

Page 1 of 43 FCC ID: 2AUARTKTOOL12

Report No.: LCSA12263070E01

SAR Test Report

Report No.: LCSA12263070E01

Issued for

THINKCAR TECH CO., LTD.

2606, building 4, phase II, TiananYungu, Gangtou community, Bantian, Longgang District, Shenzhen, China

Product Name:

Professional Commercial Trucks Diagnostic Scanner

Brand Name: DIESEL LAPTOPS

Model Name: TKT16

Series Model(s): DIESEL TABLET PRO

FCC ID: 2AUARTKTOOL12

ANSI/IEEE Std. C95.1-1992 Test Standards: FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013

Max. SAR (1g) Body: 0.226W/kg

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes noresponsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Page 2 of 43 FCC ID: 2AUARTKTOOL12 Report No.: LCSA12263070E01

Test Report Certification

Applicant's name:	THINKCAR TECH CO., LTD.
Address	2606, building 4, phase II, TiananYungu, Gangtou community, Bantian, Longgang District, Shenzhen, China
Manufacturer's Name	THINKCAR TECH CO., LTD.
Address	2606, building 4, phase II, TiananYungu, Gangtou community, Bantian, Longgang District, Shenzhen, China
Product description	
Product name:	Professional Commercial Trucks Diagnostic Scanner
Brand name:	DIESEL LAPTOPS
Model name:	TKT16
Series Model:	DIESEL TABLET PRO
Standards This publication may be repro as the Shenzhen LCS Com owner and source of the mat noresponsibility for and will interpretation of the reproduc	ANSI/IEEE Std. C95.1-1992 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013 oduced in whole or in part for non-commercial purposes as long pliance Testing Laboratory Ltd. is acknowledged as copyright erial. Shenzhen LCS Compliance Testing Laboratory Ltd. takes not assume liability for damages resulting from the reader's ed material due to its placement and context.
Date of Test	
Date (s) of performance of tests	23 Sept. 2022-26 Sept. 2022
Date of Issue	27 Dec 2023
Test Result	Pass

Compiled by:

Jayzhan

Jay Zhan / File administrators

Supervised by:

Approved by:

(and Ino

Cary Luo / Technique principal

Gavin Liang/ Manager

Table of Contents

1. General Information	5
1.1 EUT Description	5
1.2 Test Environment	6
1.3 Test Factory	6
2. Test Standards and Limits	6
3.SAR Measurement System	8
3.1 SAR Measurement Set-up	8
3.20PENSAR E-field Probe System	9
3.3Phantoms	10
3.4Device Holder	11
3.5Scanning Procedure	11
3.6Data Storage and Evaluation	13
4. Tissue Simulating Liquids	15
4.1 Simulating Liquids Parameter Check	15
5. SAR System Validation	17
5.1 Validation System	17
5.2 Validation Result	17
6. SAR Evaluation Procedures	18
7. EUT Antenna Location Sketch	19
7.1 SAR test exclusion consider table	20
8. EUT Test Position	22
8.1 Body-worn Position Conditions	22
9. Uncertainty	23
9.1 Measurement Uncertainty	23
10. Conducted Power Measurement	24
10.1 Test Result	24
11. EUT and Test Setup Photo	27
11.1 EUT Photo	27
11.2 Setup Photo	30
12. SAR Result Summary	31
12.1 Body-worn SAR	31
13. Equipment List	32
Appendix A. System Validation Plots	33
Appendix B. SAR Test Plots	39
Appendix C. Probe Calibration and Dipole Calibration Report	43

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	28 Sept. 2022	STS2209025H02	ALL	Initial Issue
01	27 Dec 2023	LCSA12263070E01	ALL	Update standards, product names, trademarks, series models, and appearance

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

Product Name Professional Commercial Trucks Diagnostic Scanner Brand Name **DIESEL LAPTOPS** Model Name **TKT16** Series Model DIESEL TABLET PRO Model Difference Only the appearance color and trademark are different, everything else is the same Rated Voltage: 7.6V Charge Limit Voltage:8.7V Battery Capacity: 6300mAh Portable **Device Category** Production unit Product stage **RF** Exposure **General Population / Uncontrolled** Environment Hardware Version N/A Software Version N/A WLAN802.11b/g/n20: 2412 MHz ~ 2462 MHz WLAN 802.11n40: 2422 MHz ~ 2452 MHz Frequency WLAN 802.11a/n20/n40/ac20/ac40/ac80: 5150 ~ 5250 MHz Range WLAN 802.11a/n20/n40/ac20/ac40/ac80: 5725 ~ 5850 MHz Bluetooth: 2402 MHz to 2480 MHz Body Worn (W/kg) Band Mode 2.4G WLAN 0.226 DTS Max. Reported DSS BT 0.097 SAR(1g): (Limit:1.6W/kg) NII 5.2G WLAN 0.102 NII 5.8G WLAN 0.106 Part 15 Spread Spectrum Transmitter(DSS) FCC Equipment Unlicensed National Information Infrastructure TX(NII) Class Digital Transmission System (DTS) 2.4G WLAN : 802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM 5G WLAN: 802.11a(OFDM):BPSK.QPSK.16-QAM.64-QAM Operating Mode: 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11ac(OFDM):BPSK,QPSK,16-QAM,64-QAM,256-QAM Bluetooth: GFSK +π/4DQPSK+8DPSK **BLE: GFSK** Antenna Bluetooth: FPC Antenna Specification: WLAN: FPC Antenna DTM Mode Not Support Note:

1.1 EUT Description

1. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

2. The Bluetooth and WLAN can't simultaneous transmission at the same time.

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required					
Temperature (°C)	18-25					
Humidity (%RH)	30-70					

1.3 Test Factory

Shenzhen LCS Compliance Testing Laboratory Ltd..

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China FCC test Firm Registration No.: 625569

NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595. ISED Designation Number is 9642A

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D04 v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 648474 D04 v01r03	SAR Evaluation Considerations for Wireless Handsets
8	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)
Whole-Body Partial-Body Hands, Wrists, Feet and Ankles
0.08
1.6
4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. **Population/Uncontrolled Environments:**

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE

PARTIAL BODY LIMIT

1.6 W/kg

3. SAR Measurement System

3.1 SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software

Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

Page 9 of 43 FCC ID: 2AUARTKTOOL12

Report No.: LCSA12263070E01

3.20PENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO376(manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

Frequency	450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB

Page 10 of 43 FCC ID: 2AUARTKTOOL12 Report No.: LCSA12263070E01

Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

3.5Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement The reference and drift jobs are useful jobs for monitoring the power drift of the device under test

in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ\pm1^\circ$	$20^\circ\pm1^\circ$		
	$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2-3 \text{ GHz:} \leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orienta above, the measurement re corresponding x or y dimen at least one measurement p	n of the test device, in the tion, is smaller than the solution must be \leq the nsion of the test device with point on the test device.		

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	colution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz}$: $\leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$\begin{array}{l} 3-4 \; \mathrm{GHz} : \leq 5 \; \mathrm{mm}^* \\ 4-6 \; \mathrm{GHz} : \leq 4 \; \mathrm{mm}^* \end{array}$	
	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \mathrm{mm}$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 4 \text{ mm} \\ 4-5 \text{ GHz:} \leq 3 \text{ mm} \\ 5-6 \text{ GHz:} \leq 2 \text{ mm} \end{array}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	$\leq 4 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz} :\leq 3 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz} :\leq 2.5 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz} :\leq 2 \ \mathrm{mm} \end{array}$	
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zo}$	om(n-1) mm	
Minimum zoom scan volume	x, y, z		\geq 30 mm	$3-4$ GHz: ≥ 28 mm $4-5$ GHz: ≥ 25 mm $5-6$ GHz: ≥ 22 mm	
				1	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi
- Diode compression point	Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field dcpi = diode compression point

σ

ρ

From the compensated input signals the primary field data for each channel can be evaluated:

 $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$ E – fieldprobes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ H – fieldprobes : With Vi = compensated signal of channel i (i = x, y, z)(i = x, y, z)= sensor sensitivity of channel i Normi [mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution = sensor sensitivity factors for H-field probes aij = carrier frequency [GHz] f Ei = electric field strength of channel i in V/m Hi = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$ The primary field data are used to calculate the derived field units. $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$ with SAR = local specific absorption rate in mW/g = total field strength in V/m Etot

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

= conductivity in [mho/m] or [Siemens/m]= equivalent tissue density in g/cm3

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Ingredi ent	750	ИНz	8351	MHz	1800	MHz	1900	MHz	2450	MHz	2600	MHz	5000	MHz
(%	Hea	Bod	Hea	Bod	Hea	Bod	Hea	Bod	Hea	Bod	Hea	Bod	Hea	Bod
Weight)	d	У	d	у	d	у	d	у	d	у	d	у	d	У
Water	39.2 8	51. 3	41.4 5	52. 5	54.5	40.2	54.9	40.4	62.7	73.2	60.3	71.4	65. 5	78. 6
Prevent ol	0.10	0.1 0	0.10	0.1 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0 0	0.0 0
HEC	1.00	1.0 0	1.00	1.0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0 0	0.0 0
DGBE	0.00	0.0 0	0.00	0.0 0	45.3 3	59.3 1	44.9 2	59.1 0	36.8 0	26.7 0	39.1 0	28.4 0	0.0 0	0.0 0
Triton X-100	0.00	0.0 0	0.00	0.0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17. 2	10. 7

The composition	n of the tissu	e simulatina	hinnid
		c sinnalang	inquiu

Target Frequency	Не	ad
(MHz)	٤r	σ(S/m)
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1640	40.2	1.31
1800	40.0	1.40
1900	40.0	1.40
2000	40.0	1.40
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
5200	36.0	4.66
5800	35.3	5.27

Page 16 of 43 FCC ID: 2AUARTKTOOL12 Report No.: LCSA12263070E01

LIQUID MEASUREMENT RESULTS

Data	Am	nbient	Simulating Liquid		Deremeters	Torget	Maggurad	Deviation	Limited
Date	Temp.	Humidity	Frequency	Temp.	Parameters	Target	Measured	%	%
	[°C]	%	(MHz)	[°C]					
2022 00 22	22.6	52	2412	22.2	Permittivity	39.27	39.89	1.58	±5
2022-09-23	22.0	52	2412	22.3	Conductivity	1.77	1.79	1.13	±5
2022 00 22	<u></u>	51	2427	21.0	Permittivity	39.22	40.05	2.12	±5
2022-09-23	22.2	51	2437	21.9	Conductivity	1.79	1.80	0.56	±5
2022 00 22	22.4	50	2444	01.7	Permittivity	39.22	39.57	0.89	±5
2022-09-23	22.1	52	2441	21.7	Conductivity	1.79	1.82	1.68	±5
2022 00 22	22.2	E 1	2450	22.1	Permittivity	39.20	39.65	1.15	±5
2022-09-23	22.3	51	2400	22.1	Conductivity	1.80	1.80	0.00	±5
2022 00 22	22.6	40	2462	22.2	Permittivity	39.18	39.64	1.17	±5
2022-09-23	22.0	49	2402	22.3	Conductivity	1.81	1.82	0.55	±5
2022 00 26	22.2	11	5200	22.0	Permittivity	36.00	36.53	1.47	±5
2022-09-20	22.3	41	5200	22.0	Conductivity	4.66	4.65	-0.21	±5
2022 00 26	22.4	11	5240	22.2	Permittivity	35.96	35.93	-0.08	±5
2022-09-20	22.4	41	5240	22.2	Conductivity	4.70	4.64	-1.28	±5
2022 00 26	22.4	40	6746	22.1	Permittivity	35.36	36.16	2.26	±5
2022-09-20	22.4	42	5745	22.1	Conductivity	5.21	5.18	-0.58	±5
2022 00 26	22.1	11	5900	21.0	Permittivity	35.30	35.72	1.19	±5
2022-09-20	22.1	41	3000	21.9	Conductivity	5.27	5.31	0.76	±5

5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

Date	Freq.	Power	Tested Value	Normalized SAR	Target SAR	Tolerance	Limit
	(MHz)	(MHz) (mW) (W/Kg) (W/kg) 1g(W/kg)		1g(W/kg)	(%)	(%)	
2022-09-23	2450	100	5.236	52.36	52.40	-0.08	10
2022-09-26	5200	100	15.867	158.67	159.00	-0.21	10
2022-09-26	5800	100	18.137	181.37	181.20	0.09	10

Note:

1. The tolerance limit of System validation ±10%.

2. The dipole input power (forward power) was 100 mW.

3. The results are normalized to 1 W input power.

Page 18 of 43 FCC ID: 2AUARTKTOOL12

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

The following steps are used for each test position

Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface

Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.

Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

7. EUT Antenna Location Sketch

It is Professional Commercial Trucks Diagnostic Scanner, support BT/WLAN mode.

Top Side

Back view

Antenna Separation Distance(cm)						
ANT Back Side Left Side Right Side Top Side Bottom Side						
WLAN/BT	≤0.5	28.8	≤0.5	2	13.5	

Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

7.1 SAR test exclusion consider table

			mining tolorano	0.	
Exposure	Wireless Interface	BT	2.4G WLAN 802.11b	5.2G WLAN 802.11a	5.8G WLAN 802.11a
Position	Calculated Frequency(GHz)	2.441	2.412	5.24	5.745
	Maximum Turn-up power (dBm)	9.5	9.5	7	7
	Maximum rated power(mW)	8.91	8.91	5.01	5.01
Back Side	Separation distance (cm)	≪0.5	≪0.5	≪0.5	≪0.5
	exclusion threshold(mW)	2.75	2.78	1.49	1.39
	Testing required?	VES	VES	VES	VES

The WLAN/BT SAR evaluation of Maximum power (dBm) summing tolerance

5.745 7 5.01 ≤0.5 1.39 YES i esting required? YES res Separation distance (cm) 28.8 28.8 28.8 28.8 exclusion threshold(mW) 6121.03 6115.24 6502.70 6550.25 Left Side Testing required? NO NO NO NO Separation distance (cm) ≤0.5 ≤0.5 ≤0.5 ≪0.5 **Right Side** exclusion threshold(mW) 2.78 1.49 1.39 2.75 Testing required? YES YES YES YES 2 2 2 2 Separation distance (cm) Top Side exclusion threshold(mW) 38.40 38.63 26.21 25.03 Testing required? NO NO NO NO Separation distance (cm) 13.5 13.5 13.5 8 Bottom Side exclusion threshold(mW) 535.92 1450.81 1357.85 1347.23 NO NO NO NO Testing required?

Note:

- 1. maximum power is the source-based time-average power and represents the maximum RF output power among production units.
- 2. Per KDB 447498 D04, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 3. Per KDB 447498 D04, if the maximum time-averaged power available does not exceed 1 mW. This stand-alone SAR exemption test.
- 4. Per KDB 447498 D04, the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by:

$$P_{th} (mW) = \begin{cases} ERP_{20 \ cm} (d/20 \ cm)^{x} & d \le 20 \ cm \\ \\ ERP_{20 \ cm} & 20 \ cm < d \le 40 \ cm \end{cases}$$

Where

$$x = -\log_{10}\left(\frac{60}{ERP_{20} cm\sqrt{f}}\right) \text{ and } f \text{ is in GHz};$$

and

$$ERP_{20\ cm}\ (\text{mW}) = \begin{cases} 2040f & 0.3\ \text{GHz} \le f < 1.5\ \text{GHz} \\ \\ 3060 & 1.5\ \text{GHz} \le f \le 6\ \text{GHz} \end{cases}$$

d = the separation distance (cm);

5. Per KDB 447498 D04, An alternative to the SAR-based exemption is using below table and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in below table to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

RF Source frequency (MHz)	Threshold ERP(watts)
0.3-1.34	1,920 R².
1.34-30	3,450 R²/f².
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

6. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion 8.for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode ,thus the SAR can be excluded.

8. EUT Test Position

This EUT was tested in Back Side and Right Side.

8.1 Body-worn Position Conditions

Body-worn Position Conditions:

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System	,					,	,	
Probe calibration	5.86	N	1	1	1	5.86	5.86	∞
Axial Isotropy	0.16	R	$\sqrt{3}$	√0.5	√0.5	0.07	0.07	∞
Hemispherical Isotropy	1.06	R	$\sqrt{3}$	√0.5	√0.5	0.43	0.43	8
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	1.27	R	$\sqrt{3}$	1	1	0.73	0.73	8
System detection limits	1.23	R	$\sqrt{3}$	1	1	0.71	0.71	8
Modulation response	3.6	R	$\sqrt{3}$	1	1	3.60	3.60	8
Readout Electronics	0.28	N	1	1	1	0.28	0.28	8
Response Time	0.19	R	$\sqrt{3}$	1	1	0.11	0.11	8
Integration Time	1.47	R	$\sqrt{3}$	1	1	0.85	0.85	8
RF ambient conditions-Noise	3.5	R	√3	1	1	2.02	2.02	ø
RF ambient conditions-reflections	3.2	R	√3	1	1	1.85	1.85	ø
Probe positioner mechanical tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	ø
Probe positioning with respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	ø
Post-processing	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8
Test sample Related								
Test sample positioning	3.1	N	1	1	1	3.10	3.10	8
Device holder uncertainty	3.8	Ν	1	1	1	3.80	3.80	8
SAR drift measurement	4.8	R	$\sqrt{3}$	1	1	2.77	2.77	∞
SAR scaling	2	R	$\sqrt{3}$	1	1	1.15	1.15	8
Phantom and tissue parame	eters							
Phantom uncertainty (shape and thickness uncertainty)	4	R	√3	1	1	2.31	2.31	ø
Uncertainty in SAR correction for deviations in permittivity and conductivity	2	N	1	1	0.84	2.00	1.68	ø
Liquid conductivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.95	1.78	8
Liquid conductivity (measured)	4	N	1	0.78	0.71	0.92	1.04	М
Liquid permittivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	1.95	1.78	8
Liquid permittivity (measured)	5	Ν	1	0.23	0.26	1.15	1.30	М
Combined Standard Uncertainty		RSS				10.60	10.51	
Expanded Uncertainty (95% Confidence interval)		K=2				21.21	21.03	

10. Conducted Power Measurement

10.1 Test Result

BT						
Mada	Channel Number	Fraguanay (MHz)	Average Power	Output Power		
WOde			(dBm)	(mW)		
	0	2402	7.93	6.21		
GFSK(1Mbps)	39	2441	9.17	8.26		
	78	2480	8.38	6.89		
	0	2402	7.01	5.02		
π/4-QPSK(2Mbps)	39	2441	8.36	6.85		
	78	2480	7.24	5.30		
8DPSK(3Mbps)	0	2402	7.1	5.13		
	39	2441	8.36	6.85		
	78	2480	7.31	5.38		

BLE						
Mode	Channel Number	Frequency (MHz)	Average Power	Output Power		
mode			(dBm)	(mW)		
	0	2402	-5.88	0.26		
GFSK(1Mbps)	19	2440	-4.53	0.35		
	39	2480	-4.72	0.34		
	0	2402	-5.77	0.26		
GFSK(2Mbps)	19	2440	-4.57	0.35		
	39	2480	-4.47	0.36		

Page 25 of 43 FCC ID: 2AUARTKTOOL12 Re

Report No.: LCSA12263070E01

2.4GWIFI					
Mada	Channel		Average Power	Output Power	
INIOUE	Number		(dBm)	(mW)	
	1	2412	8.02	6.34	
802.11b	7	2437	8.88	7.73	
	11	2462	9.02	7.98	
	1	2412	7.24	5.30	
802.11g	7	2437	7.85	6.10	
	11	2462	7.99	6.30	
	1	2412	7.87	6.12	
802.11n(HT20)	7	2437	8.57	7.19	
	11	2462	8.68	7.38	
	3	2422	8.24	6.67	
802.11n(HT40)	6	2437	8.67	7.36	
	9	2452	8.78	7.55	

Page 26 of 43 FCC ID: 2AUARTKTOOL12

Report No.: LCSA12263070E01

5.2G WLAN						
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)		
	36	5180	5.66	3.68		
802.11a20	40	5220	3.08	2.03		
	48	5240	4.00	2.51		
	36	5180	5.43	3.49		
802.11 n-HT20	40	5220	6.79	4.78		
	48	5240	6.96	4.97		
902 11 p UT40	38	5190	4.88	3.08		
002.1111-H140	46	5230	3.36	2.17		
	36	5180	5.70	3.72		
802.11ac-VHT20	40	5220	3.06	2.02		
	48	5240	3.89	2.45		
902 11cc \/UT40	38	5190	5.03	3.18		
002.11aC-VH140	46	5230	3.35	2.16		
802.11ac-VHT80	42	5210	4.24	2.65		

5.8G WLAN					
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	
	149	5745	1.89	1.55	
802.11a20	157	5785	1.21	1.32	
	165	5825	0.68	1.17	
	149	5745	6.69	4.67	
802.11 n-HT20	157	5785	4.22	2.64	
	165	5825	3.52	2.25	
802.11 n-HT40	151	5755	1.58	1.44	
	159	5795	1.73	1.49	
802.11ac-VHT20	149	5745	1.72	1.49	
	157	5785	1.09	1.29	
	165	5825	0.55	1.14	
802.11ac-VHT40	151	5755	1.28	1.34	
	159	5795	1.62	1.45	
802.11ac-VHT80	155	5775	0.90	1.23	

11. EUT and Test Setup Photo

11.1 EUT Photo

Back side

Right Edge

Top Edge

Bottom Edge

11.2 Setup Photo

Back Side (separation distance is 0mm)

Right Side (separation distance is 0mm)

12. SAR Result Summary

12.1 Body-worn SAR

Band	Model	Test Position	Freq.	SAR (10g) (W/kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas.No.
		Back Side	2412	0.148	2.60	9.50	8.02	0.208	/
2.4GHz	902 11h	Back Side	2437	0.175	-1.42	9.50	8.88	0.202	/
WLAN	002.110	Back Side	2462	0.202	-0.32	9.50	9.02	0.226	1
		Right Edge	2462	0.056	-1.70	9.50	9.02	0.063	1
рт	OFOK	Back Side	2441	0.090	0.69	9.50	9.17	0.097	2
ы	Gron	Right Edge	2441	0.037	-3.69	9.50	9.17	0.040	1
5.2GHz	802.11	Back Side	5240	0.083	-3.57	7.00	6.96	0.084	1
WLAN	n-HT20	Right Edge	5240	0.101	-3.64	7.00	6.96	0.102	3
5.8GHz	802.11	Back Side	5745	0.098	2.82	7.00	6.69	0.105	/
WLAN	n-HT20	Right Edge	5745	0.099	-3.90	7.00	6.69	0.106	4

Note:

- 1. The test separation of all above table is 0mm.
- 2. The Bluetooth and WLAN can't simultaneous transmission at the same time.
- 3. Per KDB 447498 D04, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

b. For WWAN: Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor

4. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was 0.154 W/kg for Body)

13. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
2450MHzDipole	MVG	SID2450	SN 30/14 DIP2G450-335	2020.07.14	2023.07.13
Waveguide	MVG	SWG5500	SN 13/14 WGA32	2020.07.14	2023.07.13
E-Field Probe	MVG	SSE2	SN 07/21 EPGO352	2022.02.28	2023.02.27
Dielectric Probe Kit	MVG	SCLMP	SN 32/14 OCPG67	2021.11.23	2022.11.22
Antenna	MVG	ANTA3	SN 07/13 ZNTA52	N/A	N/A
Phantom1	MVG	SAM	SN 32/14 SAM115	N/A	N/A
Phantom3	MVG	SAM	SN 21/21 ELLI48	N/A	N/A
Phone holder	MVG	N/A	SN 32/14 MSH97	N/A	N/A
Laptop holder	MVG	N/A	SN 32/14 LSH29	N/A	N/A
Attenuator	Agilent	99899	DC-18GHz	N/A	N/A
Directional coupler	Narda	4226-20	3305	N/A	N/A
Network Analyzer	Agilent	8753ES	US38432810	2021.09.29	2022.09.28
Multi Meter	Keithley	Multi Meter 2000	4050073	2021.10.08	2022.10.07
Signal Generator	Agilent	N5182A	MY50140530	2021.09.30	2022.09.29
Wireless Communication Test Set	Agilent	8960-E5515C	MY48360751	2021.09.30	2022.09.29
Wireless Communication Test Set	R&S	CMW500	117239	2021.09.30	2022.09.29
Power Amplifier	DESAY	ZHL-42W	9638	2021.10.09	2022.10.08
Power Meter	R&S	NRP	100510	2021.09.29	2022.09.28
Power Sensor	R&S	NRP-Z11	101919	2021.09.29	2022.09.28
Temperature hygrometer	SuWei	SW-108	N/A	2021.10.09	2022.10.08
Thermograph	Elitech	RC-4	S/N EF7176501537	2021.10.09	2022.10.08

Appendix A. System Validation Plots

System Performance Check Data (2450MHz)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm, dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2022-09-23

Experimental conditions.

Phantom	Validation plane
Device Position	-
Band	2450MHz
Channels	-
Signal	CW
Frequency (MHz)	2450MHz
Relative permittivity	39.65
Conductivity (S/m)	1.80
Probe	SN 07/21 EPGO352
ConvF	1.60
Crest factor:	1:1

Maximum location: X=5.00, Y=1.00

SAR 10g (W/Kg)	2.406410
SAR 1g (W/Kg)	5.236235

Z Axis Scan

System Performance Check Data (5200MHz)

Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2022-09-26

Experimental conditions.

Device Position	Validation plane
Band	5200 MHz
Channels	-
Signal	CW
Frequency (MHz)	5200
Relative permittivity	36.53
Conductivity (S/m)	4.65
Probe	SN 07/21 EPGO352
ConvF	1.65
Crest factor:	1:1

Maximum location: X=7.00, Y=2.00

SAR 10g (W/Kg)	5.683045
SAR 1g (W/Kg)	15.867187

Z Axis Scan

System Performance Check Data (5800MHz)

Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2022-09-26

Experimental conditions.

Device Position	Validation plane
Band	5800 MHz
Channels	-
Signal	CW
Frequency (MHz)	5800
Relative permittivity	35.72
Conductivity (S/m)	5.31
Probe	SN 07/21 EPGO352
ConvF	1.65
Crest factor:	1:1

Maximum location: X=7.00, Y=2.00

SAR 10g (W/Kg)	6.128000
SAR 1g (W/Kg)	18.137039

Z Axis Scan

Appendix B. SAR Test Plots

Plot 1: DUT: Professional Commercial Trucks Diagnostic Scanner; EUT Model: TKT16

Test Date	2022-09-23
Probe	SN 07/21 EPGO352
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7, dx=8mm, dy=8mm, dz=5mm,
	Complete/ndx=8mm, dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Back Side
Band	IEEE 802.11b
Signal	IEEE802.11b (Crest factor: 1.0)
Frequency (MHz)	2462
Relative permittivity (real part)	39.64
Conductivity (S/m)	1.82

Maximum location: X=12.00, Y=-17.00

SAR Peak: 0.34 W/kg

SAR 10g (W/Kg)	0.103798
SAR 1g (W/Kg)	0.202232

Plot 2: DUT: Professional Commercial Trucks Diagnostic Scanner; EUT Mod	lel:
TKT16	

Test Date	2022-09-23	
Probe	SN 07/21 EPGO352	
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm	
Zoom Scan	5x5x7, dx=8mm, dy=8mm, dz=5mm,	
	Complete/ndx=8mm, dy=8mm, h= 5.00 mm	
Phantom	Validation plane	
Device Position	Back Side	
Band	BT	
Signal	BT (Crest factor: 1.0)	
Frequency (MHz)	2441	
Relative permittivity (real part)	39.57	
Conductivity (S/m)	1.82	
Maximum location: X=2.00, Y=-1.00		

SAR 10g (W/Kg)	0.053257
SAR 1g (W/Kg)	0.090159

Plot 3: DUT: Professional Commercial Trucks Diagnostic Scanner; EUT Model: TKT16

Test Date	2022-09-26	
Probe	SN 07/21 EPGO352	
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm	
Zoom Scan	5x5x7,dx=8mm, dy=8mm, dz=5mm, Complete/ndx=8mm, dy=8mm, h= 5.00 mm	
Phantom	Validation plane	
Device Position	Right Edge	
Band	802.11 n-HT20	
Signal	IEEE802.11a (Crest factor: 1.0)	
Frequency (MHz)	5240	
Relative permittivity (real part)	35.93	
Conductivity (S/m)	4.64	
Maximum location: X=12.00, Y=-1.00		
SAR Peak: 0.22 W/kg		
SAR 10g (W/Kg)	0.069990	
SAR 1a (W/Ka)	0.101446	

Plot 4: DUT: Professional Commercial Trucks Diagnostic Scanner; EUT Model: TKT16

Test Date	2022-09-26
Probe	SN 07/21 EPGO352
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm, dy=8mm, dz=5mm, Complete/ndx=8mm, dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Right Edge
Band	802.11 n-HT20
Signal	802.11 ac-VHT40 (Crest factor: 1.0)
Frequency (MHz)	5745
Relative permittivity (real part)	36.16
Conductivity (S/m)	5.18
Maximum location: X=-2.00, Y=32.00 SAR Peak: 0.23 W/kg	
SAR 10g (W/Kg)	0.060389
SAR 1g (W/Kg)	0.099002

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.
