

Product **Photo Printer** Trade mark rock space Model/Type reference **DHP511**

Serial Number N/A

EED32O81359002 Report Number **FCC ID** 2AUA9-RQZY014

Date of Issue Oct. 19, 2022

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Shenzhen Renging Excellent Technology Co., Ltd. 104, No.15, Longfu Industrial Zone, Huarong Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

pproved by Report Seal

mark, chen

Mark Chen

Aaron Ma

CNON

Reviewed by:

Tom Chen

Oct. 19, 2022

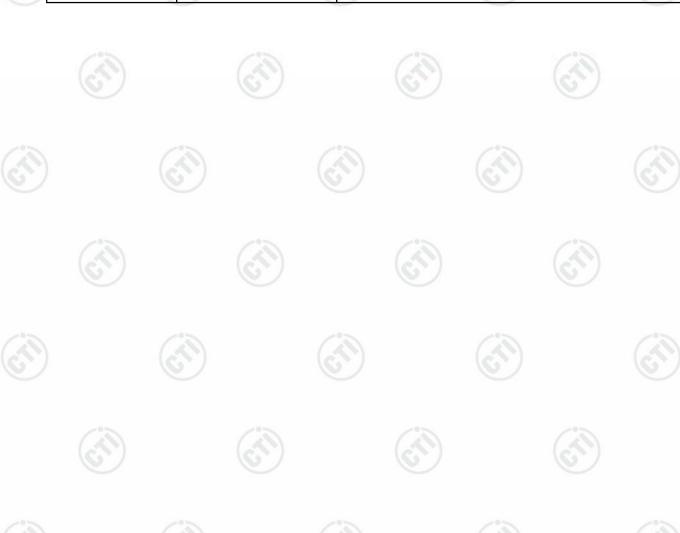
Date:

Check No.: 5407310822

Page 2 of 51

Contents

			(c,1) P:	age
CONTENTS				2
VERSION				3
GENERAL INFORMAT	TON			5
4.1 CLIENT INFORMATIO 4.2 GENERAL DESCRIPT 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT	IN TION OF EUT ON T JPPORT UNITS			5 5 7
TEST RESULTS AND	MEASUREMENT DATA			13
5.2 AC POWER LINE CO 5.3 MAXIMUM CONDUCT 5.4 20DB EMISSION BA 5.5 CARRIER FREQUENO 5.6 NUMBER OF HOPPIN 5.7 TIME OF OCCUPANO 5.8 BAND EDGE MEASU 5.9 CONDUCTED SPURIO 5.10 PSEUDORANDOM F 5.11 RADIATED SPURIO	MENT DNDUCTED EMISSIONS PED OUTPUT POWER NDWIDTH DY SEPARATION NG CHANNEL PY REMENTS DUS EMISSIONS FREQUENCY HOPPING SEQUENCE US EMISSION & RESTRICTED BAN	IDS		14 17 18 20 21 22 23 24
S APPENDIX A				48
	EST SETUP			
PHOTOGRAPHS OF E	EUT CONSTRUCTIONAL DETA	AILS		51



Version

Version No.	Date	(6	Description)
00	Oct. 19, 2022		Original	
/		13	(1)	(3)
		(92)		

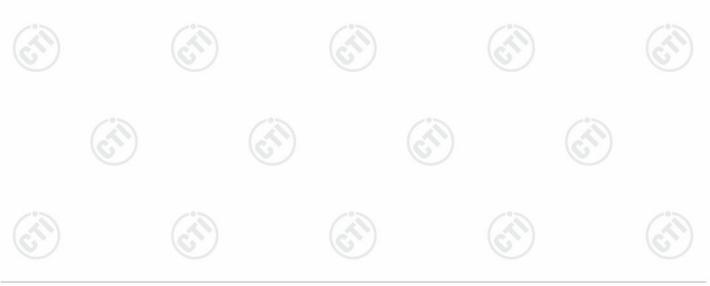
Page 4 of 51

3 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS	
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS	
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS	
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS	
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS	
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS	
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS	
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS	
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS	
and the second s			

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.


4 General Information

4.1 Client Information

Applicant:	Shenzhen Renqing Excellent Technology Co., Ltd.
Address of Applicant:	104, No.15, Longfu Industrial Zone, Huarong Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen, China
Manufacturer:	Shenzhen Renqing Excellent Technology Co., Ltd.
Address of Manufacturer:	104, No.15, Longfu Industrial Zone, Huarong Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen, China
Factory:	Dongguan Kaifa Technology Co., Ltd
Address of Factory:	Kaifa Park of CEC Industry Base, No.2 Junma road, Chigang Community, Humen town, Dongguan City, Guangdong Province, China

4.2 General Description of EUT

Product Name:	Photo Printer	100	-0
Model No.:	DHP511		
Trade Mark:	rock space	(6.)	6
Operation Frequency:	Bluetooth dual mode	: 2402-2480MHz	
Modulation Type:	GFSK, π/4DQPSK,	8DPSK	
Product Type:	☐ Mobile ☐ Port	able 🗵 Fix Location	
Antenna Type:	PCB Antenna	(0,)	
Antenna Gain:	-7.01dBi		
Power Supply:	Adapter	Model:DSA-38PFE-24FUS 240160 Input:100-240V~50/60Hz 1.0A Output:24V——1.6A 38.4W	(TI)
Test Voltage:	AC 120V		
Sample Received Date:	Aug. 31, 2022		
Sample tested Date:	Aug. 31, 2022 to Sep	. 20, 2022	

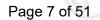
Pag	e	6	of	51	
ı ay	_	v	\sim 1	\mathbf{v}	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz



Test Configuration

EUT Test Software Settings	s:				
Software:	BT:HCI Control	BT:HCI Control			
EUT Power Grade:	Class2 (Power level is built-in set param selected)	neters and cannot be changed and			
Use test software to set the letransmitting of the EUT.	owest frequency, the middle frequency and t	he highest frequency keep			
Mode	Channel	Frequency(MHz)			
	CH0	2402			
DH1/DH3/DH5	CH39	2441			
	CH78	2480			
	CH0	2402			
2DH1/2DH3/2DH5	CH39	2441			
	CH78	2480			
	CH0	2402			
3DH1/3DH3/3DH5	2441				
	CH78	2480			

Test Environment

t:				
ssions:				
22~25.0 °C				
50~55 % RH		(1)		(3)
1010mbar		(6)		(6)
22~25.0 °C				
50~55 % RH	-05		705	
1010mbar	(2/2)		(47)	
22~25.0 °C				
50~55 % RH		12000		15.86
1010mbar		(20)		(20)
	22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH	22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH	22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH	22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar

Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

4.6 Test Location

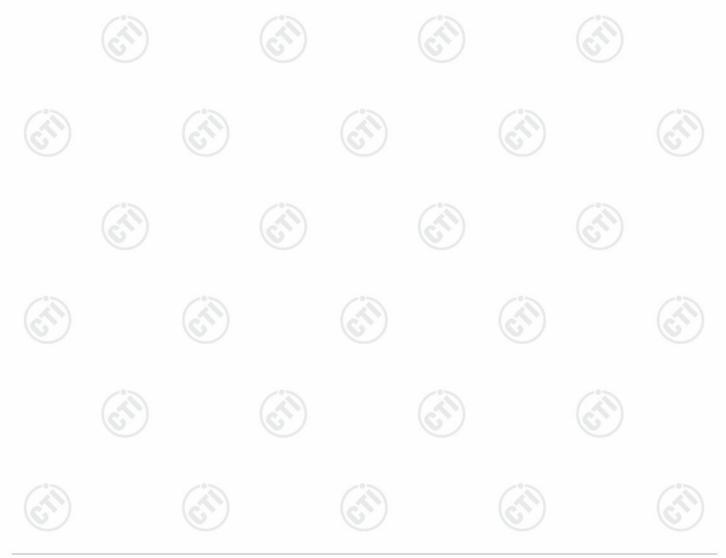
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
-0-		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32O81359002 Page 10 of 51

4.8 Equipment List

		RF test s	system			
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022	
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022	
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022	
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022 12-23-2022 12-23-2022 12-21-2022	
Power unit	R&S	OSP120	101374	12-24-2021		
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021		
Communication test set	R&S	CMW500	120765	12-22-2021		
high-low temperature test chamber	perature test Dong Guang Qin I		QZ20150611879	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518			

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023			
Temperature/ Humidity Indicator	Defu	TH128	/		(c'			
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023			
Barometer	changchun	DYM3	1188					

Page	11	of 51
i agc		

3M Semi-anechoic Chamber (2)- Radiated disturbance Test								
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date			
3M Chamber & Accessory Equipment	TDK	SAC-3		05-22-2022	05-21-2025			
Receiver	R&S	ESCI7	100938-003	10-14-2021	10-13-2022			
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05-22-2022	05-21-2023			
Multi device Controller	maturo	NCD/070/10711112						
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04-15-2021	04-14-2024			
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-17-2021	04-16-2024			
Microwave Preamplifier	Agilent	8449B	3008A02425	06-20-2022	06-19-2023			
		(6,1,1)			Ć			

Page 12 of 51

		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166			
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023	
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023	
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023	
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021		
Communication test set R&S		CMW500	102898	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631 04-11-2022		04-10-2023	
Fully Anechoic Chamber TDK		FAC-3	$(c_{\overline{A}_{j}})$	01-09-2021	01-08-2024	
Cable line Times		SFT205-NMSM-2.50M	394812-0001			
Cable line Times		SFT205-NMSM-2.50M	394812-0002		/0;	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(61)	(67	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710	/		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(6)	9)	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001			
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(6,2)	(6)	

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

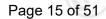
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

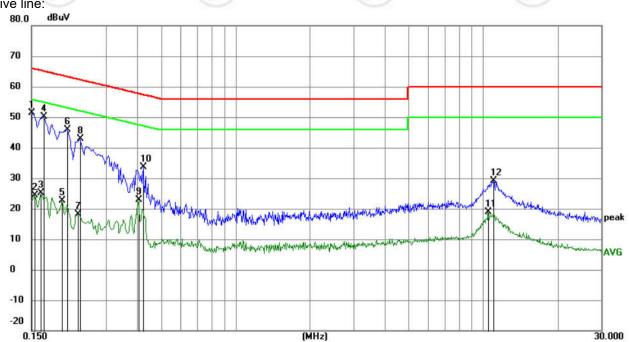
EUT Antenna: Please see Internal photos

The antenna is PCB antenna, The best case gain of the antenna is -7.01dBi.



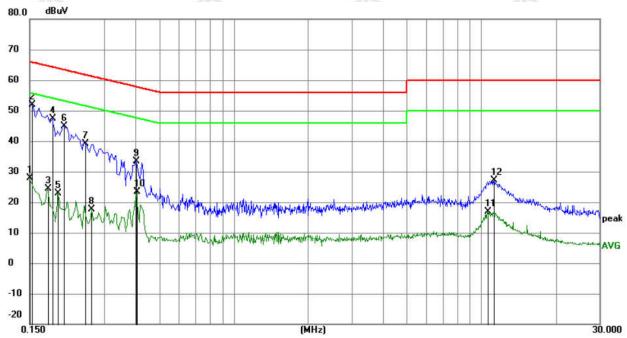
Report No.: EED32O81359002 Page 14 of 51

5.2 AC Power Line Conducted Emissions


ī		45.050.0 (1.45.0)		1 16 91					
	Test Requirement:	47 CFR Part 15C Section 15.20	U/	(6,2)					
	Test Method:	ANSI C63.10: 2013							
	Test Frequency Range:	150kHz to 30MHz	voon timo-cuto						
-	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sw		2()					
0		Frequency range (MHz)	Limit (dE	,					
9		0.45.05	Quasi-peak	Average					
	Limit:	0.15-0.5	66 to 56*	56 to 46*					
1		0.5-5	56	46					
		5-30 60 50							
		* Decreases with the logarithm of the frequency.							
	Test Setup:	Shielding Room EUT LISN1	Ground Reference Plane	Test Receiver					
1	Test Procedure:	room. 2) The EUT was connected to Impedance Stabilization Ne impedance. The power cable connected to a second LISN reference plane in the same measured. A multiple socke power cables to a single LIS exceeded. 3) The tabletop EUT was place ground reference plane. An placed on the horizontal ground reference plane. An preference plane in the EUT shall be 0.4 m frowertical ground reference plane in the LISN unit under test and bonded mounted on top of the ground between the closest points of the EUT and associated equipment and all of the interest and bonded in order to find the maximum equipment and all of the interest and social s	twork) which provides a les of all other units of the les of all other les of the les of	a 50Ω/50µH + 5Ω linear the EUT were to the ground the unit being to connect multiple of the LISN was not table 0.8m above the angement, the EUT was rence plane. The horizontal ground method the boundary of the plane for LISNs is distance was EUT. All other units of .8 m from the LISN 2. e positions of					
	Exploratory Test Mode:	Non-hopping transmitting mode data type at the lowest, middle, Through Pre-scan, find the DI	, high channel.						
1	Final Test Mode:	lowest channel is the worst case Only the worst case is recorded	se.	SI SIX IIIOGGIAGOTI AL LITE					
	Test Results:	Pass							

Measurement Data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	41.47	9.87	51.34	66.00	-14.66	QP	
2		0.1544	14.59	9.87	24.46	55.76	-31.30	AVG	
3		0.1635	15.33	9.87	25.20	55.28	-30.08	AVG	
4		0.1680	40.28	9.87	50.15	65.06	-14.91	QP	
5		0.1995	12.65	9.87	22.52	53.63	-31.11	AVG	
6		0.2085	36.06	9.89	45.95	63.26	-17.31	QP	
7		0.2310	8.27	9.93	18.20	52.41	-34.21	AVG	
8		0.2355	32.83	9.94	42.77	62.25	-19.48	QP	
9		0.4065	12.79	9.97	22.76	47.72	-24.96	AVG	
10		0.4245	23.74	9.97	33.71	57.36	-23.65	QP	
11		10.5000	9.10	9.79	18.89	50.00	-31.11	AVG	
12		10.9635	19.43	9.81	29.24	60.00	-30.76	QP	



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	17.89	9.87	27.76	56.00	-28.24	AVG	
2	*	0.1539	42.12	9.87	51.99	65.79	-13.80	QP	
3		0.1770	14.50	9.87	24.37	54.63	-30.26	AVG	
4		0.1853	37.50	9.87	47.37	64.24	-16.87	QP	
5		0.1949	13.09	9.87	22.96	53.83	-30.87	AVG	
6		0.2061	34.88	9.88	44.76	63.36	-18.60	QP	
7		0.2521	29.25	9.97	39.22	61.69	-22.47	QP	
8		0.2658	7.63	10.00	17.63	51.25	-33.62	AVG	-
9		0.4019	23.34	9.97	33.31	57.81	-24.50	QP	-
10		0.4065	13.36	9.97	23.33	47.72	-24.39	AVG	
11		10.5990	7.18	9.80	16.98	50.00	-33.02	AVG	
12		11.2572	17.22	9.82	27.04	60.00	-32.96	QP	

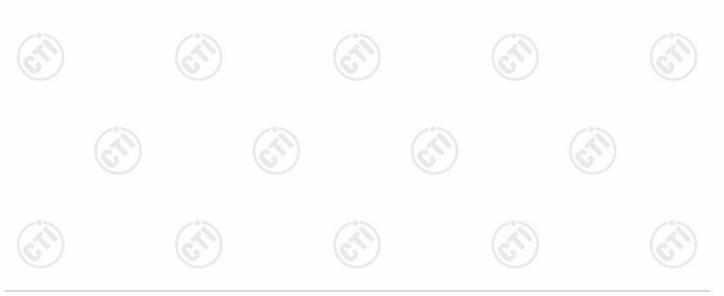
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



5.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)				
Test Method:	ANSI C63.10:2013				
Test Setup:	Control Computer Power Supply Power Port Attenuator TEMPERATURE CABRIET Table RF test System System Instrument				
	Remark: Offset=Cable loss+ attenuation factor.				
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.				
Limit:	21dBm				
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type				
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.				
Test Results:	Refer to Appendix BT Classic				
7 (D. VI					



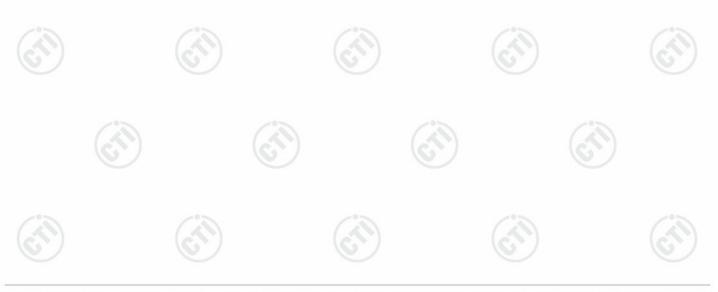
Report No.: EED32O81359002 Page 18 of 51

5.4 20dB Emission Bandwidth

1 22 21	[PA 7]					
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Test Setup: Test Procedure:	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously.					
	3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.					
Limit:	N/A					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
Test Results:	Refer to Appendix BT Classic					

5.5 Carrier Frequency Separation

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Ī	Test Method:	ANSI C63.10:2013
1000	Test Setup:	Control Control Control Power Supply Fower Supply Table RF test System Instrument Instrument
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
. 0	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix BT Classic



5.6 Number of Hopping Channel

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Power Power Poor Attenuator Temperature Cabnet Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Mode:	Hopping transmitting with all kind of modulation
Test Results:	Refer to Appendix BT Classic

Report No.: EED32O81359002 Page 21 of 51

5.7 Time of Occupancy

 / 25 30 1	
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Power Power Poor Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix BT Classic

5.8 Band edge Measurements

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
	Test Method:	ANSI C63.10:2013						
2002	Test Setup:	Control Computer Power Supply Power Supply Table RF test System System Instrument Table						
		Remark: Offset=Cable loss+ attenuation factor.						
	Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 						
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
	Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type						
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.						
	Test Results:	Refer to Appendix BT Classic						
- 6		•						

5.9 Conducted Spurious Emissions

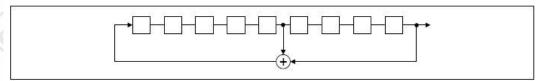
	7 25 30 1									
	Test Requirement:	47 CFR Part 15C Section 15.247 (d)								
	Test Method:	ANSI C63.10:2013								
	Test Setup:	Cortrol Computer Power Supply Table RF test System System Instrument								
		Remark: Offset=Cable loss+ attenuation factor.								
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 								
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type								
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.								
	Test Results:	Refer to Appendix BT Classic								
_	1 10.V. 1									

5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

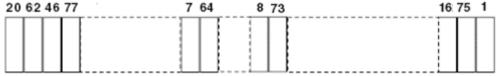
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

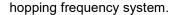

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

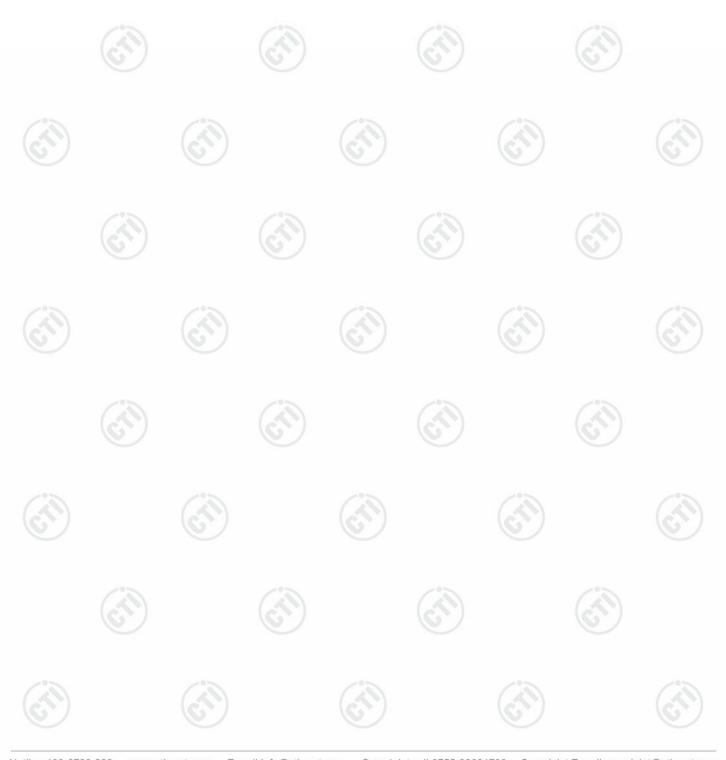
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.


According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

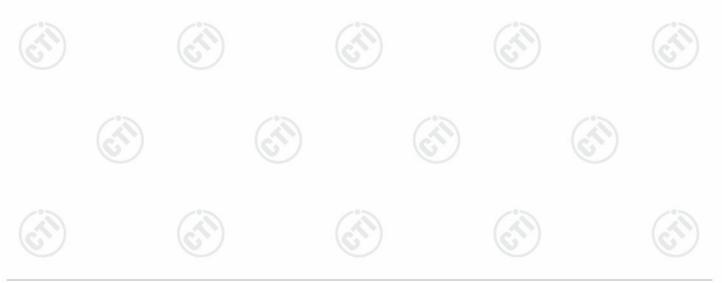
According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom



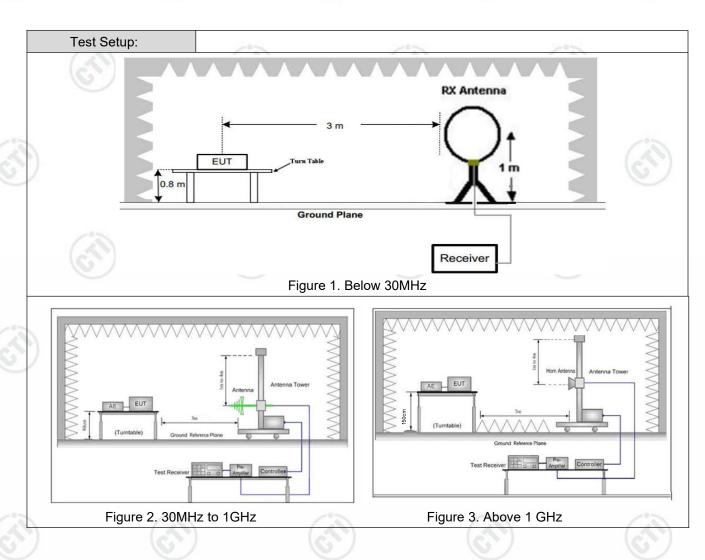
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



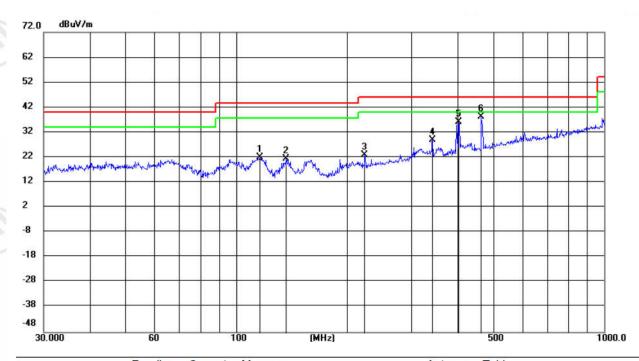



5.11 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	(0,))		
Test Method:	ANSI C63.10: 2013							
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	noic Cham	ber)			
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark		
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz		Peak	100 kH	z 300kHz	Peak		
	Above 1011		Peak	1MHz	3MHz	Peak		
	Above 1GHz		Peak	1MHz	10kHz	Average		
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen		
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-/3	30		
	1.705MHz-30MHz		30	-	(6)	30		
	30MHz-88MHz		100	40.0	Quasi-peak	3		
	88MHz-216MHz		150	43.5	Quasi-peak	3		
	216MHz-960MHz		200	46.0	Quasi-peak	3		
	960MHz-1GHz	.)	500	54.0	Quasi-peak	3		
	Above 1GHz		500	54.0	Average	3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.							

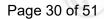
Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
4	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Transmitting mode, For below 1GHz part, through pre-
	scan, the worst case is the highest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass

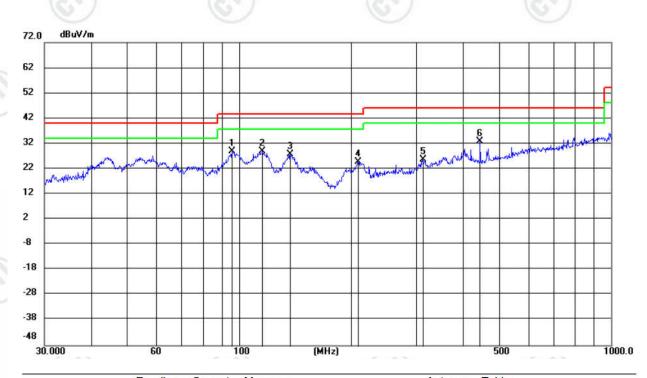
Page 28 of 51



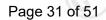
Radiated Spurious Emission below 1GHz:

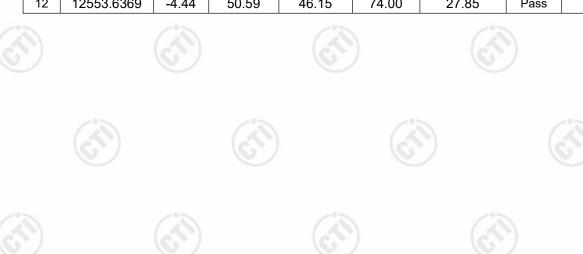
During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.


Test Graph


Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	116.1321	10.14	11.78	21.92	43.50	-21.58	peak	100	286	
	136.9391	12.05	9.28	21.33	43.50	-22.17	peak	200	331	
	223.7333	8.28	14.60	22.88	46.00	-23.12	peak	100	38	
	341.9786	10.71	18.15	28.86	46.00	-17.14	peak	100	356	
	403.2500	16.60	19.46	36.06	46.00	-9.94	peak	200	4	
*	463.9696	17.54	20.76	38.30	46.00	-7.70	peak	200	341	
	2200	MHz 116.1321 136.9391 223.7333 341.9786 403.2500	Mk. Freq. Level MHz dBuV 116.1321 10.14 136.9391 12.05 223.7333 8.28 341.9786 10.71 403.2500 16.60	Mk. Freq. Level Factor MHz dBuV dB 116.1321 10.14 11.78 136.9391 12.05 9.28 223.7333 8.28 14.60 341.9786 10.71 18.15 403.2500 16.60 19.46	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 116.1321 10.14 11.78 21.92 136.9391 12.05 9.28 21.33 223.7333 8.28 14.60 22.88 341.9786 10.71 18.15 28.86 403.2500 16.60 19.46 36.06	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m dBuV/m 116.1321 10.14 11.78 21.92 43.50 136.9391 12.05 9.28 21.33 43.50 223.7333 8.28 14.60 22.88 46.00 341.9786 10.71 18.15 28.86 46.00 403.2500 16.60 19.46 36.06 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB 116.1321 10.14 11.78 21.92 43.50 -21.58 136.9391 12.05 9.28 21.33 43.50 -22.17 223.7333 8.28 14.60 22.88 46.00 -23.12 341.9786 10.71 18.15 28.86 46.00 -17.14 403.2500 16.60 19.46 36.06 46.00 -9.94	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector 116.1321 10.14 11.78 21.92 43.50 -21.58 peak 136.9391 12.05 9.28 21.33 43.50 -22.17 peak 223.7333 8.28 14.60 22.88 46.00 -23.12 peak 341.9786 10.71 18.15 28.86 46.00 -17.14 peak 403.2500 16.60 19.46 36.06 46.00 -9.94 peak	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 116.1321 10.14 11.78 21.92 43.50 -21.58 peak 100 136.9391 12.05 9.28 21.33 43.50 -22.17 peak 200 223.7333 8.28 14.60 22.88 46.00 -23.12 peak 100 341.9786 10.71 18.15 28.86 46.00 -17.14 peak 100 403.2500 16.60 19.46 36.06 46.00 -9.94 peak 200	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dB uV/m dB Detector cm degree 116.1321 10.14 11.78 21.92 43.50 -21.58 peak 100 286 136.9391 12.05 9.28 21.33 43.50 -22.17 peak 200 331 223.7333 8.28 14.60 22.88 46.00 -23.12 peak 100 38 341.9786 10.71 18.15 28.86 46.00 -17.14 peak 100 356 403.2500 16.60 19.46 36.06 46.00 -9.94 peak 200 4

Test Graph

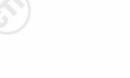

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		95.7622	15.35	13.47	28.82	43.50	-14.68	peak	100	256	
2		115.7256	17.06	11.84	28.90	43.50	-14.60	peak	100	310	
3		137.4202	18.39	9.26	27.65	43.50	-15.85	peak	100	288	
4		208.5803	10.62	14.08	24.70	43.50	-18.80	peak	100	288	
5		311.0867	8.23	17.49	25.72	46.00	-20.28	peak	100	4	
6	*	444.8514	12.55	20.36	32.91	46.00	-13.09	peak	100	343	
								71.			



Radiated Spurious Emission above 1GHz:

Mode	Mode:		FSK Transmit	ting	Channel:		2402 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1312.4312	1.10	40.88	41.98	74.00	32.02	Pass	Н	PK
2	1780.8781	3.21	40.54	43.75	74.00	30.25	Pass	Н	PK
3	4265.0843	-17.51	59.85	42.34	74.00	31.66	Pass	Н	PK
4	6703.2469	-12.48	53.01	40.53	74.00	33.47	Pass	Н	PK
5	7769.3180	-11.28	51.99	40.71	74.00	33.29	Pass	Н	PK
6	10246.4831	-6.82	51.02	44.20	74.00	29.80	Pass	Н	PK
7	1222.0222	0.86	41.14	42.00	74.00	32.00	Pass	V	PK
8	1838.6839	3.57	39.74	43.31	74.00	30.69	Pass	V	PK
9	3992.0661	-18.91	57.03	38.12	74.00	35.88	Pass	V	PK
10	5312.1541	-14.78	58.64	43.86	74.00	30.14	Pass	V	PK
11	8512.3675	-10.53	54.01	43.48	74.00	30.52	Pass	V	PK
12	11972.5982	-5.41	50.80	45.39	74.00	28.61	Pass	V	PK

Mode	:	G	SFSK Transmit	tting		Channel:		2441 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1206.6207	0.82	40.83	41.65	74.00	32.35	Pass	Н	PK	
2	1998.4999	4.54	40.14	44.68	74.00	29.32	Pass	Н	PK	
3	4551.1034	-16.82	54.93	38.11	74.00	35.89	Pass	Н	PK	
4	6417.2278	-12.83	53.30	40.47	74.00	33.53	Pass	Н	PK	
5	8288.3526	-10.96	51.94	40.98	74.00	33.02	Pass	Н	PK	
6	10848.5232	-6.30	51.52	45.22	74.00	28.78	Pass	Н	PK	
7	1347.6348	1.22	40.06	41.28	74.00	32.72	Pass	V	PK	
8	1983.6984	4.47	39.58	44.05	74.00	29.95	Pass	V	PK	
9	4249.0833	-17.63	55.36	37.73	74.00	36.27	Pass	V	PK	
10	5322.1548	-14.75	57.96	43.21	74.00	30.79	Pass	V	PK	
11	8508.3672	-10.53	57.69	47.16	74.00	26.84	Pass	V	PK	
12	12553.6369	-4.44	50.59	46.15	74.00	27.85	Pass	V	PK	



Page 32 of 51

Mode	:		GFSK Transmit	ting		Channel:		2480 MHz	
NO	Freq. [MHz]	Facto [dB]	r Reading [dΒμV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1213.4213	0.83	41.02	41.85	74.00	32.15	Pass	Н	PK
2	1773.8774	3.19	39.38	42.57	74.00	31.43	Pass	Н	PK
3	4263.0842	-17.52	2 59.48	41.96	74.00	32.04	Pass	Н	PK
4	6695.2464	-12.50	52.78	40.28	74.00	33.72	Pass	Н	PK
5	8262.3508	-10.97	51.82	40.85	74.00	33.15	Pass	Н	PK
6	11244.5496	-6.52	51.56	45.04	74.00	28.96	Pass	Н	PK
7	1263.4263	0.96	41.44	42.40	74.00	31.60	Pass	V	PK
8	1627.6628	2.47	40.07	42.54	74.00	31.46	Pass	V	PK
9	3746.0497	-19.61	57.10	37.49	74.00	36.51	Pass	V	PK
10	5329.1553	-14.73	3 53.71	38.98	74.00	35.02	Pass	V	PK
11	9190.4127	-7.96	50.93	42.97	74.00	31.03	Pass	V	PK
12	14385.7591	0.98	48.47	49.45	74.00	24.55	Pass	V	PK

Mode	:	П	/4DQPSK Tra	nsmitting		Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1250.0250	0.93	41.33	42.26	74.00	31.74	PASS	Н	PK
2	1764.6765	3.16	39.87	43.03	74.00	30.97	PASS	Н	PK
3	3865.0577	-19.15	56.19	37.04	74.00	36.96	PASS	Н	PK
4	7136.2758	-11.67	52.35	40.68	74.00	33.32	PASS	Н	PK
5	9747.4498	-7.55	50.98	43.43	74.00	30.57	PASS	Н	PK
6	14388.7593	1.03	47.46	48.49	74.00	25.51	PASS	Н	PK
7	1236.8237	0.90	40.26	41.16	74.00	32.84	Pass	V	PK
8	1864.2864	3.76	39.35	43.11	74.00	30.89	Pass	V	PK
9	4830.1220	-16.22	54.25	38.03	74.00	35.97	Pass	V	PK
10	6850.2567	-12.12	52.15	40.03	74.00	33.97	Pass	V	PK
11	11352.5568	-6.37	52.14	45.77	74.00	28.23	Pass	V	PK
12	14395.7597	1.15	46.88	48.03	74.00	25.97	Pass	V	PK

Mode):		π/4DQPSK Transmitting			Channel:		2441 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1264.8265	0.97	40.27	41.24	74.00	32.76	Pass	Н	PK
2	1872.2872	3.82	39.36	43.18	74.00	30.82	Pass	Н	PK
3	4100.0733	-18.19	55.84	37.65	74.00	36.35	Pass	Н	PK
4	6146.2097	-13.18	53.28	40.10	74.00	33.90	Pass	Н	PK
5	10215.4810	-7.03	51.03	44.00	74.00	30.00	Pass	Н	PK
6	13777.7185	-1.66	49.09	47.43	74.00	26.57	Pass	Н	PK
7	1271.2271	0.99	40.60	41.59	74.00	32.41	Pass	V	PK
8	1618.2618	2.41	40.89	43.30	74.00	30.70	Pass	V	PK
9	3983.0655	-18.93	61.43	42.50	74.00	31.50	Pass	V	PK
10	6574.2383	-12.79	52.42	39.63	74.00	34.37	Pass	V	PK
11	8502.3668	-10.55	55.16	44.61	74.00	29.39	Pass	V	PK
12	13745.7164	-1.71	48.73	47.02	74.00	26.98	Pass	V	PK

Mode:			π/4DQPSK Transmitting			Channel:		2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1530.6531	1.72	40.01	41.73	74.00	32.27	Pass	Н	PK
2	2025.7026	4.63	39.39	44.02	74.00	29.98	Pass	Н	PK
3	3843.0562	-19.18	56.82	37.64	74.00	36.36	Pass	Н	PK
4	6575.2383	-12.80	53.08	40.28	74.00	33.72	Pass	Н	PK
5	10251.4834	-6.79	50.52	43.73	74.00	30.27	Pass	Н	PK
6	13750.7167	-1.70	49.90	48.20	74.00	25.80	Pass	Н	PK
7	1307.0307	1.08	40.89	41.97	74.00	32.03	Pass	V	PK
8	1988.4989	4.49	39.61	44.10	74.00	29.90	Pass	V	PK
9	4645.1097	-16.65	56.21	39.56	74.00	34.44	Pass	V	PK
10	6708.2472	-12.47	53.16	40.69	74.00	33.31	Pass	V	PK
11	8509.3673	-10.53	54.14	43.61	74.00	30.39	Pass	V	PK
12	14398.7599	1.20	46.93	48.13	74.00	25.87	Pass	V	PK

Page 34	of 51
---------	-------

Mod	le:	3	8DPSK Transmitting			Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1261.8262	0.96	40.75	41.71	74.00	32.29	PASS	Н	PK
2	1925.6926	4.16	39.65	43.81	74.00	30.19	PASS	Н	PK
3	5270.1513	-14.71	54.53	39.82	74.00	34.18	PASS	Н	PK
4	7744.3163	-11.19	53.56	42.37	74.00	31.63	PASS	Н	PK
5	12511.6341	-4.75	51.50	46.75	74.00	27.25	PASS	Н	PK
6	16245.8831	1.28	48.94	50.22	74.00	23.78	PASS	Н	PK
7	1394.2394	1.37	40.18	41.55	74.00	32.45	Pass	V	PK
8	2129.9130	4.55	39.20	43.75	74.00	30.25	Pass	V	PK
9	4665.1110	-16.62	55.98	39.36	74.00	34.64	Pass	V	PK
10	7456.2971	-11.27	52.07	40.80	74.00	33.20	Pass	V	PK
11	9195.4130	-7.92	50.46	42.54	74.00	31.46	Pass	V	PK
12	14397.7599	1.18	47.58	48.76	74.00	25.24	Pass	V	PK

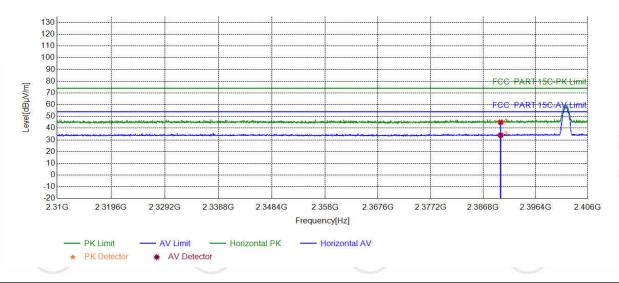
Mode:			8DPSK Transmitting			Channel:		2441 MHz	
NO	Freq. [MHz]	Facto [dB]	D	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1355.4355	1.24	40.12	41.36	74.00	32.64	Pass	Н	PK
2	1922.0922	4.14	39.78	43.92	74.00	30.08	Pass	Н	PK
3	4248.0832	-17.6	4 58.71	41.07	74.00	32.93	Pass	Н	PK
4	6662.2442	-12.6	1 52.64	40.03	74.00	33.97	Pass	Н	PK
5	8453.3636	-10.7	6 52.00	41.24	74.00	32.76	Pass	Н	PK
6	9869.4580	-7.16	50.18	43.02	74.00	30.98	Pass	Н	PK
7	1553.8554	1.91	39.19	41.10	74.00	32.90	Pass	V	PK
8	2037.7038	4.67	39.49	44.16	74.00	29.84	Pass	V	PK
9	4251.0834	-17.6	2 63.60	45.98	74.00	28.02	Pass	V	PK
10	6391.2261	-12.8	7 53.03	40.16	74.00	33.84	Pass	V	PK
11	8510.3674	-10.5	3 56.19	45.66	74.00	28.34	Pass	V	PK
12	11787.5858	-6.13	51.14	45.01	74.00	28.99	Pass	V	PK

Page :	35	of	51
--------	----	----	----

Mode:			8DPSK Transm	8DPSK Transmitting			Channel:		2480 MHz	
NO	Freq. [MHz]	Facto [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1536.0536	1.77	39.86	41.63	74.00	32.37	Pass	Н	PK	
2	1969.2969	4.39	39.74	44.13	74.00	29.87	Pass	Н	PK	
3	5209.1473	-14.52	53.01	38.49	74.00	35.51	Pass	Н	PK	
4	6698.2466	-12.49	52.63	40.14	74.00	33.86	Pass	Н	PK	
5	9168.4112	-8.14	51.77	43.63	74.00	30.37	Pass	Н	PK	
6	11670.5780	-6.25	52.35	46.10	74.00	27.90	Pass	Н	PK	
7	1179.0179	0.81	41.38	42.19	74.00	31.81	Pass	V	PK	
8	1983.8984	4.47	39.72	44.19	74.00	29.81	Pass	V	PK	
9	3991.0661	-18.9	64.53	45.62	74.00	28.38	Pass	V	PK	
10	6855.2570	-12.09	52.64	40.55	74.00	33.45	Pass	V	PK	
11	8515.3677	-10.52	2 55.19	44.67	74.00	29.33	Pass	V	PK	
12	11829.5886	-6.03	51.14	45.11	74.00	28.89	Pass	V	PK	

Remark:

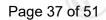
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

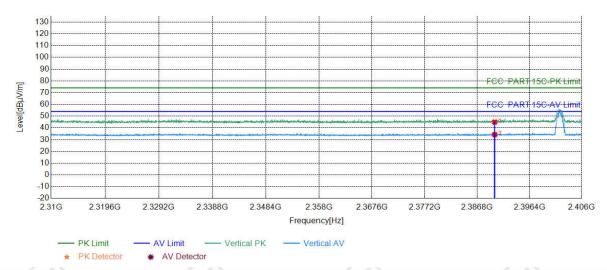

Page 36 of 51

Restricted bands:

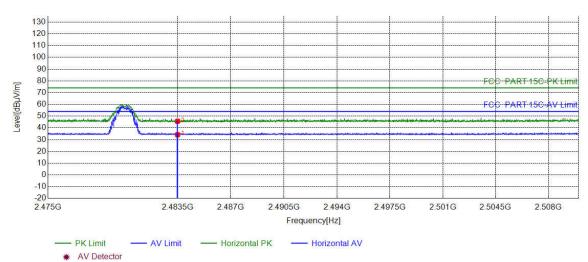
Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	(i)		. /


Test Graph



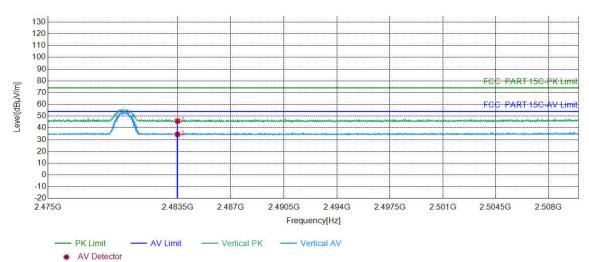
Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2390.0000	5.77	39.33	45.10	74.00	28.90	PASS	Horizontal	PK		
2	2390.0000	5.77	28.29	34.06	54.00	19.94	PASS	Horizontal	AV		

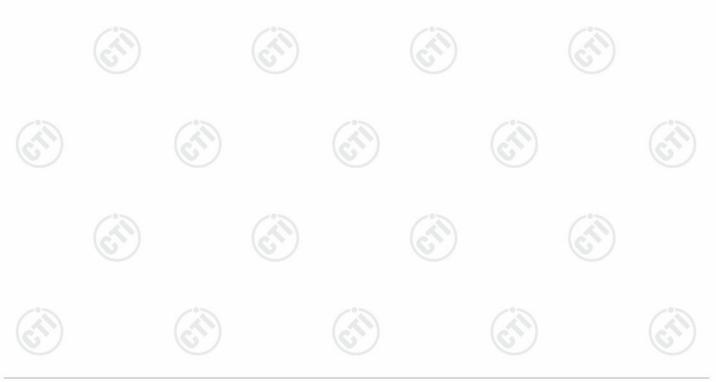

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	39.20	44.97	74.00	29.03	PASS	Vertical	PK
2	2390.0000	5.77	28.53	34.30	54.00	19.70	PASS	Vertical	AV



Page	38	of	51

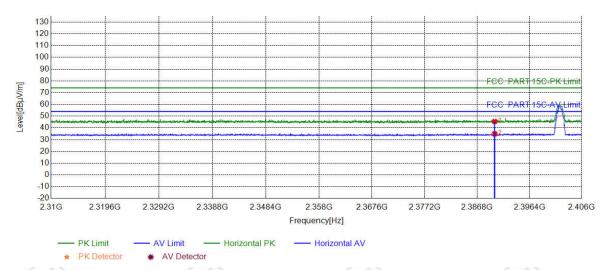
Mode:	GFSK Transmitting	Channel:	2480
Remark:		·	


Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	27.66	34.23	54.00	19.77	PASS	Horizontal	AV
2	2483.5000	6.57	39.11	45.68	74.00	28.32	PASS	Horizontal	PK



Page 39 of 51

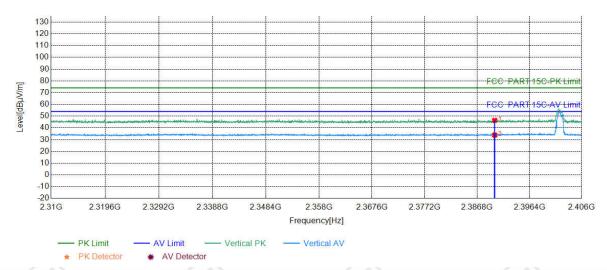
Mode:	GFSK Transmitting	Channel:	2480
Remark:		·	·


	Suspec	ted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5000	6.57	39.28	45.85	74.00	28.15	PASS	Vertical	PK
١	2	2483.5000	6.57	27.93	34.50	54.00	19.50	PASS	Vertical	AV



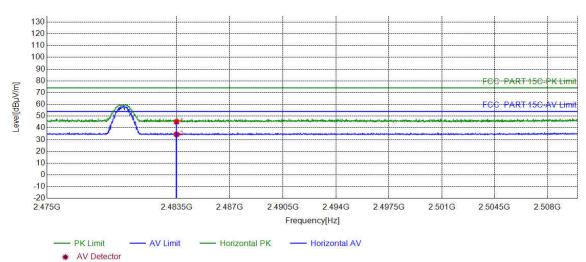
Page	40	of	51
. 490		\sim .	\circ

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:			


Suspec	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	39.70	45.47	74.00	28.53	PASS	Horizontal	PK
2	2390.0000	5.77	29.19	34.96	54.00	19.04	PASS	Horizontal	AV

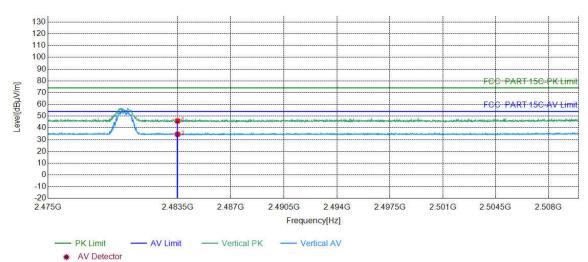
	Pag	e 41	of 51
--	-----	------	-------

4.3	(45 %)	(46.0)	1 6 3
Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:			


	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2	1	2390.0000	5.77	40.66	46.43	74.00	27.57	PASS	Vertical	PK
9	2	2390.0000	5.77	28.15	33.92	54.00	20.08	PASS	Vertical	AV

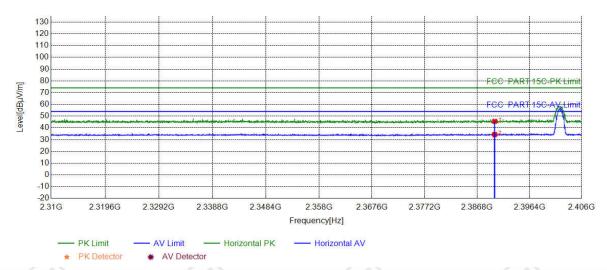
Page	42	of	51
. 490		\sim .	\circ

Channel:	π/4DQPSK Transmitting	Mode:
Channel:	ົນPSK Transmitting	π/4DC


	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0.7	1	2483.5000	6.57	38.62	45.19	74.00	28.81	PASS	Horizontal	PK
	2	2483.5000	6.57	27.91	34.48	54.00	19.52	PASS	Horizontal	AV

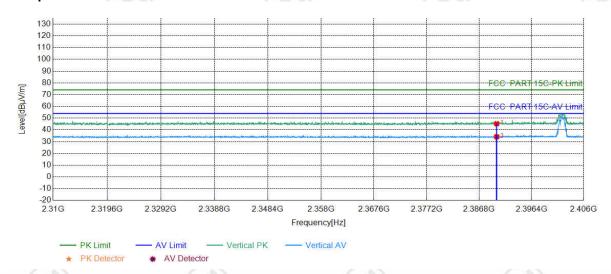
I ago lo ol o l	Page	43	of	51
-----------------	------	----	----	----

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:		·	


Suspec	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.35	45.92	74.00	28.08	PASS	Vertical	PK
2	2483.5000	6.57	27.99	34.56	54.00	19.44	PASS	Vertical	AV

Pag	ie	44	of	51	

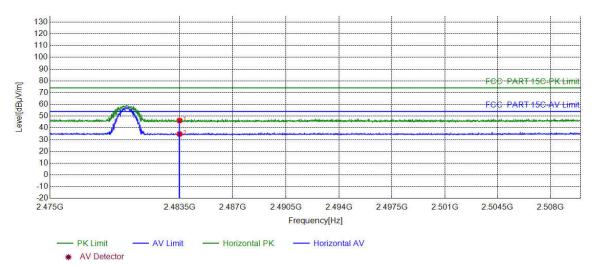
Mode:	8DPSK Transmitting	Channel:	2402
Remark:		·	·


Suspec	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	39.83	45.60	74.00	28.40	PASS	Horizontal	PK
2	2390.0000	5.77	28.60	34.37	54.00	19.63	PASS	Horizontal	AV



Page 45 of 51

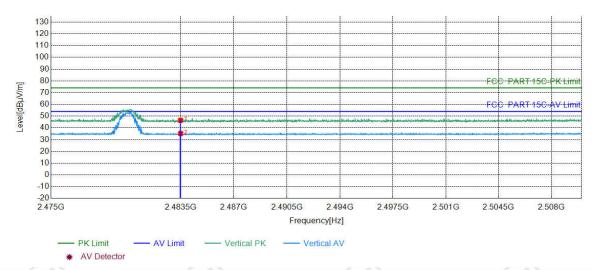
Mode:	8DPSK Transmitting	Channel:	2402
Remark:			


Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390.0000	5.77	39.51	45.28	74.00	28.72	PASS	Vertical	PK	
2	2390.0000	5.77	28.40	34.17	54.00	19.83	PASS	Vertical	AV	

Page	46	of	51	
,				

Mode: 8DPSK Transmitting		Channel:	2480
Remark:			

	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	2483.5000	6.57	39.70	46.27	74.00	27.73	PASS	Horizontal	PK
	2	2483.5000	6.57	28.24	34.81	54.00	19.19	PASS	Horizontal	AV



Page	47	of	51	
------	----	----	----	--

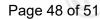
1.43	1.4.31
Channel:	2480
	Channel:

Test Graph

	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
2	1	2483.5000	6.57	39.86	46.43	74.00	27.57	PASS	Vertical	PK	
	2	2483.5000	6.57	28.69	35.26	54.00	18.74	PASS	Vertical	AV	

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

6 Appendix A

Refer to Appendix: Bluetooth Classic of EED32O81359002.

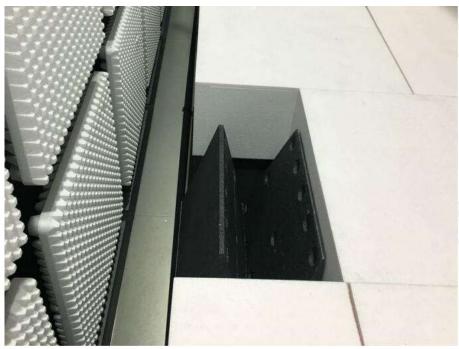
Page 49 of 51

7 PHOTOGRAPHS OF TEST SETUP

Test Model No.: DHP511

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)



Radiated spurious emission Test Setup-3(Above 1GHz) There are absorbing materials under the ground.

AC Power Line Conducted Emission

8 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32O81359001 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

