

RF TEST REPORT

Applicant Shanghai Smawave Technology Co., Ltd

FCC ID 2AU8HSPH310

Product Smart communication terminal

Brand Smawave

Model SPH310

Report No. R2001A0020-R3

Issue Date April 22, 2020

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2/FCC CFR 47 Part 90Z. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Peng Tao

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Test Laboratory	4
1.1. Notes of the Test Report	
1.2. Test facility	4
1.3. Testing Location	4
2. General Description of Equipment under Test	5
2.3. Applicant and Manufacturer Information	5
2.4. General Information	5
3. Applied Standards	6
4. Test Configuration	7
5. Test Case Results	8
5.3. RF Power Output & Effective Isotropic Radiated Power	& the Peak EIRP Density8
5.4. Field Strength of Spurious Radiation/ Radiated Spuriou	s Emissions13
6. Main Test Instruments	18

F Test Report Report No.: R2001A0020-R3

Summary of measurement results

No.	Test Case	Clause in FCC rules	Verdict
1	RF Power Output & Effective Isotropic Radiated Power	2.1046/90.1321(a)	PASS
2	Field Strength of Spurious Radiation / Radiated Spurious Emissions	2.1053/ 90.1323	PASS

Date of Testing: February 22, 2020~ March 20, 2020

Note: PASS: The EUT complies with the essential requirements in the standard.

FAIL: The EUT does not comply with the essential requirements in the standard.

All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Conducted items except for RF Power Output & Effective Isotropic Radiated Power please refers to MGM5607A module report(Report No.: R2001A0008-R3V1).

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

Report No.: R2001A0020-R3

2. General Description of Equipment under Test

2.3. Applicant and Manufacturer Information

Applicant	Shanghai Smawave Technology Co. ,Ltd				
Applicant address	3/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai,				
Applicant address	China				
Manufacturer	Shanghai Smawave Technology Co. ,Ltd				
Manufacturer address	3/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai,				
	China				

2.4. General Information

EUT Description								
Model	SPH310	SPH310						
IMEI	863134038082221							
Hardware Version	dt863-mb-v0.4							
Software Version	K608_DT863_SPH3	310_20200414_V9.0						
Power Supply	External power supp	External power supply						
Antenna Type	Internal Antenna							
Antenna Gain	1.8dBi							
Test Mode(s)	LTE Band 43;							
Test Modulation	QPSK 16QAM 64QA	AM;						
Maximum E.I.R.P.	LTE Band 43:	22.69dBm						
Rated Power Supply Voltage	7.4V							
Extreme Voltage	Minimum: 6.8V M	laximum: 8.7V						
Extreme Temperature	Lowest: -40°C F	lighest: +70°C						
Operating Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)					
Operating Frequency Range(s)	LTE Band 43	3650 ~ 3700	3650 ~ 3700					
Note: The EUT is sent from the applicant to TA and the information of the EUT is declared by the								

Note: The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

Report No.: R2001A0020-R3

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR 47 Part 90Z (2019)

ANSI C63.26 (2015)

Reference standard:

FCC CFR47 Part 2 (2019)

FCC KDB 971168 D01 Power Meas License Digital Systems v03r01

FCC KDB 552295 D01 CBP Guidance for 3650 3700 Band v03

4. Test Configuration

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (X axis, horizontal polarization) and the worst case was recorded.

All mode and data rates and positions were investigated.

The following testing in LTE is set based on the maximum RF Output Power.

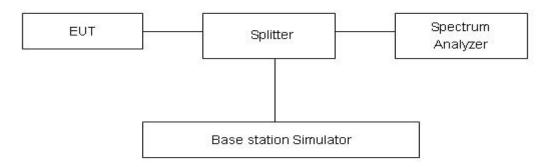
Test modes are chosen as the worst case configuration below for LTE Band 43;

Test items	LTE	Bandwidth (MHz)			h	Modulation			RB			Test Channel		
Took itomio	Band	5	10	15	20	QPSK	16QAM	64QAM	1	50%	100%	L	M	Н
RF power output	43	0	0	0	0	0	0	0	0	0	0	0	0	0
Field Strength of Spurious Radiation/ Radiates Spurious Emission	43	0	-	-	0	0	-	-	0	-	-	-	0	
Note 1. The mark "O" means that this configuration is chosen for testing. 2. The mark "-" means that this configuration is not testing.														

5. Test Case Results

5.3. RF Power Output & Effective Isotropic Radiated Power& the Peak EIRP Density

Ambient condition


Temperature	Relative humidity				
21°C ~25°C	40%~60%				

Methods of Measurement

During the process of the testing, The EUT is controlled by the Spectrum analyzer to ensure max power transmission and proper modulation.

Since this procedure utilizes a conducted measurement it does not directly result in EIRP levels for comparison to the output power limits. In order to determine the EIRP level, the effective antenna gain must be added to the corrected (for external test set-up factors) measurement result.

Test Setup

The loss between RF output port of the EUT and the input port of the tester has been taken into consideration.

Limits

According to FCC §2.1046 & 90.1321(a) Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one-megahertz slice of spectrum.

(c) Mobile and portable stations are limited to 1 watt/25 MHz EIRP. In any event, the peak EIRP density shall not exceed 40 milliwatts in any one-megahertz slice of spectrum.

Limit	Limit				
Base Station/ Fixed Station	25 watts/25 MHz				
Mobile and portable stations	1 watt/25 MHz				

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB.

Test Result

LTE TDD Band 43		Conducted Power(dBm)			Conduc					
		RB			I/Frequen		Channe	Verdict		
Bandwidth	 Modulation		offset		44590/	45565/	43615/	44590/	45565/	
				3602.5	3700	3797.5	3602.5	3700	3797.5	/
		1	0	20.2	20.79	20.17	22	22.59	21.97	pass
		1	13	20.04	19.73	20.01	21.84	21.53	21.81	pass
		1	24	20.46	19.92	20.86	22.26	21.72	22.66	pass
	QPSK	12	0	18.94	19.09	18.81	20.74	20.89	20.61	pass
		12	6	18.89	18.65	19.03	20.69	20.45	20.83	pass
		12	13	19.05	18.63	19	20.85	20.43	20.8	pass
		25	0	18.96	18.92	19.16	20.76	20.72	20.96	pass
		1	0	19.1	19.79	19.27	20.9	21.59	21.07	pass
		1	13	19.08	18.76	19.23	20.88	20.56	21.03	pass
		1	24	19.61	19.09	19.65	21.41	20.89	21.45	pass
5MHz	16QAM	12	0	17.85	18.02	17.67	19.65	19.82	19.47	pass
		12	6	17.38	17.5	17.92	19.18	19.3	19.72	pass
		12	13	17.95	17.54	18.19	19.75	19.34	19.99	pass
		25	0	17.9	17.76	18.02	19.7	19.56	19.82	pass
	64QAM	1	0	17.92	18.55	17.86	19.72	20.35	19.66	pass
		1	13	17.18	17.41	17.92	18.98	19.21	19.72	pass
		1	24	18.24	17.76	18.59	20.04	19.56	20.39	pass
		12	0	16.27	16.86	16.77	18.07	18.66	18.57	pass
		12	6	16.27	16.45	16.96	18.07	18.25	18.76	pass
			12	13	16.41	16.49	17.22	18.21	18.29	19.02
		25	0	16.37 16.72 17.06		18.17 18.52 18.86			pass	
		RB		Channe	l/Frequen	cy(MHz)	Verdict			
Bandwidth	Modulation	allocation	offset	43640/	44590/	45540/	43640/	44590/	45540/	,
				3605	3700	3795	3605	3700	3795	,
		1	0	20.22	20.8	20.2	22.02	22.6	22	pass
		1	25	20.07	19.78	20.05	21.87	21.58	21.85	pass
		1	49	20.48	19.96	20.89	22.28	21.76	22.69	pass
	QPSK	25	0	18.97	19.14	18.85	20.77	20.94	20.65	pass
		25	13	18.92	18.7	19.07	20.72	20.5	20.87	pass
10MHz		25	25	19.07	18.67	19.05	20.87	20.47	20.85	pass
		50	0	19	18.94	19.2	20.8	20.74	21	pass
		1	0	19.12	19.82	19.29	20.92	21.62	21.09	pass
	16QAM	1	25	19.11	18.8	19.26	20.91	20.6	21.06	pass
	100,111	1	49	19.64	19.11	19.68	21.44	20.91	21.48	pass
		25	0	17.88	18.07	17.71	19.68	19.87	19.51	pass

Report No.: R2001A0020-R3 25 13 17.4 17.54 17.95 19.2 19.34 19.75 pass 25 25 17.98 17.59 18.23 19.78 19.39 20.03 pass 50 0 17.93 17.81 18.06 19.73 19.61 19.86 pass 1 0 17.94 18.54 17.88 19.74 20.34 19.68 pass 1 25 17.21 17.41 17.95 19.01 19.21 19.75 pass 17.78 18.62 20.42 1 49 18.23 20.03 19.58 pass 64QAM 25 16.3 16.91 16.77 18.1 18.57 0 18.71 pass 25 13 16.29 16.49 16.99 18.09 18.29 18.79 pass 25 25 16.44 16.54 17.26 18.24 18.34 19.06 pass 17.1 50 0 16.4 16.77 18.2 18.57 18.9 pass **RB** Channel/Frequency(MHz) Channel/Frequency(MHz) Verdict Bandwidth Modulation allocation offset 43665/ 45515/ 43665/ 44590/ 44590/ 45515/ 3607.5 3700 3792.5 3607.5 3700 3792.5 1 20.21 20.76 20.18 22.01 22.56 21.98 pass 20.05 19.77 20.02 21.82 1 38 21.85 21.57 pass 1 74 20.45 19.91 20.85 22.25 21.71 22.65 pass 18.82 **QPSK** 36 0 18.95 19.1 20.75 20.9 20.62 pass 36 18 18.89 18.65 19.03 20.69 20.45 20.83 pass 36 39 19.04 18.64 19.01 20.84 20.44 20.81 pass 75 0 18.98 18.9 19.15 20.78 20.7 20.95 pass 1 0 19.07 19.8 19.27 20.87 21.6 21.07 pass 1 38 19.09 18.77 19.24 20.89 20.57 21.04 pass 1 74 19.61 19.07 19.65 21.41 20.87 21.45 pass 15MHz 16QAM 36 17.85 18.05 17.68 19.65 19.85 19.48 pass 36 17.37 17.91 18 17.49 19.17 19.29 19.71 pass 36 39 17.96 17.55 18.2 19.76 19.35 20 pass 75 0 17.9 17.76 18.02 19.7 19.56 19.82 pass 1 0 17.89 18.52 17.86 19.69 20.32 19.66 pass 1 38 17.19 17.38 17.93 18.99 19.18 19.73 pass 1 74 18.24 17.77 18.63 20.04 19.57 20.43 pass 64QAM 36 0 16.29 16.93 16.78 18.09 18.73 18.58 pass 36 16.27 16.98 18 16.46 18.07 18.26 18.78 pass 36 39 16.42 16.5 17.23 18.22 18.3 19.03 pass 75 0 16.37 16.72 17.06 18.17 18.52 18.86 pass **RB** Channel/Frequency(MHz) Channel/Frequency(MHz) Verdict Bandwidth Modulation allocation offset 43690/ 44590/ 45490/ 44590/ 45490/ 43690/ 3610 3700 3790 3610 3700 3790 1 0 20.18 20.72 20.15 21.98 22.52 21.95 pass 20MHz **QPSK** 1 50 20.04 19.73 20 21.84 21.53 21.8 pass 1 99 20.43 19.9 20.82 22.23 21.7 22.62 pass

Report No.: R2001A0020-R3 20.72 50 0 18.92 19.05 18.78 20.85 20.58 pass 50 25 18.87 18.61 19 20.67 20.41 20.8 pass 50 50 19.01 18.59 18.97 20.81 20.39 20.77 pass 100 18.95 19.11 20.75 20.65 0 18.85 20.91 pass 19.22 1 0 19.31 19.76 21.11 21.56 21.02 pass 1 50 19.05 18.75 19.2 20.85 20.55 21 pass 1 99 19.59 19.04 19.63 21.39 20.84 21.43 pass 50 17.82 17.65 16QAM 0 18.01 19.62 19.81 19.45 pass 50 25 17.34 17.47 17.88 19.14 19.27 19.68 pass 50 50 17.93 17.5 18.16 19.73 19.3 19.96 pass 100 17.99 17.88 17.72 19.68 19.52 19.79 0 pass 1 0 17.87 18.48 17.81 19.67 20.28 19.61 pass 1 50 17.15 17.36 17.89 18.95 19.16 19.69 pass 1 99 18.18 17.71 18.57 19.98 19.51 20.37 pass 64QAM 50 0 16.24 16.85 16.71 18.04 18.65 18.51 pass 50 25 16.23 16.42 16.92 18.03 18.22 18.72 pass 50 17.19 50 16.39 16.45 18.19 18.25 18.99 pass 100 0 16.35 16.68 17.03 18.15 18.48 18.83 pass

5.4. Field Strength of Spurious Radiation/ Radiated Spurious Emissions

Ambient condition

Temperature	Relative humidity					
21°C ~25°C	40%~60%					

Method of Measurement

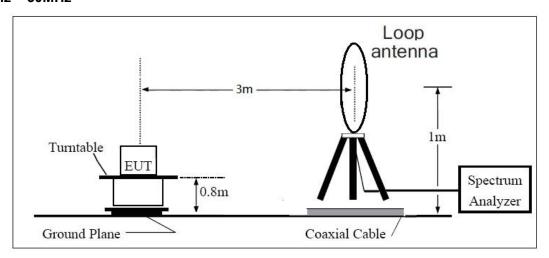
- 1. The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26 (2015).
- 2. Below 1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).
- 3. A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 4. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=200Hz,VBW=600Hz for 9kHz150kHz, RBW=10kHz, VBW=30kHz 150kHz-30MHz, RBW=100kHz,VBW=300kHz for 30MHz to 1GHz and RBW=1MHz, VBW=3MHz for above 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 7. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

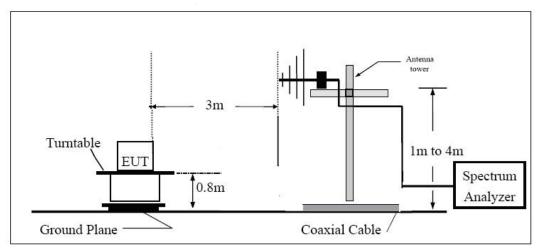
The measurement results are amend as described below:

Power(EIRP)=PMea- Pcl + Ga

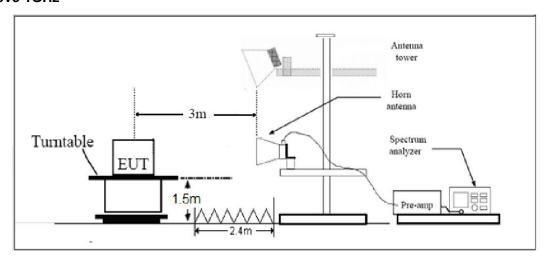
8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP



= EIRP-2.15dBi.


The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration.

Test setup


9KHz ~ 30MHz

30MHz~~~ 1GHz

Above 1GHz

Note: Area side: 2.4mX3.6m

Report No.: R2001A0020-R3

Rule Part 90.1323 specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB."

Limit 18 dBill

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for thenormal distribution is with the coverage factor k = 1.96, U=3.55 dB.

F Test Report Report No.: R2001A0020-R3

Test Result

Sweep the whole frequency band through the range from 30MHz to the 10th harmonic of the carrier, the emissions below the noise floor will not be recorded in the report.

LTE Band 43 5MHz CH Middle

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	EIRP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	7395.8	-44.06	2.50	11.35	horizontal	-35.21	-25.00	10.21	225
3	11093.6	-52.21	4.20	12.05	horizontal	-44.36	-25.00	19.36	180
4	14791.5	-51.39	5.50	14.23	horizontal	-42.66	-25.00	17.66	315
5	18489.4								
6	22187.3								
7	25885.1								
8	29583.0								
9	33280.9								
10	36978.8								

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

LTE Band 43 20MHz CH Middle

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	EIRP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	7381.0	-42.30	2.50	11.35	horizontal	-33.45	-25.00	8.45	180
3	11071.5	-48.68	4.20	12.05	horizontal	-40.83	-25.00	15.83	315
4	14762.0	-49.71	5.50	14.23	horizontal	-40.98	-25.00	15.98	90
5	18452.5								
6	22143.0								
7	25833.5								
8	29524.0								
9	33214.5			1					
10	36905.0			-					

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

^{2.} The worst emission was found in the antenna is Horizontal position.

^{2.} The worst emission was found in the antenna is Horizontal position.

6. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date
Base Station Simulator	R&S	CMW500	113824	2019-05-19	2020-05-18
Power Splitter	Hua Xiang	SHX-GF2-2-13	10120101	/	1
Spectrum Analyzer	Agilent	N9010A	MY50210259	2019-05-19	2020-05-18
Signal Analyzer	R&S	FSV40	15195-01-00	2019-05-19	2020-05-18
Trilog Antenna	SCHWARZBECK	VUBL 9163	9163-201	2017-11-18	2020-11-17
Horn Antenna	R&S	HF907	100126	2018-07-07	2020-07-06
Horn Antenna	ETS-Lindgren	3160-09	00102643	2018-06-20	2020-06-19
Horn Antenna	STEATITE	QSH-SL-26-40- K-15	16779	2017-07-20	2020-07-19
Climatic Chamber	ESPEC	SU-242	93000506	2017-12-17	2020-12-16
RF Cable	Agilent	SMA 15cm	0001	2019-12-13	2020-06-12
Software	R&S	EMC32	9.26.0	1	/

******END OF REPORT ******