| SAR | TEST | REP | ORT | |-----|------|------------|-----| |-----|------|------------|-----| | | AIT I LOT ITEL | | | |--|--|--|--| | FCC ID: | 2AUAR393TKX11 | (0) | | | Test Report No:: | TCT230425E044 | | | | Date of issue:: | Jul. 10, 2023 | | | | Testing laboratory: | SHENZHEN TONGCE TESTING | SLAB | | | Testing location/ address: | 2101 & 2201, Zhenchang Factor
Subdistrict, Bao'an District, Shen
People's Republic of China | y Renshan Industrial Zone, Fuhai
zhen, Guangdong, 518103, | | | Applicant's name: | THINKCAR TECH CO., LTD. | | | | Address: | 2606, building 4, phase II, Tianar
Bantian, Longgang District, Sher | | | | Manufacturer's name: | THINKCAR TECH CO., LTD. | | | | Address: | 2606, building 4, phase II, TiananYungu, Gangtou, community, Bantian, Longgang District, Shenzhen, China | | | | Product Name:: | Remote Diagnostic Service | | | | Trade Mark: | THINKCAR, XHINKCAR, MUCA | R | | | Model/Type reference: | TKX11, THINKTOOL Expert 393 THINKTOOL Platinum 393, THIN | • | | | SAR Max. Values: | 0.44 W/Kg (1g) for Body-worn | | | | Date of receipt of test item: | Apr. 25, 2023 | | | | Date (s) of performance of test: | Apr. 25, 2023- Jul. 10, 2023 | | | | Tested by (+signature): | Una LI | Ura Li | | | Check by (+signature): | Beryl Zhao | Boyl that TCT | | | Approved by (+signature): | Tomsin | Tomsm 14,5 gr | | | à la constata de del constata del constata de la const | | | | #### General disclaimer: This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample. #### **TABLE OF CONTENTS** | 1. | General Product Information | 4 | |----|---|-----| | | 1.1. EUT description | 4 | | | 1.2. Model(s) list | 4 | | 2. | Test standard | 5 | | 3. | Facilities and Accreditations | 5 | | | 3.1. Facilities | | | | 3.2. Location | 5 | | 4. | Test Result Summary | 6 | | 5. | RF Exposure Limit | | | 6. | SAR Measurement System Configuration | | | 0. | 6.1. SAR Measurement Set-up | | | | 6.2. E-field Probe | | | | 6.3. Phantom | | | | 6.4. Device Holder | 10 | | | 6.5. Data Storage and Evaluation | 11 | | | 6.6. Position of the wireless device in relation to the phantom | 12 | | | 6.7. Tissue Dielectric Parameters | | | | 6.8. Tissue-equivalent Liquid Properties | 16 | | | 6.9. System Check | 17 | | 7. | Measurement Procedure | 18 | | 8. | Conducted Output Power | 21 | | 9. | Exposure Position Consideration | | | | 9.1. EUT Antenna Location | | | | 9.2. Test Position Consideration | 25 | | 10 | . SAR Test Results Summary | 26 | | | 10.1. Body-Worn 1g SAR Data | | | | 10.2. Simultaneous Transmission Conclusion | | | | 10.3. SAR Simultaneous Transmission Analysis | 29 | | | 10.4. Measurement Uncertainty (450MHz-3GHz) | 30 | | | 10.5. Test Equipment List | 32 | | 11 | . System Check Results | 33 | | | . SAR Test Data | | | An | ppendix A: EUT Photos | 49 | | Δn | ppendix A: EUT Photos
ppendix B: Test Setup Photos | 51 | | ΛP | /policia 5. 1031 0014p 1 110103 | 5 1 | | ٩pp | endix E: | Dipole Ca
SAR SYS
The Chec | TEM VAL | IDATION. | turn Loss |
7
9
9 | |-----|----------|----------------------------------|---------|----------|-----------|-----------------| # 1. General Product Information # 1.1. EUT description | | *** | | | |------------------------|--|--|--| | Product Name | Remote Diagnostic Service | | | | Model/Type reference | TKX11 | | | | Sample Number: | TCT230425E044-0101 | | | | Rating(s): | Rechargeable Li-ion Battery DC 3.8V | | | | | Wi-Fi 2.4G | | | | Supported type: | 802.11b/802.11g/802.11n | | | | Modulation Type: | 802.11b: DSSS; 802.11g/802.11n:OFDM | | | | | 802.11b/802.11g/802.11n(HT20):2412MHz~2462MHz; | | | | Operation Frequency: | 802.11n(HT40):2422MHz~2452MHz | | | | Channel number: | 802.11b/802.11g/802.11n(HT20):11; 802.11n(HT40):7 | | | | Channel separation: | 5MHz | | | | Bluetooth | | | | | Bluetooth Version: | Supported 5.1 | | | | Modulation: | $GFSK(1Mbps) \ , \ \pi/4-DQPSK(2Mbps) \ , \ 8-DPSK(3Mbps)$ | | | | Operation Frequency | 2402MHz~2480MHz | | | | Channel number: | 79/40 | | | | Channel separation: | 1MHz/2MHz | | | | | Wi-Fi 5G | | | | | Band 1: 5180 MHz -5240 MHz | | | | Operation Frequency: | Band 3: 5745 MHz -5825 MHz | | | | | 802.11a: 20MHz | | | | Channel Bandwidth: | 802.11n: 20MHz, 40MHz | | | | | 802.11ac: 20MHz, 40MHz, 80MHz | | | | Modulation Technology: | Orthogonal Frequency Division Multiplexing(OFDM) | | | | Modulation Type: | 256QAM, 64QAM, 16QAM, BPSK, QPSK | | | # 1.2. Model(s) list | No. | Model No. | Tested with | |--------------|--|-------------| | 1 | TKX11 | \boxtimes | | Other models | THINKTOOL Expert 393, THINKTOOL Euro 393, THINKTOOL Platinum 393, THINKTOOL X10 Pro, TKX10 | | Note: TKX11 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, different on the model names, trademarks and color. So the test data of TKX11 can represent the remaining models. Report No.: TCT230425E044 ## 2. Test standard The tests were performed according to following standards: FCC 47 CFR §2.1093 IEC-IEEE 62209-1528-2020: Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices KDB447498 D01:General RF Exposure Guidance v06 KDB865664 D01:SAR measurement 100MHz to 6GHz v01r04 KDB865664 D02:RF Exposure Reporting v01r02. KDB248227 D01:802.11 wi-fi SAR v02r02 KDB941225 D07:UMPC Mini Tablet v01r02 KDB690783 D01:SAR Listings on Grant v01r03 ## 3. Facilities and Accreditations #### 3.1. Facilities The test facility is recognized, certified, or accredited by the following organizations: • FCC - Registration No.: 645098 SHENZHEN TONGCE TESTING LAB **Designation Number: CN1205** The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. • IC - Registration No.: 10668A-1 SHENZHEN TONGCE TESTING LAB CAB identifier: CN0031 The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. #### 3.2. Location SHENZHEN TONGCE TESTING LAB. Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China Environment Condition: | Temperature: | 18°C ~25°C | | |-----------------------|------------|--| | Humidity: | 35%~75% RH | | | Atmospheric Pressure: | 1011 mbar | | # 4. Test Result Summary The maximum results of Specific Absorption Rate (SAR) found during test as bellows: <Highest Reported standalone SAR Summary> | | | | 7 | | | | |---|------------------|----------------|------------------------|-----------------|-----------------------------|--| | E | cposure Position | Frequency Band | Reported SAR
(W/kg) | Equipment Class | Highest Reported SAR (W/kg) | | | | | WLAN 2.4 GHz | 0.44 | DTS | | | | | Body-worn | BLE | 0.09 | 013 | | | | | 1-g SAR | ВТ | 0.03 | DSS | 0.44 | | | | (0 mm Gap) | WLAN 5.2 GHz | 0.25 | NIII | | | | | | WLAN 5.8 GHz | 0.20 | NII | | | <Highest Reported simultaneous SAR Summary> | Exposure Position
| Frequency Band | Highest Reported Simultaneous
Transmission
SAR (W/kg) | |----------------------------|---------------------|---| | Body
1-g SAR (0 mm Gap) | WIFI2.4G + WIFI5.2G | 0.69 | #### Note - The highest simultaneous transmission is scalar summation of Reported standalone SAR per FCC KDB 690783 D01 v01r03, and scalar SAR summation of all possible simultaneous transmission scenarios are < 1.6W/kg. - 2. This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013. # **RF Exposure Limit** | Type Exposure | SAR (W/kg) | |---|-----------------------------| | Type Exposure | Uncontrolled Exposure Limit | | Spatial Peak SAR (averaged over any 1 g of tissue) | 1.60 | | Spatial Peak SAR
(hands/wrists/feet/ankles averaged
over 10g) | 4.00 | | Spatial Peak SAR (averaged over the whole body) | 0.08 | #### Note: - The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaged over the whole body. The Spatial Peak value of the SAR averaged over the whole body. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the - 2. - 3. shape of a cube) and over the appropriate averaging time. # 6. SAR Measurement System Configuration ## 6.1. SAR Measurement Set-up The OPENSAR system for performing compliance tests consist of the following items: A standard high precision 6-axis robot (KUKA) with controller and software. KUKA Control Panel (KCP) A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System (VPS). The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch; it sends an "Emergency signal" to the robot controller that to stop robot's moves A computer operating Windows XP. OPENSAR software Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc. The SAM phantom enabling testing left-hand right-hand and body usage. The Position device for handheld EUT Tissue simulating liquid mixed according to the given recipes. System validation dipoles to validate the proper functioning of the system. **KUKA SAR Test Sysytem Configuration** 6.2. E-field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by MVG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### **Probe Specification** Construction Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) Calibration ISO/IEC 17025 calibration service available. | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | |--|---|--| | Manufacturer | MVG | | | Model | SSE2 | | | Serial Number | SN 25/22 EPGO375 | | | Frequency Range of Probe | 0.15 GHz-6GHz | | | Resistance of Three Dipoles at Connector | Dipole 1:R1=0.197M Ω
Dipole 2:R3=0.230M Ω
Dipole 3:R3=0.208M Ω | | | | | | #### 6.3. Phantom The SAM Phantom SAM120 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC IEC-IEEE 62209-1528-2020. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles. Name: COMOSAR IEEE SAM PHANTOM S/N: SN 19/15 SAM 120 Manufacture: MVG Report No.: TCT230425E044 **SAM Twin Phantom** ## 6.4. Device Holder In combination with the Generic Twin Phantom SAM120, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom). COMOSAR Mobile phone positioning system 6.5. Data Storage and Evaluation ## Data Storage The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages. #### **Data Evaluation** The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: | Probe parameters: - Sensitivity | Normi, ai0, ai1, ai2 | |----------------------------------|----------------------| | - Conversion factor | ConvFi | | - Diode compression point | Dcpi | | Device parameters: - Frequency | f | | - Crest factor | cf | | Media parameters: - Conductivity | σ | | - Density | 0 | These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the millimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $Vi = Ui + Ui2 \cdot c f / d c pi$ ``` With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (MVG parameter) dcpi = diode compression point (MVG parameter) ``` E-field probes: Ei = (Vi / Normi · ConvF)1/2 From the compensated input signals the primary field data for each channel can be evaluated: Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com = magnetic field strength of channel i in A/m Report No.: TCT230425E044 The RSS value of the field components gives the total field strength (Hermitian magnitude): Etot = (Ex2+ EY2+ Ez2)1/2 The primary field data are used to calculate the derived field units. SAR = (Etot) $2 \cdot \sigma / (\rho \cdot 1000)$ with SAR = local specific absorption rate in mW/g Etot = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm3 Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field. # 6.6. Position of the wireless device in relation to the phantom ## Handset Reference Points Ppwe = Etot2 / 3770 or Ppwe = Htot2 \cdot 37.7 With Ppwe = equivalent power density of a plane wave in mW/cm2 Etot = total electric field strength in V/m Htot = total magnetic field strength in A/m Wt Width of the handset at the level of the acoustic Wb Width of the bottom of the handset A Midpoint of the width wt of the handset at the level of the acoustic output B Midpoint of the width wb of the bottom of the handset Positioning for Cheek / Touch Positioning for Ear / 15° Tilt **Body Worn Accessory Configurations** To position the device parallel to the phantom surface with either keypad up or down. To adjust the device parallel to the flat phantom. To adjust the distance between the device surface and the flat phantom to 15mm or holster surface and the flat phantom to 0 mm. Illustration for Body Worn Position #### Ireless Router (Hotspot) Configurations Some
battery-operated handsets have the capability to transmit and receive internet connectivity through simultaneous transmission of WIFI in conjunction with a separate licensed transmitter. The FCC has provided guidance in KDB Publication 941225 D06 where SAR test considerations for handsets (L x W > 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device with antennas 2.5 cm or closer to the edge of the device, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. Therefore, SAR must be evaluated for each frequency transmission and mode separately and summed with the WIFI transmitter according to KDB 648474 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal. #### **Illustration for Hotspot Position** #### Limb-worn device A limb-worn device is a unit whose intended use includes being strapped to the arm or leg of the user while transmitting (except in idle mode). It is similar to a body-worn device. Therefore, the test positions of 6.1.4.4 also apply. The strap shall be opened so that it is divided into two parts as shown in Figure 9. The device shall be positioned directly against the phantom surface with the strap straightened as much as possible and the back of the device towards the phantom. If the strap cannot normally be opened to allow placing in direct contact with the phantom surface, it may be necessary to break the strap of the device but ensuring to not damage the antenna. Test position for limb-worn devices Page 14 of 95 6.7. Tissue Dielectric Parameters Report No.: TCT230425E044 The liquid used for the frequency range of 100MHz-6G consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The following Table shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values. The following materials are used for producing the tissue-equivalent materials Targets for tissue simulating liquid | Frequency
(MHz) | Liquid
Type | Liquid Type
(σ) | ± 5% Range | Permittivity (ε) | ± 5% Range | |--------------------|----------------|--------------------|------------|------------------|-------------| | 300 | Head | 0.87 | 0.83~0.91 | 45.3 | 43.04~47.57 | | 450 | Head | 0.87 | 0.83~0.91 | 43.5 | 41.33~45.68 | | 835 | Head | 0.90 | 0.86~0.95 | 41.5 | 39.43~43.58 | | 900 | Head | 0.97 | 0.92~1.02 | 41. | 39.43~43.58 | | 1800-2000 | Head | 1.40 | 1.33~1.47 | 40.0 | 38.00~42.00 | | 2450 | Head | 1.80 | 1.71~1.89 | 39.2 | 37.24~41.16 | | 2600 | Head | 1.96 | 1.86~2.06 | 39.0 | 37.05~40.95 | | 3000 | Head | 2.40 | 2.28~2.52 | 38.5 | 36.58~40.43 | | 5800 | Head | 5.27 | 5.01~5.53 | 35.3 | 33.54~37.07 | | 300 | Body | 0.92 | 0.87~0.97 | 58.2 | 55.29~61.11 | | 450 | Body | 0.94 | 0.89~0.99 | 56.7 | 53.87~59.54 | | 835 | Body | 0.97 | 0.92~1.02 | 55.2 | 52.44~57.96 | | 900 | Body | 1.05 | 1.00~1.10 | 55.0 | 52.25~57.75 | | 1800-2000 | Body | 1.52 | 1.44~1.60 | 53.3 | 50.64~55.97 | | 2450 | Body | 1.95 | 1.85~2.05 | 52.7 | 50.07~55.34 | | 2600 | Body | 2.16 | 2.05~2.27 | 52.5 | 49.88~55.13 | | 3000 | Body | 2.73 | 2.60~2.87 | 52.0 | 49.40~54.60 | | 5800 | Body | 6.00 | 5.70~6.30 | 48.2 | 45.79~50.61 | ($\epsilon r = relative permittivity$, $\sigma = conductivity and <math>\rho = 1000 \text{ kg/m}3$) Page 15 of 95 # 6.8. Tissue-equivalent Liquid Properties | Test Date dd/mm/yy | Temp
℃ | Tissue
Type | Measured
Frequency
(MHz) | εr | σ(s/m) | Dev
εr(%) | Dev
σ(%) | |--------------------|-------------|----------------|----------------------------------|-------|--------|--------------|-------------| | | \ | | 2422 | 54.63 | 1.98 | 3.66 | 1.54 | | 05/10/2023 | 22 ℃ | 2450B | 2455 | 54.62 | 2.01 | 3.64 | 3.08 | | | | | 2480 | 54.59 | 2.03 | 3.59 | 4.10 | | 05/22/2023 | 22 ℃ | 5200B | 5200 | 49.02 | 5.46 | 1.70 | -4.21 | | 05/29/2022 | 22 ℃ | 5800B | 5800 | 47.81 | 6.12 | -0.81 | 2.00 | Page 16 of 95 # 6.9. System Check Report No.: TCT230425E044 The SAR system must be validated against its performance specifications before it is deployed. When SAR probe and system component or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such component. Reference dipoles are used with the required tissue-equivalent media for system validation. System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %). System check is performed regularly on all frequency bands where tests are performed with the OPENSAR system. System Check Set-up #### Verification Results | Freq.
(MHz) | Liquid | Measured Value in
100mW
(W/kg) | | Normalized to 1W
(W/kg) | | Target Value
(W/kg) | | Deviation (%) | | |----------------|--------|--------------------------------------|-----------------|----------------------------|-----------------|------------------------|-----------------|----------------|-----------------| | | Type | 1 g
Average | 10 g
Average | | 2450 | Body | 5.07 | 2.42 | 50.70 | 24.16 | 50.72 | 23.43 | -0.04 | 3.12 | | 5200 | Body | 16.35 | 5.62 | 163.50 | 56.20 | 158.49 | 55.40 | 3.16 | 1.44 | | 5800 | Body | 18.37 | 6.38 | 183.70 | 63.80 | 183.06 | 61.62 | 0.35 | 3.53 | Comparing to the original SAR value provided by MVG, the verification data should be within its specification of 10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table as below indicates the system performance check can meet the variation criterion and the plots can be referred to Section 10 of this report. ## 7. Measurement Procedure ## **Conducted power measurement** For WWAN power measurement, use base station simulator to configure EUT WWAN transition in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: TCT230425E044 Read the WWAN RF power level from the base station simulator. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band. Connect EUT RF port through RF cable to the power meter or spectrum analyser, and measure WLAN/BT output power. #### **Conducted power measurement** Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. Place the EUT in positions as Appendix B demonstrates. Set scan area, grid size and other setting on the MVG software. Measure SAR results for the highest power channel on each testing position. Find out the largest SAR result on these testing positions of each band. Measure SAR results for other channels in worst SAR testing position if the Reported SAR or highest power channel is larger than 0.8 W/kg. According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: Power reference measurement Area scan Zoom scan Power drift measurement #### **Spatial Peak SAR Evaluation** The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The MVG software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: Extraction of the measured data (grid and values) from the Zoom Scan. Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters). Generation of a high-resolution mesh within the measured volume. Interpolation of all measured values form the measurement grid to the high-resolution grid Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface Calculation of the averaged SAR within masses of 1g and 10g. Page 18 of 95 #### **Power Reference Measurement** The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties
Area & Zoom Scan Procedures First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r03 quoted below. | quotou bolow. | | | | | |---|--|---|---|---| | | | | ≤ 3 GHz | > 3 GHz | | Maximum distance fro
(geometric center of pr | | measurement point
rs) to phantom surface | 5 mm ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$ | | Maximum probe angle
surface normal at the r | | | 30° ± 1° | 20° ± 1° | | | | | ≤ 2 GHz: ≤ 15 mm
2 – 3 GHz: ≤ 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | | | When the x or y dimension measurement plane orientate above, the measurement rescorresponding x or y dimension at least one measurement possible. | ion, is smaller than the olution must be ≤ the sion of the test device with | | Maximum zoom scan | spatial res | olution: Δxzoom, Δyzoom | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm* | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | Maximum zoom
scan spatial
resolution, normal to
phantom surface | graded | Δzz _{com} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | $3 - 4 \text{ GHz}$: $\leq 3 \text{ mm}$
$4 - 5 \text{ GHz}$: $\leq 2.5 \text{ mm}$
$5 - 6 \text{ GHz}$: $\leq 2 \text{ mm}$ | | | grid \[\Delta z_{Zoom}(n>1): \] between subsequent points | | ≤ 1.5·Δzz₀o | m(n-1) mm | | Minimum zoom
scan volume | x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details. #### **Volume Scan Procedures** The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD post-processor scan combine and subsequently superpose these measurement data to calculating the multiband SAR. Page 19 of 95 ^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. SAR Averaged Methods In MVG, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Report No.: TCT230425E044 Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1g and 10g cubes, the extrapolation distance should not be larger than 5 #### **Power Drift Monitoring** All SAR testing is under the EUT install full charged battery and transmit maximum output power. In MVG measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. #### **Power Drift measurement** The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for #### **Measurement Uncertainty** Per KDB 865664 D01 SAR Measurement 100KHz to 6GHz ,when the highest measurement 1-g SAR within a frequency band is <1.5W/kg, the extensive SAR measurement uncertainty analysis described IEEE Std 1528-2013 is not required in SAR report submitted for equipment approval. Page 20 of 95 # 8. Conducted Output Power | | | | | / | | | |-------|-------------------------|--|---|---|---|--| | | WLAN 2.4 | G | | | | | | | 802.11b | | | | | | | (1) | 6 | 11 | 1 | 6 | 11 | | | 2412 | 2437 | 2462 | 2412 | 2437 | 2462 | | | 12.91 | 13.30 | 13.46 | 14.13 | 14.10 | 14.06 | | | 8 | 302.11n(HT20 |)) | (8 | 302.11n(HT40 | 0) | | | 1 | 6 | 11 | 3 | 6 | 9 | | | 2412 | 2437 | 2462 | 2422 | 2437 | 2452 | | | 12.30 | 14.98 | 11.62 | 12.19 | 11.36 | 11.31 | | | | 12.91
8
1
2412 | 802.11b 1 6 2412 2437 12.91 13.30 802.11n(HT20) 1 6 2412 2437 | 1 6 11 2412 2437 2462 12.91 13.30 13.46 802.11n(HT20) 1 6 11 2412 2437 2462 | 802.11b 1 6 11 1 2412 2437 2462 2412 12.91 13.30 13.46 14.13 802.11n(HT20) 8 1 6 11 3 2412 2437 2462 2422 | 802.11b 802.11g 1 6 11 1 6 2412 2437 2462 2412 2437 12.91 13.30 13.46 14.13 14.10 802.11n(HT20) 802.11n(HT40) 1 6 11 3 6 2412 2437 2462 2422 2437 | | Page 21 of 95 | | | WLAN 5.20 | } | | | | | | |---------------------|--------------------|-------------|------|-------|-------------|------|--|--| | Mode | IE | EE 802.11a | 1 | (EE | E 802.11n H | IT20 | | | | Channel | 36 | 40 | 48 | 36 | 40 | 48 | | | | Frequency | 5180 | 5200 | 5240 | 5180 | 5200 | 5240 | | | | Average Power (dBm) | 9.65 | 10.30 | 8.72 | 10.22 | 10.53 | 8.97 | | | | Mode | IEEE | 802.11n H | Γ40 | IEEE | 802.11ac V | HT20 | | | | Channel | 38 | | 46 | 36 | 40 | 48 | | | | Frequency | 5190 | (.63) | 5230 | 5180 | 5200 | 5240 | | | | Average Power (dBm) | 10.58 | | 9.43 | 10.47 | 10.77 | 9.05 | | | | Mode | EEE 802.11ac VHT40 | | | IEEE | 802.11ac V | HT80 | | | | Channel | 38 46 | | | 42 | | | | | | Frequency | 5190 | (C) | | | 5210 | | | | | Average Power (dBm) | 10.56 9.44 | | | | 10.13 | | | | | | WLAN 5.8G | | | | | | | | | Mode | IE | EE 802.11a | ı | JEÉ | E 802.11n H | IT20 | | | | Channel | 149 | | 157 | 149 | 157 | 165 | | | | Frequency | 5745 | | 5785 | 5745 | 5785 | 5825 | | | | Average Power (dBm) | 6.57 | | 5.72 | 6.29 | 5.54 | 6.95 | | | | Mode | IEEE | 802.11n H | Γ40 | IEEE | 802.11ac V | HT20 | | | | Channel | 151 | | 159 | 149 | 157 | 165 | | | | Frequency | 5755 | (6) | 5795 | 5745 | 5785 | 5825 | | | | Average Power (dBm) | 6.48 | | 6.36 | 6.85 | 5.44 | 6.92 | | | | Mode | IEEE 8 | 302.11ac VH | HT40 | IEEE | 802.11ac V | HT80 | | | | Channel | | 159 | | | 155 | | | | | Frequency | | 5795 | | | 5775 | | | | | Average Power (dBm) | | 6.09 | | | 6.15 | | | | #### Note - 1. Per KDB 248227 D01 v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion. - 2. The output power of all data rate were prescan , just the worst case (the lowest data rate) of all mode were shown in report Page 22 of 95 | | | Bluetooth | 1 | | | | | | |---------------------|-------|-----------|-------|-----------|-------|-------|--|--| | Mode | | GFSK | | Pi/4DQPSK | | | | | | Channel | 0 | 39 | 78 | 0 | 39 | 78 | | | | Frequency | 2402 | 2441 | 2480 | 2402 | 2441 | 2480 | | | | Average Power (dBm) | 2.22 | 3.86 | 7.29 | 7.32 | 11.78 | 12.06 | | | | Mode | | 8DPSK | | BLE | | | | | | Channel | 0 | 39 | 78 | 0 | 20 | 39 | | | | Frequency | 2402 | 2441 | 2480 | 2402 | 2440 | 2480 | | | | Average Power (dBm) | 7.34 | 11.80 | 12.14 | -5.20 | -3.06 | -1.84 | | | | Mode | | BLE(2M) | | | | | | | | Channel | 0 | 20 | 39 | | (c | | | | | Frequency | 2402 | 2440 | 2480 | | | | | | | Average Power (dBm) | -5.22 | -3.06 | -1.80 | | | | | | #### Note 1. Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined
by: [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where - ·f(GHz) is the RF channel transmit frequency in GHz - ·Power and distance are rounded to the nearest mW and mm before calculation - •The result is rounded to one decimal place for comparison - 2. Base on the result of note1, RF exposure evaluation of BT is not required. - 3. Per KDB 248227 D01 v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion. - 4. The output power of all data rate were prescan, just the worst case (the lowest data rate) of all mode were shown in report. #### Reference to TCT230425E064 # E-Filed Strength at 0 cm from the edges surrounding the EUT (V/m) Report No.: TCT230425E044 | Frequency | Test | Test | Test | Test | Test | Test | Limits Test | |-------------|------------|------------|------------|------------|------------|------------|-------------| | Range (KHz) | Position A | Position B | Position C | Position D | Position E | Position F | (V/m) | | 125 | 0.26 | 0.11 | 0.17 | 0.32 | 0.30 | 0.27 | 614 | #### H-Filed Strength at 0 cm from the edges surrounding the EUT (A/m) | Frequency | Test | Test | Test | Test | Test | Test | Limits Test | |-------------|------------|------------|------------|------------|------------|------------|-------------| | Range (KHz) | Position A | Position B | Position C | Position D | Position E | Position F | (A/m) | | 125 | 0.15 | 0.07 | 0.10 | 0.18 | 0.19 | 0.14 | 1.63 | # Reference to TCT230425E056 | Freque
(MH | | Electric field
strength
(dBuV/m)@3m | Max.
Power
(dBm) | Tune
up
Power
(dBm) | Max.
Tune
up
Power
(dBm) | Max.
Tune
up
Power
(mW) | Test
distance
(mm) | Result | exclusion
thresholds
for 1-g
SAR | |---------------|----|---|------------------------|------------------------------|--------------------------------------|-------------------------------------|--------------------------|--------|---| | 318 | 5 | 86.17 | -11.21 | -11±1 | -10 | 0.1 | 5 | 0.011 | 3.0 | | 433. | 92 | 94.07 | -3.31 | -3±1 | -2 | 0.63 | 5 | 0.083 | 3.0 | Note: computational formula $EIRP[dBm] = E[dB\mu V/m] + 20 log (d[m]) - 104.77;$ ERP= EIRP-2.15; where E is the electric field strength in V/m; d is the measurement distance in meters (m) Result Because the max tune up power is less than the exemption limit, so No SAR measurement is required. 315,433,125K, cannot be transmitted simultaneously with BT,WiFI. Page 24 of 95 # 9. Exposure Position Consideration # 9.1. EUT Antenna Location ## 9.2. Test Position Consideration | 1 3 A | Test Positions | | | | | | | | | | | |-------|---|-----|-----|----|-----|-----|----|--|--|--|--| | | Mode Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | WIFI/ BT | Yes | Yes | No | Yes | Yes | No | | | | | #### Note: - 1. Basing on KDB447498 section 4.3.1.SAR test forTop, bottom and Left sides was not required. - 2. Basing on KDB616217 section 4.3.SARecaluation for the front surface of table display screens are generally not necessary. Page 25 of 95 # 10. SAR Test Results Summary Report No.: TCT230425E044 # 10.1. Body-Worn 1g SAR Data | Band | Mode | Test
Position
with
0mm | CH. | Freq.
(MHz) | Ave.
Power
(dBm) | Tune-U
p Limit
(dBm) | Power
Drift
(%) | Meas.
SAR1g
(W/kg) | Scaling
Factor | Reported
SAR1g
(W/kg) | Limit
(W/Kg) | |------|----------|---------------------------------|------|----------------|------------------------|----------------------------|-----------------------|--------------------------|-------------------|-----------------------------|-----------------| | | | Back | 1 | 2412 | 14.13 | 14.50 | 1.86 | 0.40 | 1.089 | 0.44 | | | 2.4G | 000 44 = | Front | 1 | 2412 | 14.13 | 14.50 | -2.30 | 0.23 | 1.089 | 0.25 | | | 2.4G | 802.11g | Right | 1 | 2412 | 14.13 | 14.50 | 1.67 | 0.02 | 1.089 | 0.02 | | | | | Bottom | 1 | 2412 | 14.13 | 14.50 | -3.11 | 0.03 | 1.089 | 0.03 | 100 | | | | Back | 40 | 5200 | 10.77 | 11.00 | 1.11 | 0.24 | 1.054 | 0.25 | | | 5.00 | 802.11ac | Front | 40 | 5200 | 10.77 | 11.00 | -0.91 | 0.15 | 1.054 | 0.16 | 4.00 | | 5.2G | VHT20 | Right | 40 | 5200 | 10.77 | 11.00 | 1.68 | 0.01 | 1.054 | 0.01 | 1.60 | | | | Bottom | 40 | 5200 | 10.77 | 11.00 | 0.63 | 0.02 | 1.054 | 0.02 | | | (C) | | Back | 165 | 5825 | 6.95 | 7.00 | -1.92 | 0.20 | 1.012 | 0.20 | ((0) | | 5.00 | 802.11n | Front | 165 | 5825 | 6.95 | 7.00 | 1.91 | 0.10 | 1.012 | 0.10 | | | 5.8G | HT20 | Right | 165 | 5825 | 6.95 | 7.00 | 0.69 | 0.01 | 1.012 | 0.01 | | | | Bottom | 165 | 5825 | 6.95 | 7.00 | 1.32 | 0.01 | 1.012 | 0.01 | | | Page 26 of 95 Hotline: 400-6611-140 | | | Back | 78 | 2480 | 12.14 | 12.50 | -1.21 | 0.08 | 1.086 | 0.09 | | |-----|-------|--------|----|------|-------|-------|-------|------|-------|------|-----| | (6) | 0DDCK | Front | 78 | 2480 | 12.14 | 12.50 | 0.91 | 0.05 | 1.086 | 0.05 | (6 | | | 8DPSK | Right | 78 | 2480 | 12.14 | 12.50 | -1.64 | 0.01 | 1.086 | 0.01 | | | DT | | Bottom | 78 | 2480 | 12.14 | 12.50 | -0.06 | 0.01 | 1.086 | 0.01 | | | ВТ | ((0)) | Back | 39 | 2480 | -1.80 | -1.50 | -0.26 | 0.03 | 1.072 | 0.03 | | | | DI E | Front | 39 | 2480 | -1.80 | -1.50 | 1.30 | 0.01 | 1.072 | 0.01 | | | | BLE | Right | 39 | 2480 | -1.80 | -1.50 | 0.59 | 0.01 | 1.072 | 0.01 | | | | | Bottom | 39 | 2480 | -1.80 | -1.50 | 0.16 | 0.01 | 1.072 | 0.01 | 100 | #### Note: - Per KDB 447498 D01 v06, for each exposure position, if the highest output power channel Reported SAR ≤ 0.8W/kg, other channels SAR testing is not necessary. - 2. Per KDB 447498 D01 v06, body-worn use is evaluated with the device positioned at 0 mm from a flat phantom filled with head tissue-equivalent medium. - 3. Per KDB 447498 D01 v06, the report SAR is measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor=10^[(tune-up limit power(dBm) Ave.power power (dBm))/10], where tune-up limit is the maximum rated power among all production units. Reported SAR(W/kg)=Measured SAR (W/kg)*Scaling Factor. - 4. Per KDB865664D01 v01r04 perform a second repeated measurement only the ratio of largest to smallest SAR for the original and first repeated measurement is >1.20 or when the original or repeated measurement is ≥ 1.45W/kg. - 5. Perform a second measurement only if the original, first and second repeated measurement is ≥1.5w/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurement is >1.20. - 6. Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg Fax: 86-755-27673332 http://www.tct-lab.com Tel: 86-755-27673339 # 10.2. Simultaneous Transmission Conclusion Multi-Band Simultaneous Transmission Considerations According to FCC KDB Publication 447498 D01v05r02, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the EUT are shown in below Figure and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another. Path 2 WIFI/BLE/BT #### **Simultaneous Transmission Possibilities** The Simultaneous Transmission Possibilities of this device are as below: | 1110 011110 | italicous fransilission i ossibilities of this devi | oo aro ao bolotti | | | |-------------|---|-------------------|-----------|---------| | NO. | Configuration | Head | Body-Worn | Hotspot | | 1 | BT+WIFI(2.4) | NO | YES | NO | | 2 | BLE+WIFI(2.4) | NO | YES | NO | | 3 | BT+WIFI(5G) | NO | YES | NO | | 4. | BLE+WIFI(5G) | NO | YES | NO | | 5 | WIFI(2.4)+ WIFI(5G) | NO | YES | NO | 10.3. SAR Simultaneous Transmission Analysis | | <u> </u> | * • • • • • • • • • • • • • • • • • • • | Jud Hallolli | | u., c.c | | | | |-----------|----------|---|--------------|------|-----------|--------|-------|--------| | Band | Test | | Scaled SA | ΣSAR | eni en | Damada | | | | | Position | WIFI (2.4G) | ВТ | BLE | WIFI (5G) | (W/kg) | SPLSR | Remark | | Body-Worn | Back | 0.44 | 0.09 | 0.03 | 0.25 | 0.69 | N/A | N/A | | | Front | 0.25 | 0.05 | 0.01 | 0.16 | 0.41 | N/A | N/A | | | Right | 0.02 | 0.01 | 0.01 | 0.01 | 0.03 | N/A | N/A | | | Bottom | 0.03 | 0.01 | 0.01 | 0.02 | 0.05 | N/A | N/A | Page 29 of 95 10.4. Measurement Uncertainty (450MHz-3GHz) | U | 6.71 | | | | / | 6.71 | Std. | Std. | 7 | |---|------------------------|-------------------------|--------------------------|------------|------------------------------------|-----------------------------------|---------------|----------------|-----------| | Uncertainty Component | Descriptio
n | Uncertainty
Value(%) | Probably
Distribution | Div. | (Ci)
1g | (Ci)
10g | Unc.
1g(%) | Unc.
10g(%) | V | | Measurement system Probe calibration | 7.2.1 | 5.8 | N | 1 | 1 | 1 | 5.8 | 5.8 | ∞ | | Axial isotropy | 7.2.1 | 3.5 | R | $\sqrt{3}$ | (1-C _p) ^{1/2} | (1-C _{p)} ^{1/2} | 1.43 | 1.43 | ∞ | | | | ~ / | | | | | | _ | - | | Hemispherical isotropy | 7.2.1.1 | 5.9 | R | $\sqrt{3}$ | $\sqrt{C_p}$ | $\sqrt{C_p}$ | 2.41 | 2.41 | 00 | | Boundary Effects | 7.2.1.4 | 1.00 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Linearity | 7.2.1.2 | 4.70 | R | $\sqrt{3}$ | 1 | 1 | 2.71 | 2.71 | ∞ | | System detection limits | 7.2.1.2 | 1 | R | $\sqrt{3}$ | 1 | (01) | 0.58 | 0.58 | \propto | | Modulation Response | 7.2.1.3 | 3 | N | 1 | 1 | 1 | 3.00 | 3.00 | \propto | | Readout Electronics | 7.2.1.5 | 0.5 | N | 1 | 1 | 1 | 0.50 |
0.50 | 00 | | Response Time | 7.2.1.6 | 0 | R | $\sqrt{3}$ | 1 | 1 | 0.00 | 0.00 | \propto | | Integration Time | 7.2.1.7 | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | × | | RF Ambient
Conditions-Noise | 7.2.3.7 | 3 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | × | | RF Ambient
Conditions-Reflection | 7.2.3.7 | 3 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | × | | Probe positioned mechanical Tolerance | 7.2.2.1 | 1.4 | R | $\sqrt{3}$ | 1 | (1) | 0.81 | 0.81 | × | | Probe positioning with respect to phantom shell | 7.2.2.3 | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | o | | Extrapolation interpolation and integration algorithms for Max.SAR evaluation | 7.2.4 | 2.3 | R | 1 | 1 | 1 | 1.33 | 1.33 | o | | Test sample related | | | | | | | | | | | Test sample positioning | 7.2.2.4.4 | 2.6 | N | 1 | 1 | 1 | 2.60 | 2.60 | × | | Device holder uncertainty | 7.2.2.4.2
7.2.2.4.3 | 3 | N | 1 | 1 | 1 | 3.00 | 3.00 | × | | output power variation-SAR drift measurement | 7.2.3.6 | 5 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.89 | X | | SAR scaling | 7.2.5 | 2 | R | $\sqrt{3}$ | 1 | 1/ | 1.15 | 1.15 | \propto | | Phantom and tissue parame | eters | | | | | | | | | | Phantom uncertainty (shape and thickness tolerances) | 7.2.2.2 | 4 | R | $\sqrt{3}$ | 1 | 1 | 2.31 | 2.31 | 0 | | uncertainty in SAR
correction for deviation (in
permittivity and
conductivity) | 7.2.6 | 2 | N | 1 | 1 | 0.84 | 2.00 | 1.68 | 0 | | Liquid conductivity (temperature uncertainty) | 7.2.3.5 | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | × | | Liquid conductivity -measurement uncertainty | 7.2.3.3 | 4 | N | 1 | 0.23 | 0.26 | 0.92 | 1.04 | o | | Liquid permittivity (temperature uncertainty) | 7.2.3.5 | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | o | | Liquid permittivity measurement uncertainty | 7.2.3.4 | 5 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | 0 | | Combined standard uncertainty | | | RSS | | | | 10.83 | 10.54 | | | Expanded uncertainty
(95%CONFIDENCEINTER
VAL | | | k | | | | 21.26 | 21.08 | | | | <u> </u> | Alltiio | R PERFOR | INIWIA | OL OIL | CK | | | # | |--|-------------|-------------------------|--------------------------|------------|------------------------------------|-----------------------------------|-----------------------|------------------------|---| | Uncertainty Component | Description | Uncertainty
Value(%) | Probably
Distribution | Div. | (Ci)
1g | (Ci)
10g | Std.
Unc.
1g(%) | Std.
Unc.
10g(%) | | | Measurement system | | 1 | 1 | | 1 . | 1 . | 1 _ | | | | Probe calibration | 7.2.1 | 5.8 | N | 1 | 1 | 1 | 5.8 | 5.8 | × | | Axial isotropy | 7.2.1.1 | 3.5 | R | $\sqrt{3}$ | (1-C _p) ^{1/2} | (1-C _{p)} ^{1/2} | 1.43 | 1.43 | × | | Hemispherical isotropy | 7.2.1.1 | 5.9 | R | $\sqrt{3}$ | $\sqrt{C_p}$ | $\sqrt{C_p}$ | 2.41 | 2.41 | × | | Boundary Effects | 7.2.1.4 | 1.00 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | × | | Linearity | 7.2.1.2 | 4.70 | R | $\sqrt{3}$ | 1 | 1 | 2.71 | 2.71 | × | | System detection limits | 7.2.1.2 | 1 | O R | $\sqrt{3}$ | 1 | (O1) | 0.58 | 0.58 | × | | Modulation Response | 7.2.1.3 | 3 | N | 1 | 1 | 1 | 0.00 | 0.00 | × | | Readout Electronics | 7.2.1.5 | 0.5 | N | 1 | 1 | 1 | 0.50 | 0.50 | × | | Response Time | 7.2.1.6 | 0 | R | $\sqrt{3}$ | 1 | 1 | 0.00 | 0.00 | × | | Integration Time | 7.2.1.7 | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | o | | RF Ambient | 7.2.3.7 | 3 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | 0 | | Conditions-Noise RF Ambient Conditions Reflection | 7.2.3.7 | 3 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | 0 | | Conditions-Reflection Probe positioned mechanical Tolerance | 7.2.2.1 | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | 0 | | Probe positioning with | 7.2.2.3 | 1.4 | R | $\sqrt{3}$ | 1 | 1 | 0.81 | 0.81 | 0 | | respect to phantom shell Extrapolation interpolation and integration algorithms for Max.SAR evaluation | 7.2.4 | 2.3 | R | 1 | 1 | 1 | 1.33 | 1.33 | 0 | | Dipole | 1 | T | 1 | | | | | | | | Deviation of experimental source from numerical source | | 4 | N | 1 | 1 | 1 | 4.00 | 4.00 | c | | Input power and SAR drift measurement | 7.2.3.6 | 5 | R | √3 | 1 | 1 | 2.89 | 2.89 | 0 | | Dipole axis to liquid distance | | 2 | R | √3 | 1 | 1 | | | 0 | | Phantom and tissue parar | meters | | | | | | | | | | Phantom uncertainty (shape and thickness tolerances) | 7.2.2.2 | 4 | R | $\sqrt{3}$ | 1 | 1 | 2.31 | 2.31 | С | | uncertainty in SAR
correction for deviation (in
permittivity and
conductivity) | 7.2.6 | 2 | N | 1 | 1 | 0.84 | 2.00 | 1.68 | C | | Liquid conductivity (temperature uncertainty) | 7.2.3.5 | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | C | | Liquid conductivity -measurement uncertainty | 7.2.3.3 | 4 | N | 1 | 0.23 | 0.26 | 0.92 | 1.04 | c | | Liquid permittivity (temperature uncertainty) | 7.2.3.5 | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | С | | Liquid permittivity measurement uncertainty | 7.2.3.4 | 5 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | C | | Combined standard uncertainty | | | RSS | | | | 10.15 | 10.05 | | | Expanded uncertainty
(95%CONFIDENCEINTE
RVAL | | | k | | | | 20.29 | 20.10 | | # 10.5. Test Equipment List | A1 / A1 | | | | | | | | |---------------------------------------|--------------|-----------------|---------------------------|--------------------------------|-------------------------------|--|--| | 3) (.0) | | (,G) | | Calibration | | | | | Test Equipment | Manufacturer | Model | Serial Number | Calibration
Date
(D.M.Y) | Calibration
Due
(D.M.Y) | | | | PC | Lenovo | H3050 | N/A | N/A | N/A | | | | Signal Generator | Angilent | N5182A | MY47070282 | Jun. 29, 2023 | Jun. 28, 2024 | | | | Multimeter | Keithley | Multimeter 2000 | 4078275 | Jun. 29, 2023 | Jun. 28, 2024 | | | | Network Analyzer | Agilent | 8753E | US38432457 | Feb. 24, 2023 | Feb. 23, 2024 | | | | Wireless
Communication
Test Set | R&S | CMU200 | 111382 | Jun. 29, 2023 | Jun. 28, 2024 | | | | Wideband Radio Communication Tester | R&S | CMW500 | 114220 | Mar. 13, 2023 | Mar. 12, 2024 | | | | Power Meter | Agilent | E4418B | GB43312526 | Jun. 29, 2023 | Jun. 28, 2024 | | | | Power Meter | Agilent | E4416A | MY45101555 | Jun. 29, 2023 | Jun. 28, 2024 | | | | Power Meter | Agilent | N1912A | MY50001018 | Jun. 29, 2023 | Jun. 28, 2024 | | | | Power Sensor | Agilent | E9301A | MY41497725 | Jun. 29, 2023 | Jun. 28, 2024 | | | | Power Sensor | Agilent | E9327A | MY44421198 | Jun. 29, 2023 | Jun. 28, 2024 | | | | Power Sensor | Agilent | E9323A | MY53070005 | Jun. 29, 2023 | Jun. 28, 2024 | | | | Power Amplifier | PE | PE15A4019 | 112342 | N/A | N/A | | | | Directional Coupler | Agilent | 722D | MY52180104 | N/A | N/A | | | | Attenuator | Chensheng | FF779 | 134251 | N/A | N/A | | | | E-Field PROBE | MVG | SSE2 | SN 25/22
EPGO375 | Jun. 28, 2023 | Jun. 28, 2024 | | | | DIPOLE 2450 | MVG | SID 2450 | SN 16/15 DIP
2G450-374 | Jun. 05, 2021 | Jun. 04, 2024 | | | | DIPOLE 5000-6000 | MVG | SID 5000-6000 | SN 13/14
WGA 21 | May. 15, 2021 | May. 14, 2024 | | | | Limesar Dielectric Probe | MVG | SCLMP | SN 19/15
OCPG71 | Jun. 05, 2021 | Jun. 04, 2024 | | | | Communication Antenna | MVG | ANTA59 | SN 39/14
ANTA59 | N/A | N/A | | | | Mobile Phone Position Device | MVG | MSH101 | SN 19/15
MSH101 | N/A | N/A | | | | Dummy Probe | MVG | DP66 | SN 13/15 DP66 | N/A | N/A | | | | SAM PHANTOM | MVG | SAM120 | SN 19/15
SAM120 | N/A | N/A | | | | PHANTOM TABLE | MVG | TABP101 | SN 19/15
TABP101 | N/A | N/A | | | | Robot TABLE | MVG | TABP61 | SN 19/15
TABP61 | N/A | N/A | | | | 6 AXIS ROBOT | KUKA | KR6-R900 | 501822 | N/A | N/A | | | Note: 1.N/A means this equipment no need to calibrate - 2.Each Time means this device need to calibrate every use time - 3. The dipole was not damaged properly repaired. - 4. The measured SAR deviates from the calibrated SAR value by less than 10% 5. The most recent return-loss result meets the required 20 dB minimum return-loss requirement - 6. The most recent measurement of the real or imaginary parts of the impedance deviates by less than 5 Ω from the previous measurement. Page 32 of 95 # 11. System Check Results Date of measurement: 05/10/2023 Test mode: 2450MHz (Body) Product Description: Validation Dipole Model: SID2450 E-Field Probe: SSE2 (SN 25/22 EPGO375) | Phantom | Validation plane | | | | |--|------------------|--|--|--| | Input Power | 100mW | | | | | Crest Factor | 1.0 | | | | | Probe Conversion factor | 4.70 | | | | | Frequency (MHz) | 2450.000000 | | | | | Relative permittivity (real part) | 54.616199 | | | | | Relative permittivity (imaginary part) | 14.930150 | | | | | Conductivity (S/m) | 2.012159 | | | | | Variation (%) | -0.230000 | | | | | SAR 10g (W/Kg) | 2.416669 | | | | | SAR 1g (W/Kg) | 5.066368 | | | | ## **SURFACE SAR** # ## **VOLUME SAR** | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | | |------------|--|---------------|---------------------------|-------------|--------|---------------------------------------| | SAR (W/Kg) | 5.0622 | 2.7984 | 1.5251 | 0.8352 | 0.4200 | | | | 5.06 -
4.50 -
3.50 -
3.00
2.50
2.00 -
1.50 - | | | | | | |)
 | 0.03 - | 2 4 6 8 10 13 | 2 14 16 18 20 22
z(mm) | 24 26 28 30 | (A) | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | not ope. | i position | | (6) | (CÍ) | Date of measurement: 05/22/2023 Test mode: 5200 (Body) Product Description: Validation Dipole Model: SID5000 E-Field Probe: SSE2 (SN 25/22 EPGO375) | Phantom | Validation plane | |--|------------------| | Input Power | 100mW | | Crest Factor | 1.0 | | Probe Conversion factor | 2.08 | | Frequency (MHz) | 5200.000000 | | Relative permittivity (real part) | 49.022077 | | Relative permittivity (imaginary part) |
21.378187 | | Conductivity (S/m) | 5.458883 | | Variation (%) | -3.140000 | | SAR 10g (W/Kg) | 5.623123 | | SAR 1g (W/Kg) | 16.349446 | #### **SURFACE SAR** ## **VOLUME SAR** | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | | |------------|---------|--------------|------------------------|-------------|---------|-----| | SAR (W/Kg) | 42.9525 | 27.6022 | 10.3594 | 10.2202 | 10.0725 | 5 (| | | 42.95 | | | | | | | | 30.75 | | 1111 | | | | | | 30.65 - | \downarrow | | | | | | | 20.55 | | | | | | | | 10.35 | | | | | | | | 10.25 | | | | | | | | 10.08 - | | | | | | | | 0 2 | | 14 15 18 20 22
(mm) | 24 26 28 30 | | | | | | 100 | position | Date of measurement: 05/29/2023 Test mode: 5800MHz (Body) Product Description: Validation Dipole Model: SID5000 E-Field Probe: SSE2 (SN 25/22 EPGO375) | Phantom | Validation plane | |--|------------------| | Input Power | 100mW | | Crest Factor | 1.0 | | Probe Conversion factor | 2.13 | | Frequency (MHz) | 5800.000000 | | Relative permittivity (real part) | 47.813887 | | Relative permittivity (imaginary part) | 14.935214 | | Conductivity (S/m) | 6.124821 | | Variation (%) | -1.420000 | | SAR 10g (W/Kg) | 6.382177 | | SAR 1g (W/Kg) | 18.365098 | ## **SURFACE SAR** ## **VOLUME SAR** | Z (mm)
SAR (W/Kg) | 0.00
51.8021 | 4.00
29.9510 | 9.00
10.2037 | 14.00
10.0321 | 19.00
10.0203 | |----------------------|---|--------------------------|-----------------|------------------|------------------| | | 51.80 -
50.00 -
40.20 -
30.60 -
20.80 -
10.20 -
10.20 - | | | | | |)
(3) | 10.01 - | 2 4 6 8 10 1
Hot spot | 2 (mm) | 24 26 28 30 | (ć) | # 12. SAR Test Data 2.4G | MEAS | JREN | /IENT | 1 | |------|------|-------|---| |------|------|-------|---| | Low Band SAR (Channel 1): | Date: 05/10/2023 | | | |--|--|--|--| | Frequency (MHz) | 2412.000000 | | | | Relative permittivity (real part) | 38.352823 | | | | Relative permittivity (imaginary part) | 13.671675 | | | | Conductivity (S/m) | 1.925428 | | | | Variation (%) | 1.860000 | | | | Crest Factor | 1.0 | | | | Probe Conversion factor | 2.37 | | | | E-Field Probe: | SSE2 (SN 25/22 EPGO375) | | | | Area Scan | <u>dx=8mm dy=8mm, h= 5.00 mm</u> | | | | ZoomScan | 5x5x7,dx=8mm dy=8mm
dz=5mm,Complete/ndx=8mm dy=8mm, h=
5.00 mm | | | | Phantom | Validation plane | | | | Device Position | Body back(0mm) | | | | Band | IEEE 802.11g ISM | | | # **SURFACE SAR** ## **VOLUME SAR** Maximum location: X=29.00, Y=-30.00SAR Peak: 0.52 W/kg SAR 10g (W/Kg) 0.301669 SAR 1g (W/Kg) | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | | |------------|--|---------------|-------------|--------|--------------|----| | SAR (W/Kg) | 0.5135 | 0.2965 | 0.1377 | 0.0588 | 0.0232 | | | | 0.5-
0.4-
0.3-
0.2-
0.2-
0.1- | \backslash | | | | | | 5 | 0.0- | .02.55.07.5 1 | | 30.0 | | CC | | | | Hot spo | ot position | (E | Page 40 of 9 | 95 | Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com 5.2G # **MEASUREMENT 1** SAR (Channel 40): Date: 05/22/2023 Frequency (MHz) 5200.000000 Relative permittivity (real part) 50.110667 21.378187 Relative permittivity (imaginary part) 5.408883 Conductivity (S/m) Variation (%) 1.110000 **Crest Factor** 1.0 **Probe Conversion factor** 1.56 **E-Field Probe:** SSE2 (SN 25/22 EPGO375) Area Scan dx=8mm dy=8mm, h= 5.00 mm ZoomScan 5x5x7,dx=8mm dy=8mm dz=5mm,Complete/ndx=8mm dy=8mm, h= 5.00 mm **Phantom** Validation plane **Device Position** Body back(0mm) **Band** IEEE 802.11ac VHT20 ISM SURFACE SAR **VOLUME SAR** Zoom In/Out Zoom In/Out SAVE Cancel SAVE Cancel -16 X (nm) 56 Y (nm) Maximum location: X=19.00, Y=-12.00 SAR Peak: 0.34 W/kg **SAR 10g (W/Kg)** 0.088621 0.243012 SAR 1g (W/Kg) | SAR (W/kg) 0.3412 0.1854 0.0821 0.0320 0.0110 0.34 0.30 0.25 0.15 0.00 0.00 0.00 0.00 0.00 Hot spot position | Z (mm) | 0.00 | 2.00 | 7.00 | 12.00 | 17.00 | | |--|------------|--|----------|----------|-------------|-------|---| | 0.30-
0.25-
0.15-
0.10-
0.05-
0.00-
0.2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Z (mm) | SAR (W/Kg) | 0.3412 | | | 0.0320 | 0.011 | 0 | | 0.05-
0.00-
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Z (mm) | | 0.30 -
0.25 -
(3) 0.20 -
(8) 0.15 - | | | | | | | Thot spot position The pos | | 0.05- | | Z (mm) | 24 26 28 30 | | (| | | | | not spot | position | Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com 5.8G #### **MEASUREMENT 1** SAR (Channel 165): Date: 05/29/2023 Frequency (MHz) 5825.000000 Relative permittivity (real part) 47.393887 Relative permittivity (imaginary part) 14.935214 6.274821 Conductivity (S/m) Variation (%) -1.920000 **Crest Factor** 1.0 **Probe Conversion factor** 4.70 **E-Field Probe:** SSE2 (SN 25/22 EPGO375) Area Scan dx=8mm dy=8mm, h= 5.00 mm ZoomScan 5x5x7,dx=8mm dy=8mm dz=5mm,Complete/ndx=8mm dy=8mm, h= 5.00 mm **Phantom** Validation plane **Device Position** Body back(0mm) **Band** IEEE 802.11nHT20 ISM #### **VOLUME SAR** Maximum location: X=21.00, Y=10.00 SAR Peak: 0.35 W/kg SAR 10g (W/Kg) 0.105391 SAR 1g (W/Kg) 0.202867 # TCT通测检测 | | TESTING CENTRE TECHNOLOGY | | | | TCT230425E | | |----------------------|---|----------------|----------------|-----------------|-------------------|---| | Z (mm)
SAR (W/Kg) | 0.00
0.3495 | 2.00
0.2120 | 7.00
0.1010 | 12.00
0.0496 | 17.00
0.025 | | | | 0.35-
0.30-
0.25-
0.25-
0.15-
0.10-
0.05- | | | | | K | | | 0.01- | | Z (mm) | 24 26 28 30 | | (| | | | Hot spot | position | | (C ¹) | | | | | | D | | | | | | | | М | | | | | | | | | | | | | (C) |) | | | | (ci) | BT | MEASU | REMENT 1 | | | |--|------------------------------------|--|--| | High Band SAR(Channel 78): | Date: 05/10/2023 | | | | Frequency (MHz) | 2480.000000 | | | | Relative permittivity (real part) | 54.625847 | | | | Relative permittivity (imaginary part) | 14.318478 | | | | Conductivity (S/m) | 1.982374 | | | | Variation (%) | -1.210000 | | | | Crest Factor | 1.0 | | | | Probe Conversion factor | 2.37 | | | | E-Field Probe: | SSE2 (SN 25/22 EPGO375) | | | | Area Scan | dx=8mm dy=8mm, h= 5.00 mm | | | | ZoomScan | 5x5x7,dx=8mm dy=8mm | | | | | dz=5mm,Complete/ndx=8mm dy=8mm, h= | | | | | <u>5.00 mm</u> | | | | Phantom | Validation plane | | | | Device Position | Body back(0mm) | | | | Band | Bluetooth GFSK | | | | 0115-1.05-01-5 | VOLUME 645 | | | ## **VOLUME SAR** Maximum location: X=0.00, Y=-32.00 SAR Peak: 0.84 W/kg SAR 10g (W/Kg) 0.031433 SAR 1g (W/Kg) 0.084213 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com Report No.: TCT230425E044 **BLE** | | | | | | |--|---|--|--|--| | MEASU | REMENT 1 | | | | | High Band SAR(Channel 39): | Date: 05/10/2023 | | | | | Frequency (MHz) |
2480.000000 | | | | | Relative permittivity (real part) | 54.623847 | | | | | Relative permittivity (imaginary part) | 14.318478 | | | | | Conductivity (S/m) | 2.012374 | | | | | Variation (%) | -0.260000 | | | | | Crest Factor | 1.0 | | | | | Probe Conversion factor | 2.37 | | | | | E-Field Probe: | SSE2 (SN 25/22 EPGO375) | | | | | Area Scan | <u>dx=8mm dy=8mm, h= 5.00 mm</u> | | | | | ZoomScan | 5x5x7,dx=8mm dy=8mm | | | | | | dz=5mm,Complete/ndx=8mm dy=8mm, h=
5.00 mm | | | | | Phantom | Validation plane | | | | | Device Position | Body back(0mm) | | | | | Band | Bluetooth BLE | | | | | OUDEA OF OAD | VOLUME OAD | | | | # **VOLUME SAR** Maximum location: X=-15.00, Y=40.00 SAR Peak: 0.13 W/kg SAR 10g (W/Kg) 0.008725 SAR 1g (W/Kg) 0.033370 | 0.1212
0.13-
0.10-
(8y 0.08-
0.06-
2 | |) | 14.00
0.0020 | 19.00 | | |--|--------------|------|-----------------|-------|----| | 0. 10-
(84) 0. 08-
(87) 0. 06-
(98) 0. 04-
(98) 0. 04-
(98) 0. 04-
(98) 0. 02- | Z (mm |) | 30.0 | | | | % 0. 08-
₩ 0. 06-
₩ 0. 04-
0. 02- | Z (mm |) | 30. 0 | | | | 0.02- | Z (mm |) | 30. 0 | | | | 0.02- | Z (mm |) | 30. 0 | | | | | Z (mm |) | 30. 0 | | | | | Z (mm |) | <u>(C)</u> | | | | | Hot spot pos | tion | | | _2 | | 4 | | | | | | | - | C) | Ko |) | KO) | | (0) | Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com # **Appendix A: EUT Photos** # Liquid depth # Report No.: TCT230425E044 The Body Liquid of 2450MHz (15.3cm) The Body Liquid of 5000-6000MHz (16.5cm) # **Appendix B: Test Setup Photos** Body worn - Back (0mm) Body worn – Right(0mm) Body worn -Front (0mm) Body worn –Bottom (0mm) # **Appendix C: Probe Calibration Certificate** **COMOSAR E-FIELD Probe** # **COMOSAR E-Field Probe Calibration Report** Ref: ACR.180.7.22.BES.B #### SHENZHEN TONGCE TESTING LAB 2101 & 2201, ZHENCHANG FACTORY RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAO'AN DISTRICT SHENZHEN, GUANGDONG, 518103, PEOPLE'S REPUBLIC OF CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 25/22 EPGO375 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 06/29/2023 Accreditations #2-6789 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction #### Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI). Page: 1/11 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B | | Name | Function | Date | Signature | |------------------------|----------------|-------------------------|-----------|--------------| | Prepared by : | Jérôme Le Gall | Measurement Responsible | 6/30/2023 | # | | Checked & approved by: | Jérôme Luc | Technical Manager | 6/30/2023 | JS | | Authorized by: | Yann Toutain | Laboratory Director | 7/05/2023 | Yann TOUTAAN | | | Customer Name | |---------------|-----------------| | | Shenzhen Tongce | | Distribution: | Testing Lab | | | | | Issue | Name | Date | Modifications | |-------|----------------|-----------|-----------------| | A | Jérôme Le Gall | 6/30/2023 | Initial release | | | | | | | | | | | | | | | | Page: 2/11 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B #### TABLE OF CONTENTS | 1 | Devi | ce Under Test4 | | |---|-------|-----------------------------|---| | 2 | Prod | uct Description | | | | 2.1 | General Information | 4 | | 3 | Mea | surement Method | | | | 3.1 | Linearity | 4 | | | 3.2 | Sensitivity | | | | 3.3 | Lower Detection Limit | | | | 3.4 | Isotropy | 5 | | | 3.1 | Boundary Effect | 5 | | 4 | Mea | surement Uncertainty | | | 5 | Calil | oration Measurement Results | | | | 5.1 | Sensitivity in air | 6 | | | 5.2 | Linearity | 7 | | | 5.3 | Sensitivity in liquid | | | | 5.4 | Isotropy | 9 | | 6 | List | of Equipment | | Page: 3/11 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Report No.: TCT230425E044 Ref: ACR 180.7.22 BES B #### 1 DEVICE UNDER TEST | Device Under Test | | | | |--|----------------------------------|--|--| | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | | | Manufacturer | MVG | | | | Model | SSE2 | | | | Serial Number | SN 25/22 EPGO375 | | | | Product Condition (new / used) | New | | | | Frequency Range of Probe | 0.15 GHz-6GHz | | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.197 MΩ | | | | | Dipole 2: R2=0.230 MΩ | | | | | Dipole 3: R3=0.208 MΩ | | | #### 2 PRODUCT DESCRIPTION #### 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. Figure 1 - MVG COMOSAR Dosimetric E field Probe | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 2 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.5 mm | | Distance between dipoles / probe extremity | 1 mm | | | | #### 3 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards. #### 3.1 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. #### 3.2 SENSITIVITY The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. Page: 4/11 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR 180 7 22 BES B Report No.: TCT230425E044 #### 3.3 LOWER DETECTION LIMIT The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. #### 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°). #### 3.1 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{be} + d_{sten}$ along lines that are approximately normal to the surface: $$SAR_{uncertainty}[\%] = \delta SAR_{be} \frac{\left(d_{be} + d_{step}\right)^2}{2d_{step}} \frac{\left(e^{-d_{be}/(\delta/2)}\right)}{\delta/2} \quad \text{for } \left(d_{be} + d_{step}\right) < 10 \text{ mm}$$ where SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect dbe is the distance between the surface and the closest zoom-scan measurement point, in millimetre Δ_{step} is the separation distance between the first and second measurement points that are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible δ is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz; ΔSAR_{be} in percent of SAR is the deviation between the measured SAR value, at the distance d_{be} from the boundary, and the analytical SAR value. The measured worst case boundary effect SAR uncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%). Page: 5/11 COMOSAR E-FIELD PROBE CALIBRATION REPORT Report No.: TCT230425E044 Ref: ACR.180.7.22.BES.B #### MEASUREMENT UNCERTAINTY The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | Uncertainty analysis of the probe calibration in waveguide | | | | | | |--|--------------------------|-----------------------------|---------|----|-----------------------------| | ERROR SOURCES | Uncertainty
value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | | Expanded
uncertainty
95 % confidence level k = 2 | | | | | 14 % | #### CALIBRATION MEASUREMENT RESULTS | Calibration Parameters | | | | | |------------------------|-------------|--|--|--| | Liquid Temperature | 20 +/- 1 °C | | | | | Lab Temperature | 20 +/- 1 °C | | | | | Lab Humidity | 30-70 % | | | | #### SENSITIVITY IN AIR | Normx dipole | Normy dipole | Normz dipole | |---------------------|---------------------|---------------------| | $1 (\mu V/(V/m)^2)$ | $2 (\mu V/(V/m)^2)$ | $3 (\mu V/(V/m)^2)$ | | 0.64 | 0.53 | 0.44 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 106 | 108 | 109 | Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: $$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$ Page: 6/11 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B Dipole 1 Dipole 2 Dipole 3 #### **LINEARITY** # Linearity Linearity:+/-1.94% (+/-0.09dB) Page: 7/11 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B #### SENSITIVITY IN LIQUID | Liquid | Frequency
(MHz +/-
100MHz) | <u>ConvF</u> | |--------|----------------------------------|--------------| | HL750 | 750 | 1.71 | | BL750 | 750 | 1.78 | | HL900 | 900 | 1.91 | | BL900 | 900 | 1.96 | | HL1800 | 1800 | 2.08 | | BL1800 | 1800 | 2.16 | | HL2000 | 2000 | 2.03 | | BL2000 | 2000 | 2.10 | | HL2450 | 2450 | 2.31 | | BL2450 | 2450 | 2.37 | | HL2600 | 2600 | 2.16 | | BL2600 | 2600 | 2.23 | | HL3500 | 3500 | 2.21 | | BL3500 | 3500 | 2.28 | | HL3700 | 3700 | 3.45 | | BL3700 | 3700 | 3.15 | | HL4600 | 4600 | 3.30 | | BL4600 | 4600 | 3.70 | | HL5200 | 5200 | 2.01 | | BL5200 | 5200 | 2.08 | | HL5600 | 5600 | 2.07 | | BL5600 | 5600 | 2.12 | | HL5800 | 5800 | 2.06 | | BL5800 | 5800 | 2.13 | LOWER DETECTION LIMIT: 7mW/kg Page: 8/11 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B #### ISOTROPY #### **HL1800 MHz** Page: 9/11 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B ## LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | |---------------------------------------|-------------------------|----------------------------|---|---|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | CALIPROBE Test
Bench | Version 2 | NA | Validated. No cal
required. | Validated. No cal
required. | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2023 | 10/2026 | | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | | Multimeter | Keithley 2000 | 1160271 | 02/2023 | 02/2026 | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | | | Power Meter | Rohde & Schwarz
NRVD | 832839-056 | 11/2023 | 11/2026 | | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Waveguide | MVG | SN 32/16 WG4_1 | Validated. No cal required. | Validated. No cal
required. | | | | Liquid transition | MVG | SN 32/16
WGLIQ_0G900_1 | Validated. No cal required. | Validated. No cal required. | | | | Waveguide | MVG | SN 32/16 WG6_1 | Validated. No cal required. | Validated. No cal
required. | | | | Liquid transition | MVG | SN 32/16
WGLIQ_1G500_1 | Validated. No cal required. | Validated. No cal
required. | | | | Waveguide | MVG | SN 32/16 WG8_1 | Validated. No cal required. | Validated. No cal
required. | | | | Liquid transition | MVG | SN 32/16
WGLIQ_1G800B_1 | Validated. No cal required. | Validated. No cal required. | | | | Liquid transition | MVG | SN 32/16
WGLIQ_1G800H_1 | Validated. No cal required. | Validated. No cal required. | | | | Waveguide | MVG | SN 32/16 WG10_1 | Validated. No cal required. | Validated. No cal required. | | | | Liquid transition | MVG | SN 32/16
WGLIQ_3G500_1 | Validated. No cal required. | Validated. No cal required. | | | | Waveguide | MVG | SN 32/16 WG12_1 | Validated. No cal required. | Validated. No cal required. | | | Page: 10/11 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.7.22.BES.B | Liquid transition | MVG | | | Validated. No cal required. | |----------------------------------|--------------|----------|---------|-----------------------------| | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | Page: 11/11 # **Dielectric Probe Calibration Report** Ref: ACR.138.4.33.SATU.A # SHENZHEN TONGCE TESTING LAB 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA # MVG COMOSAR DOSIMETRIC E-FIELD PROBE FREQUENCY: 0.3-6 GHZ SERIAL NO.: SN 19/15 OCPG 71 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 06/05/2021 #### Summary: This document presents the method and results from an accredited Dielectric Probe calibration performed in MVG USA using the LIMESAR test bench. All calibration results are traceable to national metrology institutions. #### SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33..SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|----------------| | Prepared by : | Jérôme LUC | Product Manager | 06/05/2021 | JES | | Checked by: | Jérôme LUC | Product Manager | 06/05/2021 | JE | | Approved by : | Kim RUTKOWSKI | Quality Manager | 06/05/2021 | them Buthausti | |
Customer Name | |--------------------------------| | SHENZHEN TONGCE
TESTING LAB | | Issue | Date | Modifications | |-------|------------|-----------------| | A | 06/05/2021 | Initial release | | | | | | | | | | | | - | | | L | | Page: 2/7 #### SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33..SATU.A #### TABLE OF CONTENTS | 1 | Intr | oduction4 | | |---|------|-------------------------------------|---| | 2 | Dev | rice Under Test | | | 3 | Pro | duct Description | | | | 3.1 | General Information | 4 | | | | surement Method | | | | 4.1 | Liquid Permittivity Measurements | 5 | | 5 | Mea | surement Uncertainty | | | | 5.1 | Dielectric Permittivity Measurement | 5 | | 6 | Cal | bration Measurement Results | | | | 6.1 | Liquid Permittivity Measurement | 6 | | 7 | List | of Equipment 7 | | Page: 3/7 #### SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33..SATU.A #### 1 INTRODUCTION This document contains a summary of the suggested methods and requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for liquid permittivity measurements and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | | |--------------------------------|--------------------------|--|--|--| | Device Type | LIMESAR DIELECTRIC PROBE | | | | | Manufacturer | MVG | | | | | Model | SCLMP | | | | | Serial Number | SN 19/15 OCPG 71 | | | | | Product Condition (new / used) | Used | | | | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's Dielectric Probes are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards. The product is designed for use with the LIMESAR test bench only. Figure 1 - MVG LIMESAR Dielectric Probe Page: 4/7 #### SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33..SATU.A #### 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209-1 & 2 standards outline techniques for dielectric property measurements. The LIMESAR test bench employs one of the methods outlined in the standards, using a contact probe or open-ended coaxial transmission-line probe and vector network analyzer. The standards recommend the measurement of two reference materials that have well established and stable dielectric properties to validate the system, one for the calibration and one for checking the calibration. The LIMESAR test bench uses De-ionized water as the reference for the calibration and either DMS or Methanol as the reference for checking the calibration. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 LIQUID PERMITTIVITY MEASUREMENTS The permittivity of a liquid with well established dielectric properties was measured and the measurement results compared to the values provided in the fore mentioned standards. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 <u>DIELECTRIC PERMITTIVITY MEASUREMENT</u> The following uncertainties apply to the Dielectric Permittivity measurement: | Uncertainty analysis of Permittivity Measurement | | | | | | | |---|-----------------------------|-----------------------------|---------|----|--------------------------------|--| | ERROR SOURCES | Uncertainty
value (+/-%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (+/-%) | | | Repeatability (n repeats, mid-band) | 4.00% | N | 1 | 1 | 4.000% | | | Deviation from reference liquid | 5.00% | R | √3 | 1 | 2.887% | | | Network analyser-drift, linearity | 2.00% | R | √3 | 1 | 1.155% | | | Test-port cable variations | 0.00% | U | √2 | 1 | 0.000% | | | Combined standard uncertainty | | | | | 5.066% | | | Expanded uncertainty (confidence level of 95%, k = 2) | | | | | 10.0% | | | Uncertainty analysis of Conductivity | | | | | |
---|-----------------------------|-----------------------------|---------|----|--------------------------------| | ERROR SOURCES | Uncertainty
value (+/-%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (+/-%) | | Repeatability (n repeats, mid-band) | 3.50% | N | 1 | 1 | 3.500% | | Deviation from reference liquid | 3.00% | R | √3 | 1 | 1.732% | | Network analyser-drift, linearity | 2.00% | R | √3 | 1 | 1.155% | | Test-port cable variations | 0.00% | U | √2 | 1 | 0.000% | | Combined standard uncertainty | | 4.072% | | | | | Expanded uncertainty (confidence level of 95%, k = 2) | | | | | 8.1% | Page: 5/7 #### SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33..SATU.A #### 6 CALIBRATION MEASUREMENT RESULTS Measurement Condition | Software | LIMESAR | |--------------------|---------| | Liquid Temperature | 21°C | | Lab Temperature | 21°C | | Lab Humidity | 44% | #### 6.1 LIQUID PERMITTIVITY MEASUREMENT A liquid of known characteristics (methanol at 20°C) is measured with the probe and the results (complex permittivity $\epsilon'+j\epsilon''$) are compared with the well-known theoretical values for this liquid. Page: 6/7 #### SAR DIELECTRIC PROBE CALIBRATION REPORT Ref: ACR.138.4.33..SATU.A #### 7 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |------------------------------------|-------------------------|--------------------|-----------------------------|-----------------------------|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | LIMESAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2021 | 02/2024 | | | Methanol CAS 67-56-1 | Alpha Aesar | Lot D13W011 | Validated. No cal required. | Validated. No cal required. | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 09/2022 | 09/2023 | | Page: 7/7 # **Appendix D: Dipole Calibration Report** SID2450 # **SAR Reference Dipole Calibration Report** Ref: ACR.156.9.15.SATU.A ## SHENZHEN TONGCE TESTING LAB 2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 16/15 DIP 2G450-374 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 06/05/2021 #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|----------------| | Prepared by : | Jérôme LUC | Product Manager | 06/05/2021 | JES | | Checked by: | Jérôme LUC | Product Manager | 06/05/2021 | Jes | | Approved by : | Kim RUTKOWSKI | Quality Manager | 06/05/2021 | them Puthowski | | | Customer Name | |----------------|-----------------| | Distribution : | SHENZHEN TONGCE | | Distribution. | TESTING LAB | | Issue | Date | Modifications | |-------|------------|-----------------| | A | 06/05/2021 | Initial release | | | | | | | | | | | | | Page: 2/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A #### TABLE OF CONTENTS | I | Intro | oduction4 | | |---|-------|--|----| | 2 | Dev | rice Under Test4 | | | 3 | Pro | duct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results 6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Vali | idation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 9 | | | 7.4 | SAR Measurement Result With Body Liquid | 10 | | 8 | List | of Equipment | | Page: 3/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------------|-----------------------------------|--| | Device Type | COMOSAR 2450 MHz REFERENCE DIPOLE | | | Manufacturer | MVG | | | Model | SID2450 | | | Serial Number SN 16/15 DIP 2G450-374 | | | | Product Condition (new / used) Used | | | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – MVG COMOSAR Validation Dipole Page: 4/11 SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A Report No.: TCT230425E044 #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ## 4.1 <u>RETURN LOSS REQUIREMENTS</u> The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | #### 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | |-------------|--------------------------------|--| | 3 - 300 | 0.05 mm | | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | Page: 5/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 74 of 95 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | 10 g | 20.1 % | |------|--------| #### 6 CALIBRATION MEASUREMENT RESULTS #### 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 2450 | -29.05 | -20 | $46.7 \Omega - 0.2 j\Omega$ | #### 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 2450 | -32.86 | -20 | 48.6 Ω - 1.9 iΩ | #### 6.3 MECHANICAL DIMENSIONS | Frequency MHz | Lr | nm | h m | m | d n | nm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | Page: 6/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | |------|-------------|------|-------------|------|--------------|------| | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | PASS | 30.4 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6
±1 %. | | | | + | | + | | | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. #### 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (ε,΄) | | ity (σ) S/m | |------------------|--------------|-----------------------------|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | Page: 7/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | 1800 | 40.0 ±5 % | | 1.40 ±5 % | | |------|-----------|------|-----------|------| | 1900 | 40.0 ±5 % | | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | PASS | 1.80 ±5 % | PASS | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | #### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V4 | | |---|--|--| | Phantom | SN 20/09 SAM71 | | | Probe | SN 18/11 EPG122 | | | Liquid | Head Liquid Values: eps': 38.3 sigma: 1.80 | | | Distance between dipole center and liquid | 10.0 mm | | | Area scan resolution | dx=8mm/dy=8mm | | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | | Frequency | 2450 MHz | | | Input power | 20 dBm | | | Liquid Temperature | 21 °C | | | Lab Temperature | 21 °C | | | Lab Humidity | 45 % | | | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|----------|-------------------|----------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | Page: 8/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.156.9.15.SATU.A | 1900 | 39.7 | | 20.5 | | |------|------|--------------|------|--------------| | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | 53.26 (5.38) | 24 | 24.15 (2.49) | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | · | #### 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | | Conductivity (σ) S/m | | |------------------|--|----------|----------------------|----------| | | required | measured | required | measured | | 150 | 61.9 ±5 % | | 0.80 ±5 % | | | 300 | 58.2 ±5 % | | 0.92 ±5 % | | | 450 | 56.7 ±5 % | | 0.94 ±5 % | | | 750 | 55.5 ±5 % | | 0.96 ±5 % | | | 835 | 55.2 ±5 % | | 0.97 ±5 % | | | 900 | 55.0 ±5 % | | 1.05 ±5 % | | | 915 | 55.0 ±5 % | | 1.06 ±5 % | | | 1450 | 54.0 ±5 % | | 1.30 ±5 % | | | 1610 | 53.8 ±5 % | | 1.40 ±5 % | | | 1800 | 53.3 ±5 % | | 1.52 ±5 % | | | 1900 | 53.3 ±5 % | | 1.52 ±5 % | | | 2000 | 53.3 ±5 % | | 1.52 ±5 % | | | 2100 | 53.2 ±5 % | | 1.62 ±5 % | | | 2450 | 52.7 ±5 % | PASS | 1.95 ±5 % | PASS | Page: 9/11