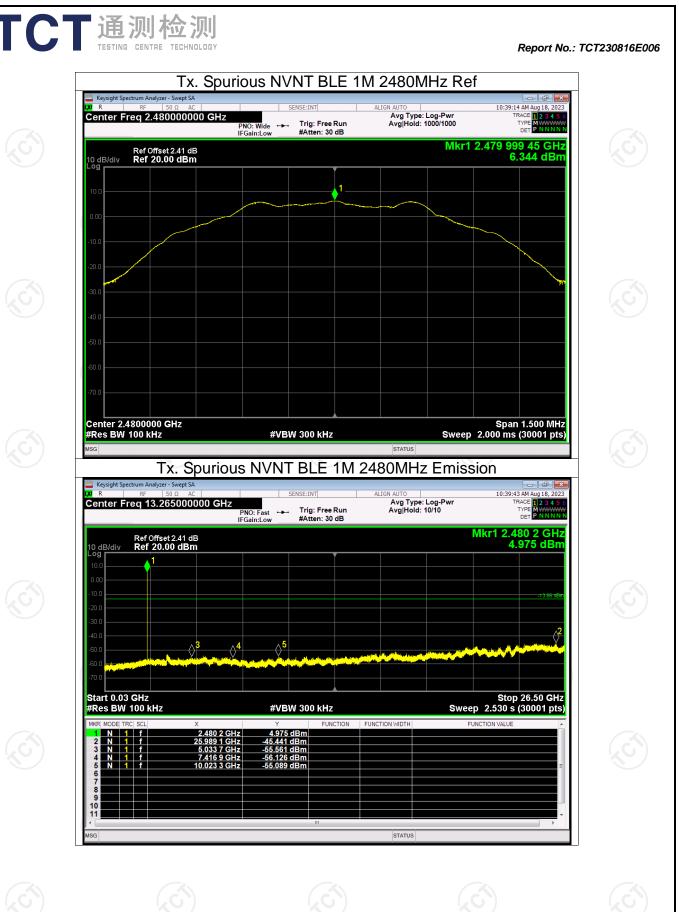

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



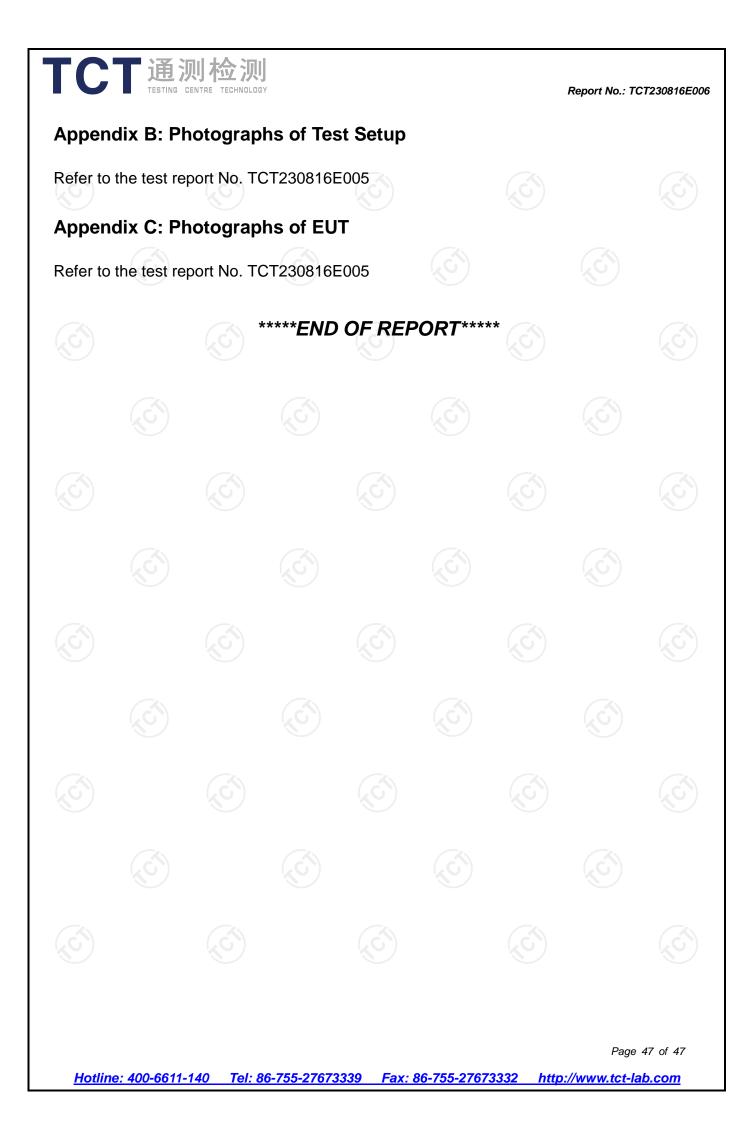
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


CI		と汉リ CHNOLOGY			Report No	o.: TCT230816E0
Condition	Mode	Frequency (N	Band Edg	e x Value (dBo	c) Limit (dBc)	Verdict
NVNT	BLE 1M	2402		-62.02	-20	Pass
NVNT	BLE 1M	2480	Ì	-62.63	-20	Pass
					r	Page 40 of 47





Page 42 of 47


TCT	通测检测 TESTING CENTRE TECHNOLOG	Ŷ				Report No.:	TCT230816E006
Condition NVNT NVNT NVNT		Display test quency (M 2402 2440 2480		us Emission x Value (dl -50.93 -51.16 -51.78		nit (dBc) -20 -20 -20	Verdict Pass Pass Pass
<u>Hotline: 400</u>	9 <u>-6611-140 Tel: 8</u>	<u>6-755-27673</u>	339 Fax:	<u>86-755-2767</u>	<u>3332 htt</u> j	Pag 0://www.tct	ge 43 of 47 - <u>lab.com</u>

