

RF TEST REPORT

Applicant	Shanghai Smawave	Technology Co. ,Ltd
-----------	------------------	---------------------

FCC ID 2AU8HSRP410-B

Product LTE CPE

Brand Smawave

Model SRP410-b

Report No. R2001A0016-R3

Issue Date August 12, 2020

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15E (2019)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Keng Tao

Performed by: Peng Tao

Kai Xu

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Tes	t Laboratory	4
1.1.	Notes of the test report	4
1.2.	Test facility	4
1.3.	Testing Location	4
2. Ger	neral Description of Equipment under Test	5
2.1.	Applicant and Manufacturer Information	5
2.2.	General information	5
3. App	lied Standards	6
4. Tes	t Configuration	7
5. Tes	t Case Results	9
5.1.	Occupied Bandwidth	9
5.2.	Average Power Output –Conducted	
5.3.	Frequency Stability	
5.4.	Power Spectral Density	32
5.5.	Unwanted Emission	64
5.6.	Conducted Emission	111
6. Mai	n Test Instruments	114

Number	Test Case	Clause in FCC rules	Verdict		
1	Average conducted output power	15.407(a)	PASS		
2	Occupied bandwidth	15.407(e)	PASS		
3	Frequency stability	15.407(g)	PASS		
4	Power spectral density	15.407(a)	PASS		
5	Unwanted Emissions	15.407(b)	PASS		
6	Conducted Emissions	15.207	PASS		
Test Date:March 27, 2020 ~ August 10, 2020					
Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology					
(Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement					
Uncertainties were not taken into account and are published for informational purposes only.					

Summary of measurement results

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Contact: Telephone:	Xu Kai +86-021-50791141/2/3
Contact: Telephone: Fax:	Xu Kai +86-021-50791141/2/3 +86-021-50791141/2/3-8000
Contact: Telephone: Fax: Website:	Xu Kai +86-021-50791141/2/3 +86-021-50791141/2/3-8000 http://www.ta-shanghai.com

2. General Description of Equipment under Test

2.1. Applicant and Manufacturer Information

Applicant	Shanghai Smawave Technology Co. ,Ltd		
Applicant address	3/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai, China		
Manufacturer	Shanghai Smawave Technology Co. ,Ltd		
Manufacturer address	3/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai, China		

2.2. General information

EUT Description				
Model	SRP410-b			
IMEI	862165040679399			
Hardware Version	SGL6010_V1.0			
Software Version	SG626U_V1.0.0			
Power Supply	External power supply			
Antenna Type	External Antenna			
Antenna Gain	Antenna 1: 5.00 dBi Antenna 2: 5.00 dBi			
Directional Gain	NA			
Test Mode(s)	U-NII-1(5150MHz-5250MHz) U-NII-3(5725MHz-5850MHz)			
Modulation Type	802.11a/n (HT20/HT40) : OFDM 802.11ac (VHT20/VHT40/VHT80): OFDM			
Max. Conducted Power	23.18 dBm			
Operating Frequency Range(s)	U-NII-1: 5150MHz-5250MHz U-NII-3: 5725MHz -5850MHz			
Operating temperature range:	-40 ° C to 70° C			
Operating voltage range:	9 V to 14 V			
State DC voltage:	12V			
Note:1. The EUT is sent from the the applicant.	applicant to TA and the information of the EUT is declared by			

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15E (2019) Unlicensed National Information Infrastructure Devices

ANSI C63.10 (2013)

Reference standard:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Pand	Data Rate			
Danu	Antenna 1	Antenna 2	MIMO	
802.11a	6 Mbps	6 Mbps	MCS8	
802.11n HT20	MCS0	MCS0	MCS8	
802.11n HT40	MCS0	MCS0	MCS8	
802.11ac VHT20	MCS0	MCS0	MCS8	
802.11ac VHT40	MCS0	MCS0	MCS8	
802.11ac VHT80	MCS0	MCS0	MCS8	

The worst case Antenna mode for each of the following tests for Wi-Fi:

Test Cases	Antenna 1	Antenna 2	MIMO
Average conducted output power	0	0	0
Occupied bandwidth			0
Frequency stability			0
Power Spectral Density	0	0	0
Unwanted Emissions			0
Conducted Emissions			802.11n HT20
Note: "O": test all bands			

According to RF Output power results in chapter 5.2, MIMO was selected as the worst antenna.

Wireless Technology and Frequency Range

Wireless Technology		Bandwidth	Channel	Frequency
			36	5180MHz
		20 MH -	40	5200MHz
			44	5220MHz
	U-NII-1		48	5240MHz
			38	5190MHz
			46	5230MHz
		80 MHz	42	5210MHz
Wi-Fi	U-NII-3	20 MHz	149	5745MHz
			153	5765MHz
			157	5785MHz
			161	5805MHz
			165	5825MHz
		40 MI I-	151	5755MHz
			159	5795MHz
		80 MHz	155	5775MHz

5. Test Case Results

5.1. Occupied Bandwidth

Ambient condition

Temperature Relative humidity		Pressure	
23°C ~25°C	45%~50%	101.5kPa	

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.

For U-NII-1/U-NII-2A/U-NII-2C, set RBW \approx 1% OCB kHz, VBW \geq 3 × RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

For U-NII-3, Set RBW = 100 kHz, VBW \ge 3 × RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

Use the 99 % power bandwidth function of the instrument

Test Setup

Limits

Rule FCC Part §15.407(e)

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

Test Results:

MIMO Antenna

U-NII-1

Notwork	Carrier	99%	Minimum 26 dB	
Standards	frequency	bandwidth	bandwidth	Conclusion
Stanuarus	(MHz)	(MHz)	(MHz)	
	5180	16.757	29.16	PASS
802.11a	5200	16.862	29.57	PASS
	5240	16.959	29.57	PASS
000.11-	5180	17.742	28.88	PASS
802.11n HT20	5200	17.816	29.49	PASS
11120	5240	17.858	29.89	PASS
802.11n	5190	37.120	59.97	PASS
HT40	5230	36.718	59.23	PASS
000 11	5180	17.885	28.86	PASS
802.11ac	5200	18.011	29.59	PASS
VH120	5240	18.087	29.44	PASS
802.11ac	5190	36.929	59.96	PASS
VHT40	5230	36.920	59.78	PASS
802.11ac VHT80	5210	76.339	115.70	PASS

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
	5745	16.697	16.30	500	PASS
802.11a	5785	16.902	16.26	500	PASS
	5825	16.768	16.28	500	PASS
000.44+	5745	16.560	16.36	500	PASS
802.11n	5785	17.748	16.19	500	PASS
11120	5825	17.745	16.29	500	PASS
802.11n	5755	36.667	36.03	500	PASS
HT40	5795	36.738	36.08	500	PASS
000 11	5745	17.865	16.21	500	PASS
802.11ac	5785	17.950	15.81	500	PASS
VH120	5825	18.085	15.82	500	PASS
802.11ac	5755	37.909	35.78	500	PASS
VHT40	5795	36.754	35.98	500	PASS
802.11ac VHT80	5775	76.126	75.13	500	PASS

RF Test Report

99% bandwidth

Minimum 6 dB bandwidth

5.2. Average Power Output –Conducted

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

During the process of the testing, The EUT was connected to the average power meter through an external attenuator and a known loss cable. The EUT is max power transmission with proper modulation. We use Maximum average Conducted Output Power Level Method in KDB789033 for this test

The conducted Power is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test Setup

Limits

Rule FCC Part 15.407(a)(1) (3)

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23

Report No.: R2001A0016-R3

RF Test Report

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. (3)For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

Test Results

Band	T _{on} (ms)	T _(on+off) (ms)	Duty cycle	Duty cycle correction Factor(dB)			
802.11a	0.25	0.36	0.69	1.62			
802.11n HT20	0.23	0.35	0.65	1.86			
802.11n HT40	0.13	0.22	0.58	2.35			
802.11ac HT20	0.51	0.59	0.86	0.64			
802.11ac HT40	0.27	0.38	0.71	1.47			
802.11ac HT80	0.51	0.60	0.86	0.66			
Note: when Duty cyo	Note: when Duty cycle>0.98, Duty cycle correction Factor not required.						

SISO Antenna 1 & Antenna 2

Single Antenna Power Index											
Packet Type	CH36	CH40	CH48	CH149	CH157	CH165					
802.11a	63	63	63	63	63	63					
802.11n HT20	63	63	63	63	63	63					
802.11ac VHT20	63	63	63	63	63	63					
Packet Type	CH38	CH46	CH151	CH159	/	/					
802.11n HT40	63	63	63	63	/	/					
802.11ac VHT40	63	63	63	63	/	/					
Packet Type	CH42	CH155	/	/	/	/					
802.11ac VHT80	63	63	1	/	/	/					

MIMO Antenna 1 & Antenna 2

MIMO Antenna Power Index											
Packet Type	CH36	CH40	CH48	CH149	CH157	CH165					
802.11a	61	62	62	63	63	63					
802.11n HT20	62	62	60	63	63	63					
802.11ac VHT20	61	61	61	63	63	63					
Packet Type	CH38	CH46	CH151	CH159	/	/					
802.11n HT40	63	63	63	63	/	/					
802.11ac VHT40	63	63	63	63	/	/					
Packet Type	CH42	CH155	/	/	/	/					
802.11ac VHT80	63	63	/	/	/	/					

RF Test Report

SISO Antenna 1

Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	36/5180	15.73	17.35	24	PASS
802.11a	40/5200	15.11	16.73	24	PASS
	48/5240	15.81	17.43	24	PASS
000.44-	36/5180	15.56	17.42	24	PASS
802.11h HT20	40/5200	15.04	16.90	24	PASS
11120	48/5240	15.89	17.75	24	PASS
802.11n	38/5190	14.86	17.21	24	PASS
HT40	46/5230	14.90	17.25	24	PASS
002 11-2	36/5180	16.27	16.91	24	PASS
802.11ac VHT20	40/5200	15.41	16.05	24	PASS
VIIIZO	48/5240	16.22	16.86	24	PASS
802.11ac	38/5190	15.52	16.99	24	PASS
VHT40	46/5230	15.62	17.09	24	PASS
802.11ac VHT80	42/5210	15.93	16.59	24	PASS
Note: Average Power wi	th duty factor = Ave	erage Power	Measured +D	uty cycle corr	ection factor

Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	149/5745	19.57	21.19	30	PASS
802.11a	157/5785	18.25	19.87	30	PASS
	165/5825	17.81	19.43	30	PASS
000.44=	149/5745	19.45	21.31	30	PASS
802.11h HT20	157/5785	18.05	19.91	30	PASS
11120	165/5825	17.86	19.72	30	PASS
802.11n	151/5755	18.64	20.99	30	PASS
HT40	159/5795	17.60	19.95	30	PASS
002 11	149/5745	20.17	20.81	30	PASS
802.11ac	157/5785	18.54	19.18	30	PASS
V11120	165/5825	18.00	18.64	30	PASS
802.11ac	151/5755	19.24	20.71	30	PASS
VHT40	159/5795	18.12	19.59	30	PASS
802.11ac VHT80	155/5775	18.92	19.58	30	PASS
Note: Average Power	with duty factor	= Average Power N	Measured +Duty	y cycle corre	ection factor

RF Test Report

SISO Antenna 2

Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	36/5180	19.44	21.06	24	PASS
802.11a	40/5200	18.77	20.39	24	PASS
	48/5240	18.36	19.98	24	PASS
000.44-	36/5180	19.43	21.29	24	PASS
802.11h	40/5200	18.72	20.58	24	PASS
11120	48/5240	18.32	20.18	24	PASS
802.11n	38/5190	18.81	21.16	24	PASS
HT40	46/5230	17.97	20.32	24	PASS
002 11-2	36/5180	20.52	21.16	24	PASS
802.11ac	40/5200	19.32	19.96	24	PASS
VIIIZO	48/5240	18.87	19.51	24	PASS
802.11ac	38/5190	19.56	21.03	24	PASS
VHT40	46/5230	18.34	19.81	24	PASS
802.11ac VHT80	42/5210	18.56	19.22	24	PASS
Note: Average Power wi	th duty factor = Ave	erage Power	Measured +D	uty cycle corr	ection factor

Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	149/5745	18.08	19.70	30	PASS
802.11a	157/5785	16.80	18.42	30	PASS
	165/5825	17.64	19.26	30	PASS
000.44=	149/5745	17.74	19.60	30	PASS
802.11n HT20	157/5785	16.71	18.57	30	PASS
11120	165/5825	17.50	19.36	30	PASS
802.11n	151/5755	16.73	19.08	30	PASS
HT40	159/5795	16.28	18.63	30	PASS
002 11	149/5745	17.91	18.55	30	PASS
802.11ac	157/5785	16.32	16.96	30	PASS
V11120	165/5825	17.27	17.91	30	PASS
802.11ac	151/5755	16.31	17.78	30	PASS
VHT40	159/5795	16.02	17.49	30	PASS
802.11ac VHT80	155/5775	15.35	16.01	30	PASS
Note: Average Power	with duty factor	= Average Power N	Measured +Duty	y cycle corre	ection factor

MIMO Antenna

U-NII-1

	MIMO Antenna 1		MIN Anter	MIMO Antenna 2				
Network Standards	Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
	36/5180	14.92	16.54	18.55	20.17	21.73	24.00	PASS
802.11a	44/5220	13.66	15.28	17.82	19.44	20.85	24.00	PASS
	48/5240	14.59	16.21	17.14	18.76	20.68	24.00	PASS
000 11 m	36/5180	14.27	16.13	18.72	20.58	21.91	24.00	PASS
602.1111 НТ20	44/5220	14.22	16.08	17.95	19.81	21.35	24.00	PASS
11120	48/5240	14.18	16.04	16.88	18.74	20.61	24.00	PASS
802.11n	38/5190	15.16	17.51	19.23	21.58	23.02	24.00	PASS
HT40	46/5230	14.96	17.31	18.03	20.38	22.12	24.00	PASS
000 11	36/5180	14.92	15.56	18.53	19.17	20.74	24.00	PASS
802.11ac	44/5220	14.19	14.83	17.93	18.57	20.10	24.00	PASS
VIII20	48/5240	14.95	15.59	17.47	18.11	20.04	24.00	PASS
802.11ac	38/5190	14.80	16.27	18.43	19.90	21.46	24.00	PASS
VHT40	46/5230	14.63	16.10	17.80	19.27	20.98	24.00	PASS
802.11ac VHT80	42/5210	14.20	14.86	17.46	18.12	19.80	24.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss}=2. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \ge 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5+0=5 dBi<6dBi. So the power limt is 24dBm.

U-NII-3

	MIMO Antenna		/IO 1na 1	D MIMO a 1 Antenna 2				
Network Standards	Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
	149/5745	16.92	18.54	19.73	21.35	23.18	30.00	PASS
802.11a	157/5785	15.19	16.81	17.05	18.67	20.85	30.00	PASS
	165/5825	16.46	18.08	17.24	18.86	21.50	30.00	PASS
902 11p	149/5745	16.52	18.38	18.52	20.38	22.51	30.00	PASS
802.1111 HT20	157/5785	15.50	17.36	17.34	19.20	21.39	30.00	PASS
11120	165/5825	16.62	18.48	16.93	18.79	21.65	30.00	PASS
802.11n	151/5755	15.66	18.01	17.95	20.30	22.32	30.00	PASS
HT40	159/5795	15.46	17.81	16.62	18.97	21.44	30.00	PASS
000 11	149/5745	16.28	16.92	18.37	19.01	21.09	30.00	PASS
802.TTac \/LIT20	157/5785	15.31	15.95	17.00	17.64	19.88	30.00	PASS
VIIIZO	165/5825	16.17	16.81	16.72	17.36	20.10	30.00	PASS
802.11ac	151/5755	15.52	16.99	17.75	19.22	21.26	30.00	PASS
VHT40	159/5795	15.24	16.71	16.46	17.93	20.37	30.00	PASS
802.11ac VHT80	155/5775	14.59	15.25	16.76	17.42	19.48	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss} =2. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain, For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5+0=5 dBi<6dBi. So the power limt is 30dBm.

5.3. Frequency Stability

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

1. Frequency stability with respect to ambient temperature

a) Supply the EUT with a nominal ac voltage or install a new or fully charged battery in the EUT. If possible, a dummy load shall be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, then the EUT shall be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn ON the EUT and tune it to one of the number of frequencies shown in 5.6.

b) Couple the unlicensed wireless device output to the measuring instrument by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away), or by connecting a dummy load to the measuring instrument, through an attenuator if necessary.

c) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

d) Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.

e) Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.
f) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.

g) Measure the frequency at each of frequencies specified in 5.6.

h) Switch OFF the EUT but do not switch OFF the oscillator heater.

i) Lower the chamber temperature by not more that 10° , and allow the temperature inside the chamber to stabilize.

j) Repeat step f) through step i) down to the lowest specified temperature.

2. Frequency stability when varying supply voltage

Unless otherwise specified, these tests shall be made at ambient room temperature (+15 \degree to +25 \degree). An antenna shall be connected to the antenna output terminals of the EUT if possible. If the EUT is equipped with or uses an adjustable-length antenna, then it shall be fully extended.

a) Supply the EUT with nominal voltage or install a new or fully charged battery in the EUT. Turn ON the EUT and couple its output to a frequency counter or other frequency-measuring instrument.

RF Test Report

b) Tune the EUT to one of the number of frequencies required in 5.6. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

c) Measure the frequency at each of the frequencies specified in 5.6.

d) Repeat the above procedure at 85% and 115% of the nominal supply voltage.

Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936Hz

	Tananatan		U-NII-1 Te	est Results					
Voltage			5200MHz						
(v)		1min	2min	5min	10min				
12	-40	5200.006582	5199.999921	5199.995758	5199.992942				
12	-30	5200.013551	5199.990707	5199.985882	5199.988546				
12	-20	5200.011597	5199.984730	5199.984763	5199.983831				
12	0	5200.010893	5199.978115	5199.984002	5199.977540				
12	10	5200.000918	5199.977568	5199.977266	5199.973783				
12	30	5199.992230	5199.967651	5199.970887	5199.969531				
12	60	5199.982865	5199.965661	5199.963269	5199.964203				
12	70	5199.975241	5199.965160	5199.961919	5199.960404				
9	25	5199.967184	5199.958833	5199.959210	5199.950787				
14	25	5199.965141	5199.954142	5199.950616	5199.946500				
	MHz	-0.034859	-0.045858	-0.049384	-0.053500				
PPM		-6.703703	-8.818860	-9.496880	-10.288369				

Voltage	Tanananatura	U-NII-3 Test Results						
voltage	remperature	5785MHz						
(v)	(C)	1min	2min	5min	10min			
12	-40	5784.993148	5784.988093	5784.987842	5784.981080			
12	-30	5784.990193	5784.983849	5784.978189	5784.976026			
12	-20	5784.989526	5784.979139	5784.978090	5784.973196			
12	0	5784.981121	5784.972583	5784.969221	5784.968094			
12	10	5784.979026	5784.970552	5784.959521	5784.960602			
12	30	5784.971074	5784.961986	5784.952869	5784.955497			
12	60	5784.964212	5784.960440	5784.951400	5784.947244			
12	70	5784.955841	5784.956253	5784.946468	5784.944626			
9	25	5784.954946	5784.954776	5784.940925	5784.942567			
14	25	5784.950710	5784.952315	5784.940130	5784.933980			
	MHz	-0.049290	-0.047685	-0.059870	-0.066020			
PPM		-8.520240	-8.242890	-10.349149	-11.412318			

5.4. Power Spectral Density

Ambient condition

Temperature	Relative humidity	Pressure		
23°C ~25°C	45%~50%	101.5kPa		

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.

Set RBW = 1MHz, VBW =3MHz for the band 5.150-5.250GHz. Set RBW = 510kHz, VBW =1.5MHz for the band 5.725-5.850GHz

The conducted PSD is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test setup

Limits

Rule FCC Part 15.407(a)(1) / Part 15.407(a)(3)

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmittingantennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Frequency Bands/MHz	Limits
5150-5250	11dBm/MHz

TA	RF Test Report	Report No.: R2001A0016-R3				
	5725-5850	30dBm/500kHz				

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U= 0.75dB.

Test Results: SISO Antenna 1

Network Standards	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion			
	36/5180	4.85	6.47	11	PASS			
802.11a	40/5200	4.46	6.08	11	PASS			
	48/5240	4.97	6.59	11	PASS			
	36/5180	4.51	6.37	11	PASS			
802.11n HT20	40/5200	3.79	5.65	11	PASS			
11120	48/5240	5.20	7.07	11	PASS			
802.11n	38/5190	0.49	2.84	11	PASS			
HT40	46/5230	1.14	3.49	11	PASS			
	36/5180	4.60	5.23	11	PASS			
802.11ac VHT20	40/5200	4.24	4.87	11	PASS			
11120	48/5240	5.28	5.92	11	PASS			
802.11ac	38/5190	1.33	2.80	11	PASS			
VHT40	46/5230	2.22	3.69	11	PASS			
802.11ac VHT80	42/5210	-0.25	0.41	11	PASS			
Note:PSD=Read Value+Duty cycle correction factor								

Network Standards	Channel Number	Read Value (dBm/500kHz)	Power Spectral Density (dBm/500kHz)	Limit (dBm/500kHz)	Conclusion		
	149/5745	6.27	7.88	30	PASS		
802.11a	157/5785	4.43	6.05	30	PASS		
	165/5825	4.36	5.98	30	PASS		
000.44	149/5745	5.78	7.64	30	PASS		
802.11n нт20	157/5785	4.51	6.37	30	PASS		
11120	165/5825	4.24	6.10	30	PASS		
802.11n	151/5755	2.02	4.37	30	PASS		
HT40	159/5795	0.93	3.28	30	PASS		
	149/5745	5.93	6.57	30	PASS		
802.11ac VHT20	157/5785	4.27	4.90	30	PASS		
V11120	165/5825	3.88	4.51	30	PASS		
802.11ac	151/5755	2.30	3.77	30	PASS		
VHT40	159/5795	1.48	2.95	30	PASS		
802.11ac VHT80	155/5775	0.24	0.90	30	PASS		
Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor							

RF Test Report

SISO Antenna 2

Network Standards	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
	36/5180	8.74	10.36	11	PASS
802.11a	40/5200	7.91	9.53	11	PASS
	48/5240	7.94	9.56	11	PASS
	36/5180	8.20	10.06	11	PASS
802.11n HT20	40/5200	7.85	9.71	11	PASS
11120	48/5240	7.73	9.59	11	PASS
802.11n	38/5190	4.96	7.31	11	PASS
HT40	46/5230	4.20	6.55	11	PASS
	36/5180	9.28	9.91	11	PASS
802.11ac VHT20	40/5200	8.39	9.02	11	PASS
11120	48/5240	8.03	8.66	11	PASS
802.11ac	38/5190	5.65	7.12	11	PASS
VHT40	46/5230	4.54	6.01	11	PASS
802.11ac VHT80	42/5210	3.46	4.12	11	PASS
Note:PSD=Read Valu	ue+Duty cycl	e correction fa	ctor		

Network Standards	Channel Number	Read Value (dBm/500kHz)	Power Spectral Density (dBm/500kHz)	Limit (dBm/500kHz)	Conclusion
	149/5745	4.22	5.84	30	PASS
802.11a	157/5785	3.27	4.89	30	PASS
	165/5825	4.31	5.93	30	PASS
000.44	149/5745	4.33	6.19	30	PASS
802.11n HT20	157/5785	3.17	5.03	30	PASS
11120	165/5825	4.03	5.89	30	PASS
802.11n	151/5755	0.52	2.87	30	PASS
HT40	159/5795	-0.54	1.82	30	PASS
	149/5745	4.03	4.66	30	PASS
802.11ac VHT20	157/5785	3.00	3.63	30	PASS
11120	165/5825	3.83	4.46	30	PASS
802.11ac	151/5755	-0.92	0.55	30	PASS
VHT40	159/5795	-0.62	0.85	30	PASS
802.11ac VHT80	155/5775	-2.19	-1.53	30	PASS
Note: 1. Power Spect	ral Density =	Read Value+Duty	cycle correction	n factor	

MIMO Antenna

U-NII-1

		Power Spectral Density						
	Channel/	Antenna 1		Antenr	Antenna 2		Limit	
Network	Frequency	Read	PSD	Read	PSD	Power	(dBm	Conclusion
Standards	(MHz)	Value	(dBm	Value	(dBm	(dBm	/MHz)	
		(dBm/MHz)	/MHz)	(dBm/MHz)	/MHz)	/MHz)		
	36/5180	3.59	5.21	6.86	8.48	10.16	11.00	PASS
802.11a	40/5200	2.87	4.49	6.06	7.67	9.38	11.00	PASS
	48/5240	3.88	5.50	6.62	8.24	10.10	11.00	PASS
200.44=	36/5180	3.11	4.97	7.03	8.89	10.37	11.00	PASS
802.11n ut20	40/5200	2.96	4.82	6.97	8.83	10.29	11.00	PASS
1120	48/5240	3.38	5.25	6.10	7.96	9.82	11.00	PASS
802.11n	38/5190	1.08	3.43	5.38	7.74	9.11	11.00	PASS
HT40	46/5230	1.67	4.02	3.96	6.31	8.32	11.00	PASS
000 11	36/5180	4.40	5.04	7.20	7.83	9.67	11.00	PASS
802.TTac \/LIT20	40/5200	3.30	3.94	6.20	6.83	8.63	11.00	PASS
VIIZU	48/5240	3.97	4.61	6.37	7.01	8.98	11.00	PASS
802.11ac	38/5190	0.81	2.28	4.31	5.78	7.38	11.00	PASS
VHT40	46/5230	0.78	2.25	4.65	6.12	7.61	11.00	PASS
802.11ac VHT80	42/5210	-0.88	-0.22	2.47	3.13	4.78	11.00	PASS

Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor

2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))

3. The manufacturer declared the transmitter output signals is CDD mode And Nss=2. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=5+10log (2/2)=5<6 dBi. So the PSD limt is 11 dBm.