

Report No:CCISE191202603

FCC REPORT

Applicant:	Shenzhen Krono Digital Co., Ltd.			
Address of Applicant:	1319,13th Floor, SegPlaza,Huaqiangbei, Futian District, Shenzhen, Guangdong, China			
Equipment Under Test (E	EUT)			
Product Name:	Mobile Phone			
Model No.:	K22,K24, K26, K28, K30, K32W, K34W, K36W, K38W, K40W, K42, K44, K46, K48, K50			
Trade mark:	Krono			
FCC ID:	2AU97KRONO			
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B			
Date of sample receipt:	05 Dec., 2019			
Date of Test:	05 Dec., to 20 Dec., 2019			
Date of report issued:	23 Dec., 2019			
Test Result:	PASS *			

*In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of theCCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	23 Dec., 2019	Original

Tested by:

Janet Wei Test Engineer Winner Thang

Reviewed by:

Project Engineer

Date: 23 Dec., 2019

23 Dec., 2019

Date:

<u>CCIS</u>

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	-
4 5	GENERAL INFORMATION	
5.1	1 CLIENT INFORMATION	5
5.2		
5.3	3 TEST MODE	5
5.4		
5.5		
5.6		
5.7		
5.8		
5.9 5.1		
5.1		
6	TEST RESULTS ANDMEASUREMENT DATA	8
6.1	1 CONDUCTED EMISSION	8
6.2		
7	TEST SETUP PHOTO	
8	EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part15.107	Pass		
Radiated Emission	Part15.109	Pass		
Remark: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: The EUT not applicable of the test item.				
Test Method: ANSI C63.4:2014				

5 General Information

5.1 Client Information

Applicant:	Shenzhen Krono Digital Co., Ltd.
Address:	1319, 13th Floor, SegPlaza, Huaqiangbei, Futian District, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Yingzhengxin Technology Co.,Ltd.
Address:	5th Floor, Building 3, Hongfa&Jiateli Hi-Tech Park, LangxingCommunity,ShiyanSubdistrict, Bao-an District, Shenzhen City

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	K22,K24, K26, K28, K30, K32W, K34W, K36W, K38W, K40W, K42, K44, K46, K48, K50
Power supply:	Rechargeable Li-ion Battery DC3.7V-600mAh
AC adapter:	Model: PLAY Input: AC100-240V, 50/60Hz,0.15A Output: DC 5.0V, 500mA
Remark:	Model No.: K22,K24, K26, K28, K30, K32W, K34W, K36W, K38W, K40W, K42, K44, K46, K48, K50 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visibledefects.

5.3 Test Mode

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model Serial Number		FCC ID/DoC
DELL	PC	OPTIPLEX745 N/A		DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

CableType	Description	Length	From	То
Detached Adapter Cable	Unshielded	0.8m	EUT	Adapter
Detached headset cable	Unshielded	0.9m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC- Designation No.: CN1211

Shenzhen ZhongjianNanfang Testing Co., Ltd.has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen ZhongjianNanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen ZhongjianNanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

Shenzhen ZhongjianNanfang Testing Co., Ltd. Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax:+86-755-23116366 Email: info@ccis-cb.com, Website: <u>http://www.ccis-cb.com</u>

5.11 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2019	11-20-2020	
EMI Test Software	AUDIX	E3	l v	/ersion: 6.110919	b	
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2019	11-20-2020	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2019	07-20-2020	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

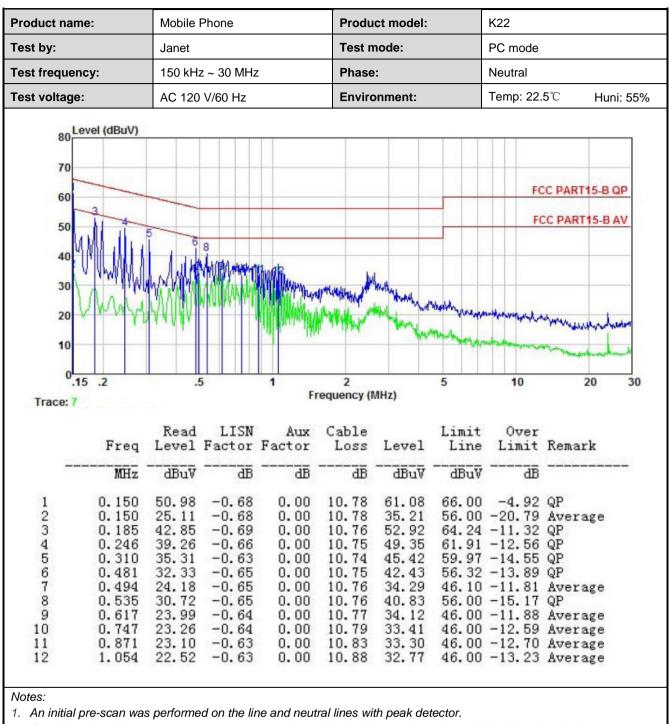
6 Test results and Measurement Data

6.1 Conducted Emission

Test Requirement:	FCC Part15 B Section 15.107		
Test Frequency Range:	150kHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:		Limit	(dBµV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	0.5-30	60	50
	* Decreases with the logarithm	of the frequency.	
Test setup:	Reference Plane		
Test succedure	Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	
Test procedure	 The E.U.T and simulators are impedance stabilization netw coupling impedance for the n The peripheral devices are a LISN that provides a 500hm/ termination. (Please refers to photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.4(la) 	vork(L.I.S.N.). The prov neasuring equipment. Iso connected to the m '50uH coupling impeda the block diagram of t checked for maximum d the maximum emissi all of the interface cal	ride a 50ohm/50uH nain power through a nce with 50ohm the test setup and conducted on, the relative oles must be changed
Test Instruments:	Refer to section 5.11 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement data:

oduct nar	oduct name: Mobile Phone			Produ	Product model: K22						
est by:		Janet	Janet 150 kHz ~ 30 MHz			node:		PC mode			
est freque	ncy:	150 kH				:		Line			
est voltage	e:	AC 120) V/60 Hz		Enviro	onment:		Temp: 22.	5℃ Hu	ıni: 55%	
	evel (dBuV)										
80											
70	_										
60								FCC	C PART15-B	QP	
50								FCC	C PART15-B	AV	
40	R.	2	4								
	Mist	and a hot		6	9 1	1					
30	11/1/11/10	MAR WALL	3 TIME	Maryunaw	11. 10	" Harris	internation of the second s				
	1 11 . O.A					124/04	WWW. Juli	all all	1		
20	WAAma	ALMAY !!	MA	Mai		which a	A ALLINIA	1 M VIMIN to Aver	allow where a plan	NV4	
U	Whiteman	MAN	MAN	Mary		M	a attended	11-May 200 Martin Aprily	allenterargeter	nalive.	
20	White	MAN		Maria		M	when	il Marking Harris	allesteration and all the	nave.	
20 10 0	5 .2	.5		1 Free	2 equency (M	h	5	10	20	30	
20 ¹	5 .2			Fre	equency (M	h	5	10	20	30	
20 10 0	5 .2 Freq	Read	LISN	Fre		h	when	10 Over	20 Remark	30	
20 10 0		Read	LISN	Fre	equency (M Cable	Hz)	5 Limit	10 Over		30	
20 10 0.1 Trace: 5	Freq	Read Level	LISN Factor	Aux Factor dB	cable Loss	Hz) Level	5 Limit Line dBuV	10 Over Limit dB	Remark	30	
20 10 0.1 Trace: 5	Freq MHz 0.158 0.489	Read Level dBuV 31.77 28.90	LISN Factor dB -0.44 -0.39	Aux Factor dB 0.00 0.00	equency (M Cable Loss dB 10.77 10.76	Hz) Level dBuV 42.10 39.27	5 Limit Line dBuV 65.56 56.19	10 Over Limit -23.46 -16.92	Remark QP QP	30	
20 10 0.1 Trace: 5	Freq MHz 0.158 0.489 0.535	Read Level dBuV 31.77 28.90 17.39	LISN Factor dB -0.44 -0.39 -0.39	Free Aux Factor dB 0.00 0.00 0.00 0.00	equency (M Cable Loss dB 10.77 10.76 10.76	Hz) Level dBuV 42.10 39.27 27.76	5 Limit Line dBuV 65.56 56.19 46.00	10 Over Limit -23.46 -16.92 -18.24	Remark QP QP Average	30	
20 10 0.1 Trace: 5	Freq MHz 0.158 0.489 0.535 0.614	Read Level dBuV 31.77 28.90 17.39 28.89	LISN Factor dB -0.44 -0.39 -0.39 -0.38	Free Aux Factor dB 0.00 0.00 0.00 0.00 0.00	equency (M Cable Loss dB 10.77 10.76 10.76 10.77	Hz) Level dBuV 42.10 39.27 27.76 39.28	5 Limit Line dBuV 65.56 56.19 46.00 56.00	10 Over Limit -23.46 -16.92 -18.24 -16.72	Remark QP QP Average QP	30	
20 10 0	Freq MHz 0.158 0.489 0.535 0.614 0.614	Read Level dBuV 31.77 28.90 17.39 28.89 18.70	LISN Factor dB -0.44 -0.39 -0.39 -0.38 -0.38	Free Aux Factor dB 0.00 0.00 0.00 0.00 0.00 0.00	equency (M Cable Loss dB 10.77 10.76 10.76 10.77 10.77	Hz) Level dBuV 42.10 39.27 27.76 39.28 29.09	5 Limit Line dBuV 65.56 56.19 46.00 56.00 46.00	10 Over Limit -23.46 -16.92 -18.24 -16.72 -16.91	Remark QP QP Average QP Average	30	
20 10 0.1 Trace: 5	Freq MHz 0.158 0.489 0.535 0.614	Read Level dBuV 31.77 28.90 17.39 28.89 18.70 25.14	LISN Factor dB -0.44 -0.39 -0.39 -0.38	Free Aux Factor dB 0.00 0.00 0.00 0.00 0.00	equency (M Cable Loss dB 10.77 10.76 10.76 10.77	Hz) Level dBuV 42.10 39.27 27.76 39.28	5 Limit Line dBuV 65.56 56.19 46.00 56.00 46.00 56.00	10 Over Limit -23.46 -16.92 -18.24 -16.72 -16.91 -20.37	Remark QP QP Average QP Average QP	30	
20 10 0.1 Trace: 5 1 2 3 4 5 6 7	Freq MHz 0.158 0.489 0.535 0.614 0.614 1.000	Read Level dBuV 31.77 28.90 17.39 28.89 18.70 25.14 10.94	LISN Factor dB -0.44 -0.39 -0.39 -0.38 -0.38 -0.38 -0.38	Free Aux Factor dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cable Loss dB 10.77 10.76 10.76 10.77 10.77 10.77 10.87	Hz) Level dBuV 42.10 39.27 27.76 39.28 29.09 35.63	5 Limit Line dBuV 65.56 56.19 46.00 56.00 46.00 56.00 46.00	10 Over Limit -23.46 -16.92 -18.24 -16.72 -16.91 -20.37 -24.57	Remark QP QP Average QP Average	30	
20 10 0.1 Trace: 5 1 2 3 4 5 6	Freq MHz 0.158 0.489 0.535 0.614 0.614 1.000 1.000	Read Level dBuV 31.77 28.90 17.39 28.89 18.70 25.14 10.94	LISN Factor dB -0.44 -0.39 -0.39 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.40 -0.40	Free Aux Factor dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cable Loss dB 10.77 10.76 10.76 10.77 10.77 10.77 10.87 10.87	Hz) Level dBuV 42.10 39.27 27.76 39.28 29.09 35.63 21.43	5 Limit Line dBuV 65.56 56.19 46.00 56.00 46.00 56.00 46.00 56.00	10 Over Limit dB -23.46 -16.92 -18.24 -16.72 -16.91 -20.37 -24.57 -25.92 -25.10	Remark QP QP Average QP Average QP Average Average QP	30	
20 10 0.1 Trace: 5 1 2 3 4 5 6 7 8 9 10	Freq 0.158 0.489 0.535 0.614 0.614 1.000 1.000 1.654 1.671 2.622	Read Level 31.77 28.90 17.39 28.89 18.70 25.14 10.94 9.54 20.36 12.41	LISN Factor dB -0.44 -0.39 -0.39 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.40 -0.40 -0.43	Free Aux Factor dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cable Loss dB 10.77 10.76 10.76 10.77 10.77 10.87 10.87 10.94 10.94 10.93	Hz) Level dBuV 42.10 39.27 27.76 39.28 29.09 35.63 21.43 20.08 30.90 22.91	5 Limit Line dBuV 65.56 56.19 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	10 Over Limit dB -23.46 -16.92 -18.24 -16.72 -16.91 -20.37 -24.57 -25.92 -25.10 -23.09	Remark QP QP Average QP Average QP Average QP Average QP Average	30	
20 10 0.1 Trace: 5 1 2 3 4 5 6 7 8 9	Freq 0.158 0.489 0.535 0.614 0.614 1.000 1.000 1.654 1.671	Read Level 31.77 28.90 17.39 28.89 18.70 25.14 10.94 9.54 20.36	LISN Factor dB -0.44 -0.39 -0.39 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.40 -0.40	Free Aux Factor dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cable Loss dB 10.77 10.76 10.76 10.77 10.77 10.87 10.87 10.94 10.94	Hz) Level dBuV 42.10 39.27 27.76 39.28 29.09 35.63 21.43 20.08 30.90	5 Limit Line dBuV 65.56 56.19 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	10 Over Limit dB -23.46 -16.92 -18.24 -16.72 -16.91 -20.37 -24.57 -25.92 -25.10 -23.09 -23.02	Remark QP QP Average QP Average QP Average QP Average QP Average	30	


1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

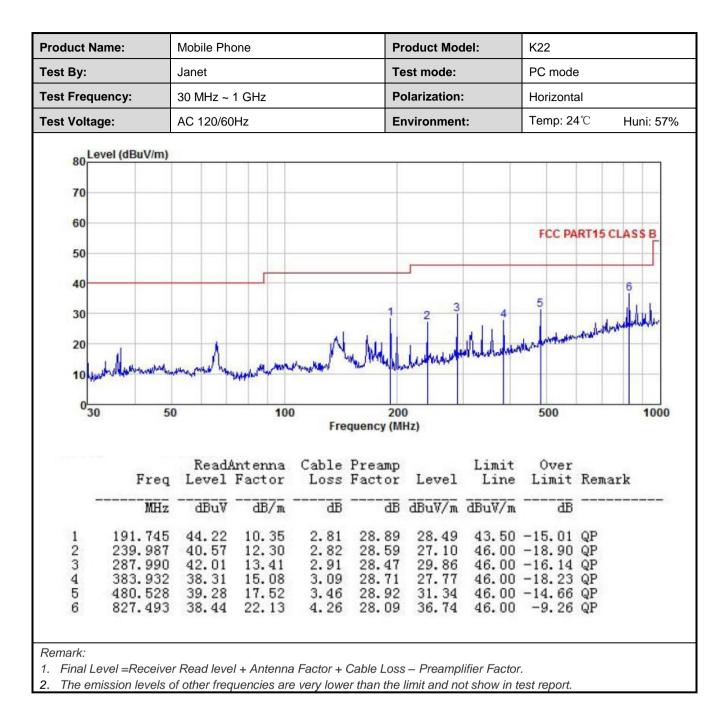
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part15 B See	ction 15.109	9			
Test Frequency Range:	30MHz to 6000MI	Hz				
Test site:	Measurement Dis	tance: 3m (Sem	i-Anechoic (Chamber)	
Receiver setup:	Frequency	,		RBW	VBW	Remark
	30MHz-1GHz	Quasi-pe		120kHz	300kHz	Quasi-peak Value
		Peak		1MHz	3MHz	Peak Value
	Above 1GHz	RMS		1MHz	3MHz	Average Value
Limit:	Frequenc	v	Lim	nit (dBuV/m	@3m)	Remark
	30MHz-88M	1Hz		40.0		Quasi-peak Value
	88MHz-216	MHz		43.5		Quasi-peak Value
	216MHz-960	MHz		46.0		Quasi-peak Value
	960MHz-1G	GHz		54.0		Quasi-peak Value
		1-		54.0		Average Value
	Above 1G	ΗZ		74.0		Peak Value
Test setup:	Below 1GHz	4m 4m		RFT]
				Horn Antenna Horn Antenna	Antenna Tower	
Test Procedure:	groundat a 3 m degrees todete 2. The EUT was s whichwas mou 3. The antenna he ground to deter	eter semi-a rmine the p set 3 meters nted on the eight is varie rmine the m	inech ositio awa top o ed fro axim	noic camber. on of the hig ay from the in of a variable om one mete num value of	The table hest radiati nterference -height ant er to four m the field st	e-receiving antenna, enna tower. neters above the

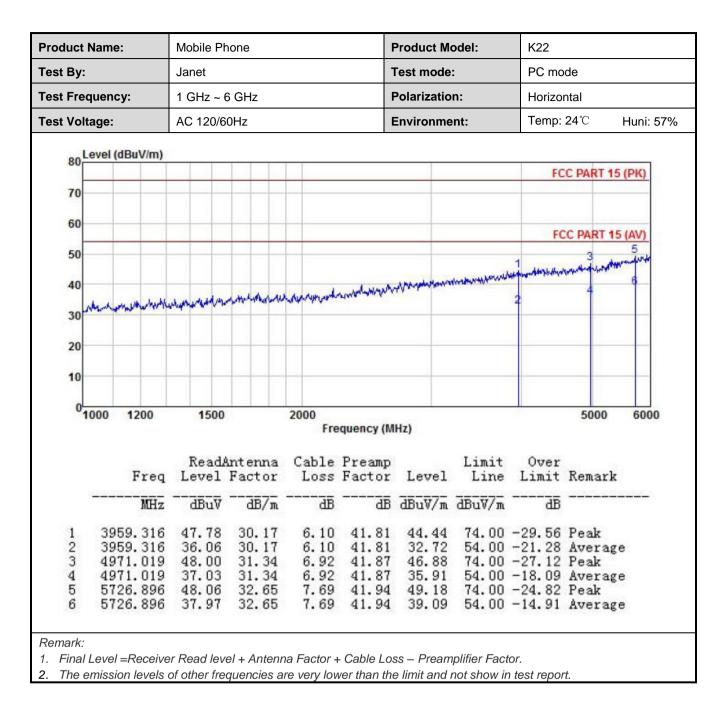
	4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatabletable was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware then iose floor , which were no recorded



Measurement Data:

Below	1GHz:
-------	-------

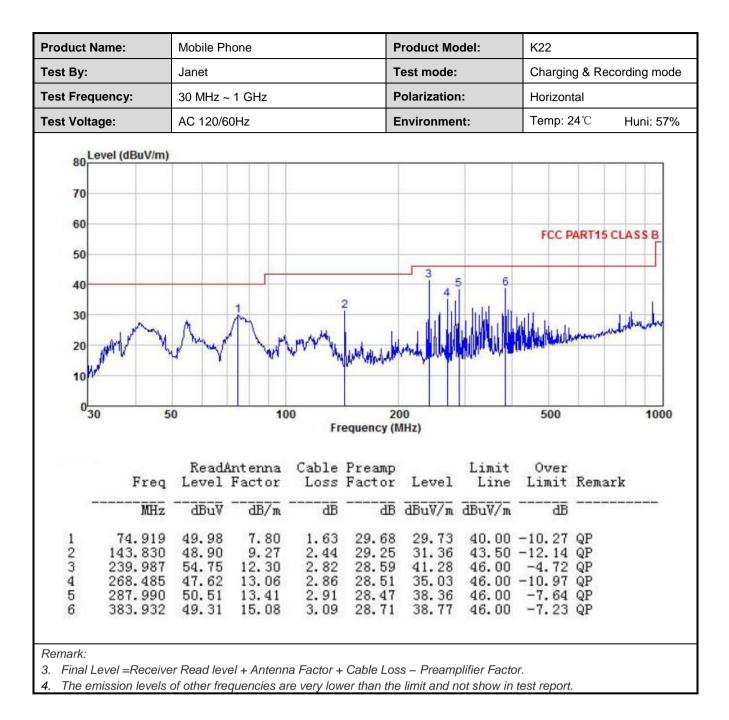
oduct Nan	ne:	Mobile Phone					Product Model:			K22			
est By:		Janet				est mode:	PC mod	PC mode Vertical					
est Frequency:		30 MHz ~ 1 GHz				Polarizatio	n:					Vertical	
est Voltage	:	AC 120/6	0Hz		E	Environme	nt:	Temp: 2	24 ℃	Huni: 57%			
Level	(dBuV/m)												
80	(ubutini)				1								
70									_				
60								_	_				
								FCC PAR	RT15 CL	ASSB			
50													
40				0		-		5		6			
30	_	1		2		3	4	Ĭ		1 A LA			
20		1		ult				4 but marine	hilleduk	al hell with a line			
20	dele	Dur W	which have	July 1	wohy Me	relationer	Industrichand						
10	adition of the second second	*			NU TRA								
030	50		100		200		12.1	500		1000			
			100		quency (MH					1000			
			Intenna	Cable	Preamp		Limit	Over					
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Rema	rk			
	MHz	dBu∛	dB/m	dB	dB	dBuV/m	dBuV/m	dB					
1	66.266	46.65	9.29	1.41	29.75	27.60		-12.40					
	138.874	50.01 42.41	9.57 13.41	2.38	29.28 28.47		43.50 46.00						
2	227 QQN	44.41		2.96	28.47	32.81	46.00	-13.19	QP				
2 3 4	287.990 306.754	44.56	13.76			22 70	46 00	-12.21	OP				
3 4 5	306.754 480.528	44.56	17.52	3.46		33.79	46.00	-12 47	OP				
2 3 4 5 6	306.754	44.56			28.92 28.07	33.53	46.00	-12.47	QP				
2 3 5 6	306.754 480.528	44.56	17.52	3.46			46.00	-12.47	QP				



Above 1GHz:

oduct	Name: Mobile Phone				F	Product Mo	odel:	K22	K22				
est By:			Janet				Fest mode	:	PC mo	PC mode			
est Fre	quency:	ency: 1 GHz ~ 6 GHz Polarization				Polarizatio	n:	Vertical					
est Volt	tage:		AC 120/6	0Hz		E	Environme	nt:	Temp:	24℃ F	luni: 57%		
ant	Level (dBuV	//m)											
80						FC	C PART 15 (PK)					
70													
60													
-	_	-	_						-	C PART 15 (5		
50									1	3 human bir who who	n.H.s.		
40		_		1	I. Lorder	un market	shall be and the second	hard a start and a start and a start a	Participa Car. 14		5		
30	mishawarda	Mystein	nach Martin	- manufacture and the second	Harden and the second			-	2	an an broken			
20													
10													
0	1000 120	0	1500		2000					5000	6000		
	1000 120	10	1500			quency (M	Hz)			5000	0000		
	1771		ReadA	ntenna	Cable	Preamp		Limit	Över				
	Fr	eq	Level	Factor	Loss	Factor	Level		Limit	Remark			
	<u>N</u>	Ħz	dBu∛	dB/m	dB	āB	dBuV/m	dBuV/m	dB				
1	3952.2	228	47.86	30.12	6.10	41.80	44.48	74.00	-29.52	Peak			
2 3	3952.2		36.42	30.12	6.10		33.04	54.00		Average			
3	4668.8		48.41	30.75	6.87			74.00	-27.59	Peak			
4 5	4668.8 5645.3		37.83 48.92	30.75 32.63	6.87 7.45				-18.17	Average			
6	5645.3		37.68	32.63	7.45	41.85				Average			
1.000		100											

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Below 1GHz:

Product Name	e:	Mobile Phone					del:	K22			
ſest By:		Janet 30 MHz ~ 1 GHz				est mode:	Chargin	Charging & Recording mode			
Fest Frequen	cy:					olarizatior	Vertical				
Fest Voltage:		AC 120/6	0Hz		E	nvironme	nt:	Temp: 2	4 ℃	Huni: 57%	
80 Level	dBuV/m)										
80											
70											
60	_		_					FCC PAR	T15 CL	ASSB	
50	_										
40											
	1	2	3			4	5 6				
30	1 We	why			ι.			11 14 14.	went	Include	
20 -04		u	1mm	w	when the full	red all	MARKAL MARKA	ALWAR AND AND	Walkerson .		
10	_		×	-	la subra.	de la superiorite					
0											
0 ¹ 30	50		100		200 quency (MH			500		1000	
	Freq		Intenna Factor		Preamp Factor	Level	Limit Line	Over Limit	Remai	rk	
	MHz	dBu∛		āĒ	<u>d</u> B	dBuV/m	dBu∛/m	dB			
1	40.702	50.94	12.39	1.22	29.89	34.66	40.00	-5.34	QP		
2	60.280	49.03	11.31	1.38	29.77	31.95	40.00	-8.05	QP		
	75.182 39.987	54.29 43.20	7.79 12.30	1.63	29.68 28.59	34.03 29.73		-5.97			
	40.782 83.932	43.43 43.04	14.44 15.08	3.07 3.09	28.54 28.71	32.40 32.50	46.00	-13.60 -13.50	QP		
Remark: 8. Final Leve	l=Receive	r Read lev	el + Antenn	a Factor -	Cable I os	s – Pream	olifier Facto	r			
			quencies ar								

