TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea,17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No: DRTFCC2010-0315
2. Customer
• Name : Sky Labs Inc.
• Address : #703, 58, Pangyo-ro 255beon-gil Bundang-gu, Seongnam-si Gyeonggi-do South Korea
3. Use of Report : Class II Permissive Change
4. Product Name / Model Name : Heart Monitor / R0K1 FCC ID : 2AU9T-CART1R
5. FCC Regulation(s) : Part 15.247
Test Method Used: Specification : KDB558074 D01v05r02, ANSI C63.10-2013
6. Date of Test : 2020.08.18
7. Location of Test : 🛛 Permanent Testing Lab
8. Testing Environment : Refer to appended test report.
9. Test Result : Refer to the attached test result.
The results shown in this test report refer only to the sample(s) tested unless otherwise stated.
Affirmation Tested by Reviewed by TH
Name : InHee Bae (Signature) Name : JaeJin Lee (Signature)
2020.10.15.
DT&C Co., Ltd.
Unconnected with KS Q ISO / IEC 17025 and KOLAS accreditation.
If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2010-0315	Oct. 15, 2020	Initial issue	InHee Bae	JaeJin Lee

Table of Contents

1. General Information4
1.1 Testing Laboratory4
1.2 Test Environment
1.3 Measurement Uncertainty4
1.4 Details of Applicant5
1.5 Description of EUT5
1.6 Declaration by the applicant / manufacturer5
1.7 Test Equipment List
1.8 Summary of Test Results7
2. Test Methodology
2.1 EUT Configuration
2.2 EUT Exercise
2.3 General Test Procedures
2.4 Description of Test Modes8
2.5 Instrument Calibration
3. Test Result
3.1 Maximum Peak Conducted Output Power
3.1.1 Test Setup
3.1.2 Test Procedures
3.1.3 Test Results
3.2 6 dB Bandwidth Measurement10
3.2.1 Test Setup
3.2.2 Test Procedures
3.2.3 Test Results
3.3 Maximum Power Spectral Density11
3.3.1 Test Setup 11
3.3.2 Test Procedures 11
3.3.3 Test Results 11
3.4 Unwanted Emissions (Conducted)12
3.4.1 Test Setup
3.4.2 Test Procedures 12
3.5 Unwanted Emissions (Radiated)13
3.5.1 Test Setup14
3.5.2 Test Procedures14
3.5.3 Test Results
3.6 Power line Conducted Emissions17
3.6.1 Test Setup17
3.6.2 Test Procedures 17
3.6.3 Test Results17
4. ANTENNA REQUIREMENTS 18
APPENDIX I 19
APPENDIX II

1. General Information

1.1 Testing Laboratory

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The test site complies with the requirements of § 2.948 according to ANSI 63.4-2014. - FCC & IC MRA Designation No. : KR0034 - ISED #: 5740A

www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.2 Test Environment

Ambient Condition		
 Temperature 	+25 ℃	
 Relative Humidity 	44 %	

1.3 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Test items	Measurement uncertainty
Radiated emission (1 GHz Below)	4.9 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz ~ 18 GHz)	5.1 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, $k = 2$)

1.4 Details of Applicant

Applicant	:	Sky Labs Inc.
Address	:	#703, 58, Pangyo-ro 255beon-gil Bundang-gu, Seongnam-si Gyeonggi-do South Korea
Contact person	:	Jack Lee

1.5 Description of EUT

Product Name	CART-I
Model Name	R0K1
Add Model Name	R0K2, R0K3, R0K4, R0K5, R0K6, R0K7, R0K8
Serial Number	Identical prototype
Power Supply	DC 3.70 V
Frequency Range	2 402 MHz ~ 2 480 MHz
Modulation Technique	GFSK
Antenna Specification	Antenna Type: Chip Antenna Gain: 2.5 dBi (PK)

1.6 Declaration by the applicant / manufacturer

N/A

1.7 Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	20/02/26	21/02/26	MY46471251
DC power supply	SM techno	SDP30-5D	20/06/24	21/06/24	305DNF079
Multimeter	FLUKE	17B+	19/12/16	20/12/16	36390701WS
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-2
Signal Generator	Rohde Schwarz	SMBV100A	19/12/16	20/12/16	255571
Signal Generator	ANRITSU	MG3695C	19/12/16	20/12/16	173501
Loop Antenna	ETS	6502	19/09/18	21/09/18	00226186
Bilog Antenna	Schwarzbeck	VULB 9160	19/04/23	21/04/23	9160-3362
HORN ANT	ETS	3117	20/04/24	21/04/24	00140394
HORN ANT	A.H.Systems	SAS-574	20/06/24	21/06/24	155
PreAmplifier	H.P	8447D	19/12/16	20/12/16	2944A07774
PreAmplifier	Agilent	8449B	20/06/24	21/06/24	3008A02108
High-pass filter	Wainwright	WHKX12-2580- 3000-18000-80SS	20/06/24	21/06/24	3
Cable	Radiall	TESTPRO3	20/01/16	21/01/16	M-01
Cable	DTNC	Cable	20/01/16	21/01/16	M-03
Cable	Junkosha	MWX315	20/01/16	21/01/16	M-05
Cable	Junkosha	MWX221	20/01/16	21/01/16	M-06

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017 Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

1.8 Summary of Test Results

FCC Part	RSS Std.	Parameter	Limit	Test Condition	Status Note 1		
15.247(a)	RSS-247 [5.2]	6 dB Bandwidth	3andwidth > 500 kHz		NT Note 2		
15.247(b)	RSS-247 [5.4]	Transmitter Output Power	< 1 Watt		NT Note 2		
15.247(d)	RSS-247 [5.5]	Out of Band Emissions / Band Edge	20 dBc in any 100 kHz BW	Conducted	NT Note 2		
15.247(e) RSS-247 [5.2]		Transmitter Power Spectral Density	< 8 dBm/3 kHz		NT Note 2		
-	RSS-Gen [6.7]	S-Gen [6.7] Occupied Bandwidth (99 %) NA			NA		
15.247(d) 15.205 15.209	RSS-247 [5.5] RSS-GEN [8.9] RSS-GEN [8.10]	SS-GEN [8.9] (Restricted Bands and Radiated (Reference to section 3)		Radiated	с		
15.207 RSS-Gen [8.8]		AC Line Conducted Emissions	FCC 15.207 limits (Reference to section 3.6)	AC Line Conducted	NT Note 3		
15.203 - Antenna Requirer		Antenna Requirements	FCC 15.203 (Reference to section 4)	-	С		
Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable Note 2: This test item is not performed for class II permissive change. Note 3: This device is power source a battery only.							

2. Test Methodology

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB558074 D01v05r02 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB558074 D01v05r02. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the test mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB558074 D01v05r02.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB558074 D01v05r02. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on section 12.1 of the KDB558074 D01v05r02.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axes.

2.4 Description of Test Modes

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting. The Bluetooth low energy mode with below low, middle and high channels were tested and reported.

Test		Frequency [MHz]			
Mode	Description	Lowest Frequency	Middle Frequency	Highest Frequency	
TM 1	BT LE(1 Mbps)	2 402	2 440	2 480	
TM 1	BT LE(2 Mbps)	2 402	2 440	2 480	

2.5 Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

3. Test Result

3.1 Maximum Peak Conducted Output Power

Test Requirements and limit, §15.247(b) & RSS-247 [5.4]

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

3.1.1 Test Setup

- NA

3.1.2 Test Procedures

- KDB558074 D01v05r02 Section 8.3.1.3
- ANSI C63.10-2013 Section 11.9.1.1

RBW ≥ DTS bandwidth

1. Set the RBW ≥ DTS bandwidth. Actual RBW = 2 MHz & 2.4 MHz

2. Set $VBW \ge 3 \times RBW$. Actual VBW = 6 MHz & 8 MHz

- 3. Set span ≥ 3 x RBW.
- 4. Sweep time = **auto couple**
- 5. Detector = **peak**
- 6. Trace mode = **max hold**
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level.

3.1.3 Test Results

3.2 6 dB Bandwidth Measurement

Test Requirements and limit, §15.247(a) & RSS-247 [5.2]

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

3.2.1 Test Setup

- NA

3.2.2 Test Procedures

- KDB558074 D01v05r02 Section 8.2
- ANSI C63.10-2013 Section 11.8.2
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.

(RBW : 100 kHz / VBW : 300 kHz)

- 3. Detector = **peak**.
- 4. Trace mode = **max hold**.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Option 2 - The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

3.2.3 Test Results

3.3 Maximum Power Spectral Density.

Test requirements and limit, §15.247(e) & RSS-247 [5.2]

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

3.3.1 Test Setup

- NA

3.3.2 Test Procedures

- KDB558074 D01v05r02 Section 8.4
- ANSI C63.10-2013 Section 11.10.2

Method PKPSD (peak PSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to **1.5 times** the DTS bandwidth.
- 3. Set the RBW : 3 kHz ≤ RBW ≤ 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = **peak.**
- 6. Sweep time = **auto couple.**
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the **peak marker function** to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

3.3.3 Test Results

3.4 Unwanted Emissions (Conducted)

Test requirements and limit, §15.247(d) & RSS-247 [5.5]

§15.247(d) specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions :

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated **by at least 20 dB** relative to the maximum measured in-band peak PSD level.

If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level.

In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

3.4.1 Test Setup

- NA

3.4.2 Test Procedures

- KDB558074 D01v05r02 Section 8.5
- ANSI C63.10-2013 Section 11.11

Reference level measurement

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to \geq 1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum PSD level LIMIT LINE = 20 dB below of the reference level.

Emission level measurement

- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz.(Actual 1 MHz , See below note)

3. Set the VBW ≥ 3 x RBW.(Actual 3 MHz, See below note)

- 4. Detector = **peak**.
- 5. Ensure that the number of measurement points ≥ span / RBW
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use the peak marker function to determine the maximum amplitude level.

Note : The conducted spurious emission was tested with below settings.

	0				
Frequency range	RBW	VBW	Detector	Trace	Sweep Point
9 kHz ~ 30 MHz	100 kHz	300 kHz			
30 MHz ~ 10 GHz	1 MHz	3 MHz	Peak	Max Hold	40 001
10 GHz ~ 25 GHz	1 MHz	3 MHz			

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2 001 to get accurate emission level within 100 kHz BW.

3.5 Unwanted Emissions (Radiated)

Test Requirements and limit,

§15.247(d), §15.205, §15.209 & RSS-247 [5.5], RSS-Gen [8.9], RSS-Gen [8.10]

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed.

- FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2 400/F (kHz)	300
0.490 ~ 1.705	24 000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 ~ 72 MHz, 76 ~ 88 MHz, 174 ~ 216 MHz or 470 ~ 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a) : Only spurious emissions are	e permitted in any of the frequency bands listed below :
---	--

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 690 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

• FCC Part 15.205(b) : The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1 000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

3.5.1 Test Setup

Refer to the APPENDIX I.

3.5.2 Test Procedures

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Note: Measurement Instrument Setting for Radiated Emission Measurements.

- KDB558074 D01v05r02 Section 8.6
- ANSI C63.10-2013 Section 11.12
- 1. Frequency Range Below 1 GHz

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

- 2. Frequency Range > 1 GHz
 - Peak Measurement > 1 GHz

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes

Average Measurement> 1 GHz

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW \geq 3 x RBW.
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power (i.e., RMS).
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is $10 \log(1 / x)$, where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1 / x), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Test Mode	Duty Cycle (%)	T _{on} (ms)	T _{on} + T _{off} (ms)	DCF = 10 log(1 / Duty) (dB)
TM 1	62.82	0.392	0.624	2.02
TM 2	33.01	0.206	0.624	4.81

Note : Refer to the original test port for duty cycle.

3.5.3 Test Results

- Test Notes

1. The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found below listed frequencies. 2. Information of Distance Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F + Distance Factor / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain.

Frequency Range : 9 kHz ~ 25 GHz _TM 1_Nomal

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2389.75	Н	Х	PK	41.72	2.49	N/A	N/A	44.21	74.00	29.79
2389.87	Н	Х	AV	32.27	2.49	2.02	N/A	36.78	54.00	17.22
4804.22	V	Z	PK	47.80	6.61	N/A	N/A	54.41	74.00	19.60
4803.97	V	Z	AV	38.72	6.61	2.02	N/A	47.35	54.00	6.65
7206.92	V	Z	PK	51.06	8.73	N/A	N/A	59.79	74.00	14.21
7205.30	V	Z	AV	39.49	8.73	2.02	N/A	50.24	54.00	3.76

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4 880.60	V	Z	PK	48.85	6.88	N/A	N/A	55.73	74.00	18.27
4 880.22	V	Z	AV	38.91	6.88	2.02	N/A	47.81	54.00	6.19
7 319.25	V	Z	PK	50.69	8.78	N/A	N/A	59.47	74.00	14.53
7 320.60	V	Z	AV	38.89	8.78	2.02	N/A	49.69	54.00	4.31

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 489.14	Н	Х	PK	42.79	2.56	N/A	N/A	45.35	74.00	28.65
2 489.10	Н	Х	AV	32.87	2.56	2.02	N/A	37.45	54.00	16.55
4 959.58	V	Z	PK	46.23	6.70	N/A	N/A	52.93	74.00	21.07
4 960.05	V	Z	AV	36.86	6.70	2.02	N/A	45.58	54.00	8.42
7 440.14	V	Z	PK	49.15	8.89	N/A	N/A	58.04	74.00	15.96
7 440.51	V	Z	AV	37.86	8.89	2.02	N/A	48.77	54.00	5.23

Frequency Range : 9 kHz ~ 25 GHz _TM 2_Nomal

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 388.94	Н	Х	PK	43.98	2.49	N/A	N/A	46.47	74.00	27.53
2 389.65	Н	Х	AV	32.44	2.49	4.81	N/A	39.74	54.00	14.26
4 803.23	V	Z	PK	45.78	6.61	N/A	N/A	52.39	74.00	21.61
4 804.06	V	Z	AV	36.32	6.61	4.81	N/A	47.74	54.00	6.26
7 206.13	V	Z	PK	50.80	8.73	N/A	N/A	59.53	74.00	14.47
7 204.45	V	Z	AV	36.99	8.73	4.81	N/A	50.53	54.00	3.47

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4 880.20	V	Z	PK	47.33	6.88	N/A	N/A	54.21	74.00	19.79
4 880.08	V	Z	AV	37.20	6.88	4.81	N/A	48.89	54.00	5.11
7 318.75	V	Z	PK	49.85	8.78	N/A	N/A	58.63	74.00	15.37
7 318.75	V	Z	AV	36.62	8.78	4.81	N/A	50.21	54.00	3.79

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 489.19	Н	Х	PK	42.40	2.56	N/A	N/A	44.96	74.00	29.04
2 489.16	Н	Х	AV	32.72	2.56	4.81	N/A	40.09	54.00	13.91
4 960.18	V	Z	PK	45.88	6.70	N/A	N/A	52.58	74.00	21.42
4 960.07	V	Z	AV	36.32	6.70	4.81	N/A	47.83	54.00	6.17
7 438.52	V	Z	PK	48.49	8.89	N/A	N/A	57.38	74.00	16.62
7 439.10	V	Z	AV	35.81	8.89	4.81	N/A	49.51	54.00	4.49

3.6 Power line Conducted Emissions

Test Requirements and limit, §15.207 & RSS-Gen [8.8]

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Conducted Limit (dBuV)						
Frequency Range (MHz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

* Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

3.6.1 Test Setup

- NA

3.6.2 Test Procedures

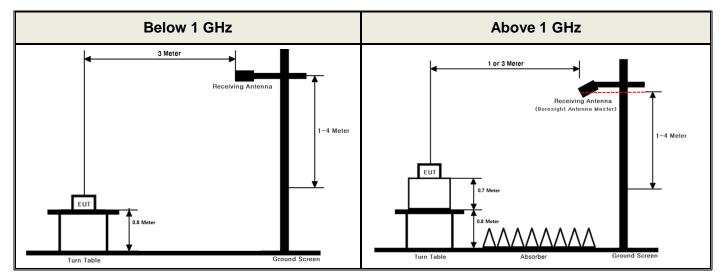
Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

3.6.3 Test Results

4. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203

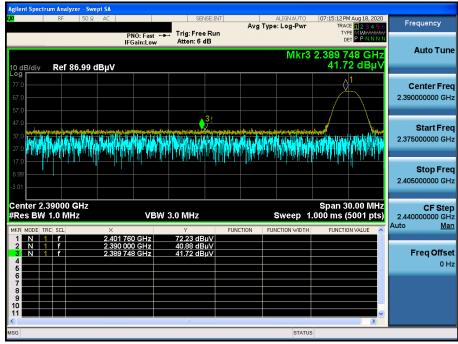

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna is permanently attached.(Refer to Internal Photo file.) Therefore this E.U.T Complies with the requirement of §15.203

APPENDIX I

Test set up diagrams

Radiated Measurement

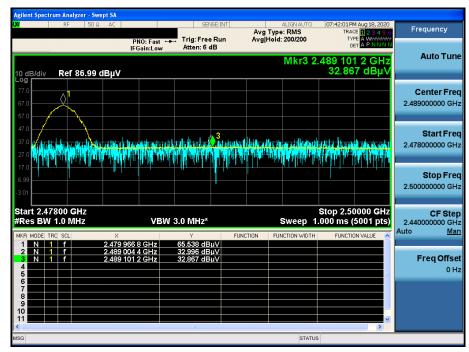


APPENDIX II

Unwanted Emissions (Radiated) Test Plot

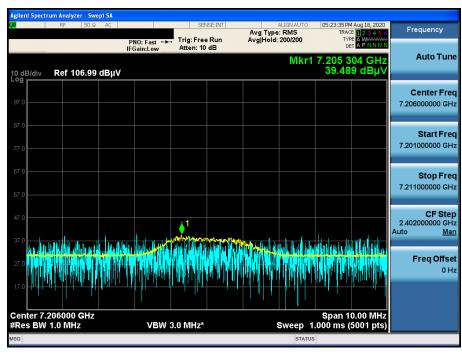
TM1 & Lowest & X & Hor

TM1 & Lowest & X & Hor

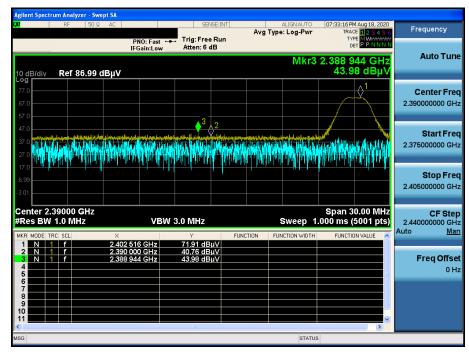

RF	50 Ω AC		SENSE:I	NT	ALIGN AUTO	07:22:48 PM Aug 18, 2020	
ru -		NO: Fast ↔ Gain:Low		Avg	Type: RMS Hold: 200/200	TRACE 12345 C TYPE A WAWWAW DET A P N N N N	Frequency
dB/div Ref 80	δ.99 dΒμV				Mkr3	2.389 868 GHz 32.274 dBµV	Auto Tur
og 77.0 57.0							Center Fre 2.39000000 GF
27.0	r anna ha tàna d hitt Mangang katang	Vintit ty					Start Fre 2.375000000 GH
17.0 11 PP 11 P							Stop Fre 2.405000000 GH
enter 2.39000 G Res BW 1.0 MH		VBW (3.0 MHz*		Sweep 1	Span 30.00 MHz .000 ms (5001 pts)	CF Ste 2.440000000 GF Auto Ma
KR MODE TRC SCL	× 2.402.0 2.390.0		Y 65.195 dBµV 32.276 dBµV	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 3 N 1 f 4 5	2.389 8		32.274 dBµV			=	Freq Offs 01
6 7 8 9 0							
1						~	

TM1 & Highest & X & Hor

Detector Mode : PK


RF 50 Ω	AC	SENSE:	ALIGN AUTO		4 Aug 18, 2020	Frequency
	PNO: Fas	Trig: Free Ru	: Log-Pwr	TRAC TYI	CE 123456 PE MWAMAAAA ET P P N N N N	Trequency
	IFGain:Lo	Atten:6dB				Auto Tune
10 dB/div Ref 86.99 dB	BμV		Mkr3 2.	489 130 42.7	64 GHz 9 dBμV	
-og 77.0 67.0 57.0						Center Free 2.489000000 GH:
47.0 37.0 27.0		() 1 		WWW	http://www.	Start Fred 2.478000000 GH;
17.0 4 6 .99 						Stop Fred 2.500000000 GH;
Start 2.47800 GHz #Res BW 1.0 MHz	VI	3W 3.0 MHz	Sweep 1.	000 ms (0000 GHz 5001 pts)	CF Step 2.440000000 GH: Auto <u>Mar</u>
1 N 1 f 2 2 N 1 f 2	2.480 226 4 GHz 2.489 004 4 GHz 2.489 136 4 GHz					Freq Offse 0 H;
6 7 8 9 10						
		111			<u>></u>	

TM1 & Highest & X & Hor


TM1 & Lowest & X & Ver

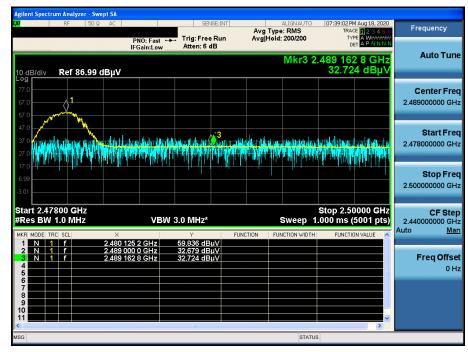
TM2 & Lowest & X & Hor

Detector Mode : PK

Detector Mode : AV

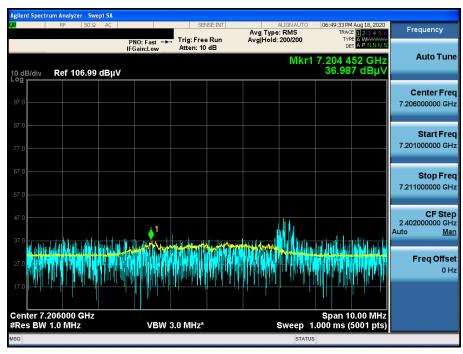
TM2 & Lowest & X & Hor

Agilent Spectrum Analyzer - Swept SA				
LX/ RF 50 Ω AC	PNO: Fast Trig: Free R	Avg Type: RMS	07:32:33 PM Aug 18, 2020 TRACE 1 2 3 4 5 6 TYPE A WAWWW	Frequency
10 dB/div Ref 86.99 dBµV	IFGain:Low Atten: 6 dB	<u> </u>	ост <mark>А Р NNNN 2.389 652 GHz 32.436 dBµV</mark>	Auto Tune
Log			1	Center Freq 2.390000000 GHz
47.0 37.0	rakki dilikak aktoriana akan 🎉	un an		Start Freq 2.375000000 GHz
17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0				Stop Fred 2.405000000 GHz
Center 2.39000 GHz #Res BW 1.0 MHz	VBW 3.0 MHz*	Sweep '	Span 30.00 MHz I.000 ms (5001 pts)	CF Step 2.440000000 GHz Auto <u>Man</u>
1 N 1 f 2.401 2 N 1 f 2.390	784 GHz 60.624 dBμ\ 000 GHz 31.679 dBμ\ 652 GHz 32.436 dBμ\			Freq Offset 0 Hz
7 8 9 10 11				
MSG		STATU	s	


TDt&C

TM2 & Highest & X & Hor

Detector Mode : PK


gilent Spectrum Analyzer - Swept SA					
RF 50Ω AC		SENSE:INT	ALIGN		
	PNO: Fast ++-	Trig: Free Run Atten: 6 dB		TYPE WW DET P.P	And a factor of the second sec
	IFGain:Low	Atten: 6 dB			
10 dB/div Ref 86.99 dBµV			IVIK	r3 2.489 193 6 42.40 d	GHZ ΒμV
77.0					Center Freq
67.0					2.489000000 GHz
57.0					
47.0	A.J. Mathematika	a anarihma 10 Million Alia	a disease of the data and on the two only it. It as a set	المتعادية والمتعالية والمتعالية المتعالية	al nd at
^{37.0} Antal Arts With the Arts	ALL CALLER TAL				2.478000000 GHz
27.0 11.1 14.1 14.1 14.1		a da	ward ter tway	all dia an a bhannadh	
6.99	· f · · · · · · ·				Stop Freq
3.01					2.50000000 GHz
Start 2.47800 GHz #Res BW 1.0 MHz	VBW :	3.0 MHz	Swe	Stop 2.50000 ep 1.000 ms (5001	GHZ CF Step 1 pts) 2.440000000 GHz
MKRI MODEI TRCI SCL X		Y	FUNCTION FUNCTION		Auto Man
	65 2 GHz	72.86 dBµV 40.46 dBµV			
3 N 1 f 2.489 1	93 6 GHz	42.40 dBµV			Freq Offset
4 5					0 Hz
6 7 1					
8					
10					
		III			
ISG				STATUS	

TM2 & Highest & X & Hor

TM2 & Lowest & X & Ver

