2. Tap the exam row that you want to edit.
3. Tap the clip you want to annotate.
4. Tap the Edit icon.

From the Patient screen:

1. Tap a patient from the list.
2. Tap the exam.
3. Tap the image/clip you want to annotate.
4. Tap the Edit icon.

Annotation tools

Annotations can be added to individual images and clips.
When you add an annotation (text, measurements, arrow, area) to a clip or a cine, they persist through all frames.

You can also hide the overlay of the annotations you make by tapping the Hide overlay icon on saved images and clips.

Measuring with the caliper tool

When a caliper is not selected and you start dragging one of the two end points of the caliper, the caliper will become selected and will resize based on where you are dragging it.

To place a measurement:

1. From the Edit image or Edit clip screen, tap DISTANCE, and a caliper appears in the center of the image or clip.
2. Tap to select the caliper.

\square	Notice that the distance of the caliper displays in the legend on the upper left side of the screen. If you have multiple calipers, they display in different colors.

3. To resize the caliper, tap and drag one of its endpoints.
4. To move the caliper, tap anywhere on the caliper except the two end points.
5. To clear the caliper, tap an empty area outside it.

Zooming in and out

Use two fingers to pinch and expand the image area. To return to "normal" tap the magnifying glass. Also, zoom factor is shown near magnifying glass as well as orange color of depth scale along the side. Can freeze while zoomed (and can unzoom and zoom in frozen state).

Deleting annotations

* To delete one annotation, tap the annotation to select it, then tap DELETE.
* To delete all the annotations you have made, tap CLEAR ALL.

Managing images and clips

Filtering images and clips

When you review an exam, all the images and clips, regardless of the scan type (lung, heart, abdomen) are visible in the thumbnail list.

Thumbnail list

You can filter images and clips in the following ways:

- Drag and pull the thumbnail list down to reveal the filter options.
- Tap the Filter icon on top of the thumbnail list to reveal the filter options.
- Tap the More options : icon in the title bar, and tap Filter images and clips. When the filter options are visible, a blue check icon will be shown next to Filter images and clips.

When you select a filter, only the tagged images/clips are visible in the thumbnail list. You can tag images/clips by tapping the star icon under each image/clip in the thumbnail list so the star turns yellow.

To dismiss the filters you have selected, tap the More options: icon, then tap the Filter images and clips again to remove the filters.

Selecting images and clips

To select images and clips:

1. Tap the More options : icon, and tap Select images and clips.
2. Select the images and clips you want. A gray check will appear in the top right corner of the thumbnail.
3. Optionally, tap the check on the thumbnail; it turns red, and a numbered circle displays to indicate how many images and clips you have selected. To clear the red check, tap it again.

To clear the selections, tap the More options : icon, and tap Select images/ clips.

Trimming and saving images and clips

To trim and save a clip:

1. Tap the Freeze $: 8$ icon.
2. Move the right and left end points of the cine clip.
3. Tap the Clip icon.

To trim and save an image:

1. From the Exam Review screen, find the saved clip.
2. Tap EDIT.
3. Move the right and left end points of the image.
4. Tap SAVE.

Deleting images and clips

To delete selected images and clips:

1. Tap the More options : icon, and tap Select images/clips.
2. Select the images and clips you want to delete.
3. Tap DELETE and, when prompted, tap OK.

Reviewing and editing a report

Reports are not yet encapsulated in the DICOM file; you can only see images and clips at this review step.

The exam report lets you review patient and exam information, text notes, audio notes, pictures that were taken, images, and clips in the exam report.

Opening a report

To open a report, tap REPORT.

Editing a report

Once you've opened the report, each section is expanded for your review. You can collapse each section by tapping the arrow button. Just tap the arrow button to expand the section again.

You can edit each section of the report with the exception of the patient information. This is read-only and cannot be changed.

Editing exam information

The exam information section displays the exam related information that was entered before the scan.

To edit the exam information:

1. Tap the Edit icon.
2. Make any necessary updates to the section.

Adding a text note

You can add text notes that will display under each scan.

To add a text note:

1. Tap the Add text note icon. A text box, date and time label appear under the last text note.
2. Using the keyboard, type the note.
3. Tap DONE.

Editing a text note

To edit a text note:

1. Tap an existing text note. A text box containing the existing note and the keyboard displays.
2. Using the keyboard, edit the text note.
3. Tap DONE.

Deleting a text note

To delete a text note:

1. Long press an existing text note. A delete button displays.
2. Tap DELETE and, when prompted, tap OK.

Exporting images and clips to a USB drive

When exporting an images and clips, use a micro USB or adapter.
You can export images and clips from one exam or multiple exams.

A	To protect patient data, take appropriate precautions when exporting patient data to a USB drive.

To export images and clips from one exam to a USB drive:

1. From the Home screen, tap EXAMS.
2. Tap a row to select an exam.
3. Tap the bookmark icon under each of the thumbnails you would like to export. (This is an optional step and only useful if you would like to export some but not all images and clips.)
4. Connect the USB drive using the USB-c adapter.
5. Tap EXPORT. A dialog box appears.
6. Select the file type and whether you want all images and clips exported or only the tagged images and clips.
7. Tap OK to start exporting to USB drive.

To export images and clips from multiple exams to a USB drive:

1. From the Home screen, tap EXAMS.
2. Tap the circles next to each exam you would like to export.
3. Connect the USB drive using the USB-c adapter.
4. Tap the Export ψ icon on the top of the screen. A dialog box appears.
5. Select the file type and whether you want all images and clips exported or only the tagged images and clips.
6. Tap OK to start exporting to USB drive.
(v) Exam is waiting to be exported.
\% Export is complete.
\}) Export failed.

Completing an exam review

To complete an exam:

1. Tap COMPLETE.
2. When prompted, click OK.

Archiving an exam to a PACS server

After completing an exam, you can archive it to a PACS server. Once an exam is archived, you cannot edit it.

For more information about setting up a PACS server, see Managing PACS archives.

The following table is a legend for the archiving icons.

You can archive an exam either from the Exam list or the Exam review screens.

To archive an exam from the Exam list screen:

1. From the Exam List screen, tap to select the completed exam(s) you want to archive.
2. Tap the Archive icon. The complete exam is archived according to the default archive options. For more information, see Managing PACS archives.

To archive an exam from the Exam review screen:

1. From the Exam review screen, tap ARCHIVE.
2. From the Archive exam to PACS server screen, select which images and clips you want to archive and if you would like to include a report.
3. Click OK and, when prompted, click OK again.

Deleting an exam

To delete an exam from the Exam list:

1. Tap the left icon next to the exam you would like to delete. The icon turns into a check mark .
2. Tap the Trash icon.
3. When prompted, tap OK.

Deleting an exam

To delete an exam while reviewing it:

1. Tap the More options : icon.
2. Tap Delete the exam
3. When prompted, click OK.

This page left intentionally blank

Kosmos Torso sheaths

Where fluid contamination is possible, cover Kosmos Torso with an appropriate sterile sheath from CIVCO, which will promote asepsis and minimize cleaning.
A. Be aware that some patients have a latex allergy. Some commercially available Kosmos Torso covers contain latex.
A. To prevent cross-contamination, use sterile transducer sheaths and sterile coupling gel for clinical applications contacting compromised skin.
A. Some sheaths contain natural rubber latex and talc, which can cause allergic reactions in some individuals.

Use market-cleared sheaths for clinical applications when Kosmos Torso is likely to be splashed or splattered with blood or other bodily fluids.

Use market-cleared, sterile sheaths and sterile coupling gel to prevent cross-contamination. Do not apply the sheath and coupling gel until you are ready to perform the procedure. After use, remove and discard the single-use sheath, and clean and disinfect Kosmos Torso using an EchoNous-recommended high-level disinfectant.
After inserting Kosmos Torso into the sheath, inspect the sheath for holes and tears.

Ultrasound transmission gels

EchoNous recommends the use of:

- Aquasonic 100 Ultrasound Gel, Parker
- Aquasonic Clear Ultrasound Gel, Parker
- SCAN Ultrasound Gel, Parker

Kosmos Torso storage

> A. To prevent cross-contamination or unprotected exposure of personnel to biological material, containers used to transport contaminated Kosmos Torso should carry an ISO biohazard label.

The KOSMOS battery can only be replaced at an EchoNous facility; however, for shipping/storage, the battery is Li-lon 3.6V, 6.4 Ah.

Daily storage

KOSMOS is intended to be used and stored in normal ambient conditions inside a medical facility. In addition, the packaging provided with the device may be used for long-term storage.

Storage for transport

KOSMOS is intended to be handheld for easy transport. Users may use the packaging supplied with the device for transport. Consult your EchoNous sales representative for information on approved bags and other accessories.

Cleaning and disinfecting

General cautions

[^0]
Kosmos Bridge

Kosmos Bridge is not sterile when shipped; do not attempt to sterilize it.

To avoid electrical shock, before cleaning, turn off Kosmos Bridge and disconnect it from the power supply.

Cleaning

Avoid spraying the cleaning and disinfection solutions directly onto Kosmos Bridge. Instead spray onto a non-abrasive cloth and then gently wipe. Ensure that all excess solution is wiped off and not left on the surface after cleaning. The following cleaning and disinfection method must be followed for EchoNousKosmos Bridge-Bridge.

1. After each use, disconnect the USB cable from Kosmos Torso.
2. Remove any accessories, such as the headset or power supply.
3. Using a wipe from an approved presaturated disinfectant wipe, carefully wipe the screen and all other areas of Kosmos Bridge. Choose an EchoNousapproved wipe from the list in Presaturated wipes.
4. If necessary, clean Kosmos Bridge with additional wipes to remove all visible contaminants.

After disinfection, examine the display for cracks, and if damage exists, discontinue use of the system and contact EchoNous Customer Support.

TABLE 8-1. Presaturated wipes

Product	Company	Active Ingredients	Contact Condition
Sani-Cloth Plus	PDIInc.	n-Alkyl (68% C12, 32\% C14) dimethyl ethylbenzyl ammonium chlorides. $0.125 \% \mathrm{n}$ Alkyl (60\% C14, 30\% C16, 5\% C12,5\% C18) dimethyl benzyl ammonium chlorides. 0.125\%	5 minutes wet contact time for disinfection

Kosmos Torso

Cleaning

The following cleaning instructions must be followed for Kosmos Torso. Kosmos Torso must be cleaned after each use. Cleaning Kosmos Torso is an essential step before effective disinfection.

Before cleaning Kosmos Torso, read the following warnings and cautions.

> A Always disconnect the USB cable from Kosmos Torso before cleaning and disinfecting.
> A. After cleaning, you must disinfect Kosmos Torso by following the appropriate instructions.
> Always wear protective eye wear and gloves when cleaning and disinfecting any equipment.
> Use only EchoNous-recommended wipes. Using a non-recommended wipe can damage Kosmos Torso and void the warranty.
> When cleaning and disinfecting Kosmos Torso, do not allow any fluid to enter electrical connections or metal portions of the USB connector.
> The use of a cover or sheath does not preclude proper cleaning and disinfecting of Kosmos Torso. When choosing a cleaning and disinfecting method, treat Kosmos Torso as if a cover was not used in the procedure.

To clean Kosmos Torso:

1. After each use, disconnect the USB cable from Kosmos Torso.
2. Remove any accessories attached to, or covering Kosmos Torso, such as a sheath.
3. At point of use, wipe Kosmos Torso with an approved presaturated wipe.
4. Prior to disinfecting Kosmos Torso, remove all ultrasound gel from Kosmos Torso face by using an approved presaturated disinfectant wipe. Choose an EchoNous-approved wipe from the list in Presaturated wipes.
5. Using a new wipe, remove any particulate matter, gel, or fluids that remain on Kosmos Torso using a new presaturated wipe from Presaturated wipes.
6. If necessary, clean Kosmos Torso with additional wipes to remove all visible contaminants.
7. Before continuing with disinfection, ensure Kosmos Torso is visibly dry.

Disinfecting (intermediate-level)

Use the following steps to disinfect Kosmos Torso. Before performing the following steps, read the following warnings and cautions.

[^1]To disinfect the Kosmos Torso (intermediate level):

1. After cleaning, choose an intermediate-level disinfectant from the list in Presaturated wipes, and observe the recommended minimum wet contact time.
2. With a new wipe, clean the cable and Kosmos Torso, starting from the exposed cable, wiping toward the Kosmos Torso head to avoid crosscontamination.
3. Observe the required wet contact time. Monitor Kosmos Torso for wet appearance. Use at least three wipes to ensure effective disinfection.
4. Before reusing Kosmos Torso, ensure Kosmos Torso is visibly dry.

Check Kosmos Torso for damage, such as cracks, splitting, or sharp edges. If damage is evident, discontinue using Kosmos Torso, and contact your EchoNous representative.

Disinfecting (high-level)

Use the following steps to high-level disinfect Kosmos Torso whenever it has come into contact with blood, broken skin, or bodily fluids (semi-critical use). High-level disinfection of Kosmos Torso typically uses an immersion method with high-level disinfectants or chemical sterilant.

Before performing the following steps, read the following warnings and cautions.
A. Always disconnect Kosmos Torso from AC mains during cleaning and disinfection.
A. Before disinfection, clean Kosmos Torso by following the appropriate cleaning instructions in Cleaning to remove all gels, fluids, and particulates that may interfere with the disinfection process.
A. Always use protective eye wear and gloves when disinfecting any equipment.
A. When disinfecting Kosmos Torso, do not allow any fluid to enter electrical connections or metal portions of the USB or Kosmos ECG patient cable connector.

Do not attempt to disinfect Kosmos Torso using a method that is not included in these instructions. This can damage Kosmos Torso and void the warranty.
Use only EchoNous-recommended disinfectants. Using a nonrecommended disinfecting solution or incorrect solution strength can damage Kosmos Torso and void the warranty.
If Kosmos Torso has come into contact with any of the following, use the high-level cleaning and disinfection procedure: Blood, broken skin, mucosal membranes, bodily fluids

To disinfect Kosmos Torso (high level):

1. After cleaning, choose a high-level disinfectant that is compatible with Kosmos Torso. For a list of compatible disinfectants, see Disinfectant solutions for Kosmos Torso immersion.
2. Test the solution strength by using a Cidex OPA test strip. Ensure that the solution is not older than 14 days (in an open container) or 75 days (from a just opened storage container).
3. If a pre-mixed solution is used, be sure to observe the solution expiration date.
4. Immerse Kosmos Torso into the disinfectant as shown below. Kosmos Torso may be immersed only up to the immersion point shown. No other part of Kosmos Torso, such as cable, strain relief, or connectors should be soaked or immersed in fluids.

5. Refer to Disinfectant solutions for Kosmos Torso immersion for duration of immersion and contact temperature.
6. Do not immerse Kosmos Torso longer than the minimum time needed for semi-critical level of disinfection.
7. Rinse Kosmos Torso for at least one minute in clean water up to the point of immersion to remove chemical residue. Do not soak or immerse any other part of Kosmos Torso, such as the cable, strain relief, or connector.
8. Repeat, rinsing three times to ensure proper rinsing.
9. Air dry or use a soft sterile cloth to dry Kosmos Torso until visibly dry.
10. Wipe the strain relief and first 18 inches $(45 \mathrm{~cm})$ of the Kosmos Torso cable with an approved wipe from the list in Presaturated wipes.
11. Examine Kosmos Torso for damage such as cracks, splitting, or sharp edges. If damage is evident, discontinue using Kosmos Torso, and contact your EchoNous representative.

TABLE 8-2. Disinfectant solutions for Kosmos Torso immersion

			Contact Product
Company	Active Ingredients	Condition	
Cidex OPA	Advanced	Products 0.55% ortho	12 minutes at
Solution	Sterilization	phthaldehyde	$20^{\circ} \mathrm{C}$
	Product		

- Check the expiration date on the bottle to ensure the disinfectant has not expired. Mix or check that the disinfection chemicals have the concentration recommended by the manufacturer (for example, a chemical strip test).
- Check that the temperature of the disinfectant is within the manufacturer's recommended limits.

Kosmos ECG patient cable

Cleaning

The following cleaning instructions must be followed for the Kosmos ECG patient cable. The cable must be cleaned after each use. Cleaning the cable is an essential step before effective disinfection.

Before cleaning the Kosmos ECG patient cable, read the following warnings and cautions.

> Always disconnect the cable from Kosmos Torso before cleaning and disinfecting

> After cleaning, you must disinfect the cable by following the appropriate instructions.

> A Always wear protective eye wear and gloves when cleaning and disinfecting any equipment.
> A. Ensure cable insulation is intact before and after cleaning.

> A Use only EchoNous-recommended wipes and solution. Using a nonrecommended wipe can damage the cable.

To clean the Kosmos ECG patient cable:

1. After each use, disconnect the cable from Kosmos Torso.
2. Remove any accessories attached to, or covering, the cable, such as electrode pads.
3. At point of use, wipe the cables with an approved presaturated wipe from the list in Presaturated wipes to ensure effective cleaning.
4. Immerse the ECG clips and leadwires in a cleaning solution from the list in Cleaning detergent solution for Kosmos ECG patient cable, and soak for at least 10 minutes. Refer to Cleaning detergent sollution for Kosmos ECG patient cable for the solution concentration and contact time.

5. Place the cable with the solution in a ultrasonicator for at least 10 minutes.
6. Post sonicating, using a standard cleaning brush, vigorously brush all surfaces of the ECG clips while immersed in the Enzol solution until visibly clean.
7. Actuate any movable parts while immersed. In addition, flush crevices using a slip tip syringe filled with prepared cleaning detergent.
8. Remove the ECG clips from the Enzol solution, and run them under running water for 1 minute. Ensure no gel or any particulate matter is visible after this cleaning step.
9. Before continuing with disinfection, ensure the Kosmos ECG patient cable is visibly dry.

TABLE 8-3. Cleaning detergent solution for Kosmos ECG patient cable

			Contact Product
Company	Active Ingredients	Condition	
Enzol	Advanced	Borax decahydrate $>=5-<10$	2 oz. per gallon
	Sterilization	Subtilisin $>=1-<5$	solution
	Products		20 minutes
			immersion

Disinfecting the Kosmos ECG patient cable

Use the following steps to disinfect the Kosmos ECG patient cable. Before performing the following steps, read the following warnings and cautions.

Always disconnect the USB cable from KOSMOS Torso before cleaning and disinfecting.

Always use protective eye wear and gloves when disinfecting any equipment.
A. Before disinfecting, clean the Kosmos ECG patient cable by following the appropriate instructions to remove all gels, fluids, and particulates that may interfere with the disinfection process.
A. Ensure cable insulation is intact before and after disinfection

Use only EchoNous-recommended disinfectants. Using a nonrecommended disinfecting wipe can damage the Kosmos ECG patient cable.

To disinfect the Kosmos ECG patient cable:

1. After cleaning, choose an low-level disinfectant from the list in Presaturated wipes, and follow the instructions on the disinfectant label for the minimum wet contact time.
2. With a new wipe, disinfect the Kosmos ECG patient cable, starting from the connector end to the clips.
3. Observe the required wet contact time. Monitor the Kosmos ECG patient cable for wet appearance.
4. Use at least three wipes to ensure effective disinfection.
5. Examine the cable for damage, such as insulation wearing or discoloration. If damage is evident, discontinue using the Kosmos ECG patient cable.
6. Before reusing the cable, ensure the cable is visibly dry.

Binaural Headset

The following cleaning and disinfection method must be followed for Binaural Headset:

1. Disconnect the headset from Kosmos Bridge.
2. Using a wipe from an approved presaturated disinfectant wipe, carefully wipe all the areas of the headset. Choose an EchoNous-approved wipe from Presaturated wipes.
3. If necessary, clean the headset with additional wipes to remove all visible contaminants.

Recycling and disposal

> A Do not incinerate or discard KOSMOS in general waste at end of life. The lithium battery is a potential environmental and fire safety hazard.
> A The lithium ion battery inside Kosmos Bridge may explode if exposed to very high temperatures. Do not destroy this unit by incinerating or burning. Return the unit to EchoNous or your local representative for disposal.

Kosmos Bridge contains lithium-polymer batteries, and the system should be disposed of in an environmentally responsible manner in compliance with federal and local regulations. EchoNous recommends taking Kosmos Bridge and Kosmos Torso to a recycling center which specializes in the recycling and disposal of electronic equipment.

In cases where Kosmos Bridge and/or Kosmos Torso has been exposed to biologically hazardous material, EchoNous recommends using biohazard containers and in compliance with federal and local regulations. Kosmos Bridge and Kosmos Torso should be taken to a waste center which specializes in the disposal of biohazard waste.

Troubleshooting

Preventive inspection, maintenance, and calibration

- KOSMOS does not require any preventative maintenance or calibration.
- KOSMOS does not contain any serviceable parts.
- The KOSMOS battery is not replaceable.

If KOSMOS is not functioning as designed and intended, contact EchoNous customer support.

This page left intentionally blank

Electrical safety

References

IEC 60601-2-37: 2015 Medical electrical equipment - Part 2-37: Particular requirements for the basic safety and essential performance of ultrasonic medical diagnostic and monitoring equipment

ANSI AAMI ES 60601-1: 2012 Medical electrical equipment. Part 1: General requirements for basic safety and essential performance - IEC 60601-1:2012, Edition 3.1

IEC 60601-1-2:2014 Medical electrical equipment - Part 1-2: General requirements for basic safety and essential performance - Collateral Standard: Electromagnetic disturbances - Requirements and tests

IEC 62304:2015 Medical device software - Software life-cycle processes
ISO 14971:2007/(R)2010 Medical devices - Application of risk management to medical devices

10993-1:2018 Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process

ANSI AAMI EC53:2013 ECG Trunk Cables And Patient Leadwires

Labeling symbols

Symbol	EchoNous Description	SDO Title Reference Number Standard
	Indicates device manufacturer. Includes name and address of the manufacturer	Manufacturer Ref. No. 5.1.1 ISO 15223-1 Medical devices - Symbols to be used with medical device labels, labeling and information to be supplied Part 1: General requirements
C_{2797}	Manufacturer's declaration of product compliance with applicable EEC directives and the Notified Body reference number	CE Marking Ref. Appendix 12 93/42/EEC EU Medical Device Directive
	Tested to comply with FCC standards	None
\square	Class II equipment	Class II equipment Ref. No. D.1-9 IEC 60601-1 Medical electrical equipment - Part 1: General requirements for basic safety and essential performance

\triangle	Safety warnings are identified with this mark on the device.	General warning sign Ref. No. D.2-2 IEC 60601-1 Medical electrical equipment - Part 1: General requirements for basic safety and essential performance
$[1]$	Consult instructions for use	Operating instructions Ref. No. D.1-11 IEC 60601-1 Medical electrical equipment - Part 1: General requirements for basic safety and essential performance
8	Do not dispose of this product in normal trash or landfill; refer to local regulations for disposal	Separate collection Annex IX Waste Electrical and Electronic Equipment (WEEE) Directive 2012/19/EU of the European Parliament
IPX7	Kosmos Torso is protected against temporary immersion in water.	IP Code for degree of protection IEC 60529 Degrees of protection provided by enclosures (IP Code)
IPX22	Kosmos Bridge	IP Code for degree of protection IEC 60529 Degrees of protection provided by enclosures (IP Code)

REF	Part or model number	Catalog number Ref. No. 5.1.6 ISO 15223-1 Medical devices - Symbols to be used with medical device labels, labeling and information to be supplied Part 1: General requirements
SN	Serial number	Serial number Ref. No. 5.1.7 ISO 15223-1 Medical devices - Symbols to be used with medical device labels, labeling and information to be supplied - Part 1: General requirements
$w]$	Date of manufacture	Date of manufacture Ref. No. 5.1.3 ISO 15223-1 Medical devices - Symbols to be used with medical device labels, labeling and information to be supplied - Part 1: General requirements
$=1=$	Acceptable temperature range XX is generic placeholder for specified temperatures	Temperature limit Ref. No. 5.3.7 ISO 15223-1 Medical devices - Symbols to be used with medical device labels, labeling and information to be supplied - Part 1: General requirements

$\%$	Acceptable humidity range XX is generic placeholder for specified percentages	Humidity limitation Ref. No. 5.3.8 ISO 15223-1 Medical devices - Symbols to be used with medical device labels, labeling and information to be supplied - Part 1: General requirements
$\because \infty$	Acceptable atmospheric pressure range XX is generic placeholder for specified kPa	Atmospheric pressure limitation Ref. No. 5.3.9 ISO 15223-1 Medical devices - Symbols to be used with medical device labels, labeling and information to be supplied - Part 1: General requirements
\uparrow	Stack box this way up	This way up Ref. No. 13 ISO 780 Packaging-Distribution packaging-Graphical symbols for handling and storage of packages

Safety

ニーー	Indicates direct current	Direct current Ref．No．D．1－4 IEC 60601－1 Medical electrical equipment －Part 1：General requirements for basic safety and essential performance
\sim	Indicates alternating current	Alternating current Ref．No．D．1－1
		IEC 60601－1 Medical electrical equipment －Part 1：General requirements for basic safety and essential performance

Contact information

United States

\pm

EchoNous Inc.
8310 154th Avenue NE
Building B, Suite 200
Redmond, WA 98052
Technical Support (toll free): (844) 8540800
Sales (toll free): (844) 8540800
Email: support@EchoNous.com
Website: www.EchoNous.com

European Economic Area

EC REP

Authorized Representative:
Advena Ltd
Tower Business Centre
2nd Flr, Tower Street
Swatar, BKR 4013
Malta
C
2797

Biological safety

ALARA education program

The guiding principle for the use of diagnostic ultrasound is defined by the "as low as reasonably achievable" (ALARA) principle. The decision as to what is reasonable has been left to the judgment and insight of qualified personnel (users). No set of rules can be formulated that would be sufficiently complete to dictate the correct response to every circumstance. By keeping ultrasound exposure as low as possible, while obtaining diagnostic images, users can minimize ultrasonic bioeffects.

Since the threshold for diagnostic ultrasound bioeffects is undetermined, users are responsible for controlling total energy transmitted into the patient. Reconcile exposure time with diagnostic image quality. To ensure diagnostic image quality and limit exposure time, KOSMOS provides controls that can be manipulated during the exam to optimize the results of the exam.

The ability of the user to abide by the ALARA principle is important. Advances in diagnostic ultrasound, not only in the technology but in the applications of that technology, have resulted in the need for more and better information to guide users. The output display tables are designed to provide that important information.

There are a number of variables which affect the way in which the output display tables can be used to implement the ALARA principle. These variables include index values, body size, location of the bone relative to the focal point, attenuation in the body, and ultrasound exposure time. Exposure time is an especially useful variable, because it is controlled by the user. The ability to limit the index values over time supports the ALARA principle.

A generic ALARA education program is supplied with KOSMOS (see enclosed ISBN 1-932962-30-1, Medical Ultrasound Safety).

Applying ALARA

The KOSMOS imaging mode used depends upon the information needed. Bmode imaging provides anatomical information, while Color-mode imaging provides information about blood flow.

Understanding the nature of the imaging mode being used allows users to apply the ALARA principle with informed judgment. Additionally, the Kosmos Torso frequency, Kosmos Bridge setup values, scanning techniques, and experience allow users to meet the definition of the ALARA principle.

The decision as to the amount of acoustic output is, in the final analysis, up to the user. This decision must be based on the following factors: type of patient, type of exam, patient history, ease or difficulty of obtaining diagnostically useful information, and the potential localized heating of the patient due to transducer surface temperatures. Prudent use of KOSMOS occurs when patient exposure is limited to the lowest index reading for the shortest amount of time necessary to achieve acceptable diagnostic results.

Although a high index reading does not mean that a bioeffect is actually occurring, a high index reading should be taken seriously. Every effort should be made to reduce the possible effects of a high index reading. Limiting exposure time is an effective way to accomplish this goal.

There are several system controls that the operator can use to adjust the image quality and limit the acoustic intensity. These controls are related to the techniques that a user might use to implement ALARA.

Output display and display accuracy

OUTPUT DISPLAY

KOSMOS displays the two bioeffect indices prescribed by IEC 60601-2-37. Medical electrical equipment. Part 2-37: Particular requirements for the safety of ultrasonic medical diagnostic and monitoring equipment.

The thermal index (TI), provides a measure of the expected temperature increase.

Thermal index
TI is an estimate of the temperature increase of soft tissue or bone. There are three TI categories: TIS, TIB, and TIC. However, since KOSMOS is not intended for transcranial applications, the TI for cranial bone at the surface (TIC) is not available for display on the system. The following TI categories are available for display:

Safety

- TIS: Soft tissue thermal index. The main TI category. Used for applications that do not image bone.
- TIB: Bone thermal index (bone located in a focal region).

MECHANICAL INDEX

MI is the estimated likelihood of tissue damage due to cavitation. The absolute maximum limits of the MI is 1.9 as set by the Guidance for Industry and FDA Staff - Marketing Clearance of Diagnostic Ultrasound Systems and Transducers (2019).

ISPTA

The Ispta is the Spatial Peak Temporal Average Intensity. The absolute maximum limit of Ispta is $720 \mathrm{~mW} / \mathrm{cm} 2$ as set by the Guidance for Industry and FDA Staff-Marketing Clearance of Diagnostic Ultrasound Systems and Transducers (2019).

Output Display Accuracy

Output display accuracy of the bioeffect indices, Ml and TI , is dependent on the uncertainty and precision of the measurement system, engineering assumptions within the acoustic model used to calculate the parameters, and variability in the acoustic output of the systems. EchoNous also compares both internal and thirdparty acoustic measurements and confirms that both measurements are within recommended display quantization of 0.2 as outlined by the standards.

\sim	All MI and TI values displayed on KOSMOS will not exceed the maximum global values (listed in the Track 3 acoustic output tables) by more than 0.2.

The accuracy of the MI and TI indices are as follows:

- MI: accurate to within $\pm 25 \%$ or +0.2 , whichever value is larger
- TI: accurate to within $\pm 30 \%$ or +0.2 , whichever value is larger

See acoustic output tables, TABLE 9-1 through TABLE 9-6.

Acoustic output tables

TABLE 9-1 Combined acoustic output reporting table: Reportable mode 1 B-mode (Cardiac, BMI1, 12 cm Depth)

Index label

TABLE 9-2 Combined acoustic output reporting table: Reportable mode 2 B-mode (Cardiac, BMI2, 12 cm Depth)

Index label		MI	TIS		TIB							
		At surface	Below surface	Atsurfa ce	Below surface							
Maximum index value			0.74	0.50		0.50						
Index component value			$\begin{aligned} & 1: 0.25 \\ & \text { 2:0.25 } \end{aligned}$	$\begin{aligned} & 1: 0.25 \\ & \text { 2: } 0.25 \end{aligned}$	$\begin{aligned} & 1: 0.25 \\ & \text { 2: } 0.25 \end{aligned}$	$\begin{aligned} & 1: 0.25 \\ & \text { 2:0.25 } \end{aligned}$						
	$p_{r, \alpha}$ at $z_{M I}(\mathrm{MPa})$	2: 1.06										
	P (mW)		$\begin{aligned} & 1: 30.68 \\ & 2: 30.23 \\ & 1: 25.49 \\ & 2: 25.10 \end{aligned}$		$\begin{aligned} & 1: 30.68 \\ & 2: 30.23 \\ & 1: 25.49 \\ & 2: 25.10 \end{aligned}$							
	$P_{1 \times 1}(\mathrm{~mW})$											
	$z_{s}(\mathrm{~cm})$		$\begin{aligned} & 1: 4.13 \\ & 2: 4.20 \end{aligned}$									
	$z_{b}(\mathrm{~cm})$					$\begin{aligned} & 1: 4.13 \\ & 2: 4.20 \end{aligned}$						
	$\mathrm{z}_{\text {MI }}(\mathrm{cm})$	2: 4.20										
	$z_{\text {pii, } \alpha}(\mathrm{cm})$	2: 4.20										
	$f_{\text {awf }}(\mathrm{MHz})$	2: 2.07	$\begin{aligned} & 1: 2.07 \\ & \text { 2: } 2.07 \end{aligned}$		$\begin{aligned} & 1: 2.07 \\ & 2: 2.07 \end{aligned}$							
	prr (Hz)	2: 1589										
	srr (Hz)	2: 28										
	$n_{p p s}$	2: 1										
	$I_{p a, \alpha}$ at $z_{\text {pii, } \alpha}\left(\mathrm{W} / \mathrm{cm}^{2}\right)$	2: 54.17										
	$I_{\text {spta, } \alpha}$ at $z_{\text {pii, } \alpha}$ or $z_{\text {sii, } \alpha}\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	17.24										
	$l_{\text {spta }}$ at $z_{\text {pii }}$ or $z_{\text {sii }}\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	31.29										
	p_{r} at $z_{p i i}(\mathrm{MPa})$	2: 1.43										
NOTE 1 Only one operating condition per index. NOTE 2 Data should be entered for "at surface" and "below surface" both in the columns related to TIS or TIB.												
NOTE 3 If the requirements of 201.12.4.2a) are met, it is not required to enter any data in the columns related to TIS or TIB.												
NOTE 4 If the requirements of 201.12.4.2b) are met, it is not required to enter any data in the column related to MI.												
NOTE 6 The depths $z_{\text {pii }}$ and $z_{\text {pii, } \alpha}$ apply to NON-SCANNING MODES, while the depths $z_{s i i}$ and $z_{s i i, \alpha}$ apply to SCANNING MODES.						index has $z_{\text {sii, } \alpha}$ apply						

TABLE 9-3 Acoustic output reporting table: Reportable mode 3 M-mode (Cardiac, BMI2, 12 cm Depth)

Index label		MI	TIS		TIB		
		At surface	Below surface	At surface	Below surface		
Maximum index value			0.43	5.32E-02		0.11	
Index component value			5.32E-02	$2.15 \mathrm{E}-02$	5.32E-02	0.11	
	$p_{r, \alpha}$ at $z_{M I}(\mathrm{MPa})$	0.70					
	$P(\mathrm{~mW})$		4.55		4.55		
	$P_{1 \times 1}(\mathrm{~mW})$		4.11		4.11		
	$z_{5}(\mathrm{~cm})$		5.37				
	$z_{b}(\mathrm{~cm})$					4.80	
	$z_{M l}(\mathrm{~cm})$	5.37					
	$z_{\text {pii, } \alpha}(\mathrm{cm})$	5.37					
	$f_{\text {awf }}(\mathrm{MHz})$	2.72	2.72		2.68		
	prr (Hz)	800					
	$s r r(H z)$	N/A					
	$n_{p p s}$	1					
	$I_{p a, \alpha}$ at $z_{\text {pii, } \alpha}\left(\mathrm{W} / \mathrm{cm}^{2}\right)$	52.08					
	$l_{\text {spta, } \alpha}$ at $z_{\text {pii, } \alpha}$ or $z_{\text {sii, } \alpha}\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	16.71					
	$l_{\text {spta }}$ at $z_{\text {pii }}$ or $z_{\text {sii }}\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	31.29					
	p_{r} at $z_{p i i}(\mathrm{MPa})$	45.72					
NOTE 1 Only one operating condition per index. NOTE 2 Data should be entered for "at surface" and "below surface" both in the columns related to TIS or TIB. NOTE 3 If the requirements of 201.12.4.2a) are met, it is not required to enter any data in the columns related to TIS or TIB. NOTE 4 If the requirements of 201.12.4.2b) are met, it is not required to enter any data in the column related to MI. NOTE 5 Unshaded cells should have a numerical value. The equipment setting related to the index has to be entered in the operating control section. NOTE 6 The depths $z_{\text {pii }}$ and $z_{\text {pii, }}$ apply to NON-SCANNING MODES, while the depths $z_{\text {sii }}$ and $z_{\text {sii, }}$ apply to SCANNING MODES.							

TABLE 9-4 Acoustic output reporting table: Reportable mode 4 M-mode (Cardiac, BMI2, 14 cm Depth)

TABLE 9-5 Combined acoustic output reporting table: Reportable mode 5 B+C-mode (Abdominal, BMI1, 12 cm depth, smallest color ROI at top)

TABLE 9-6 Combined acoustic output reporting table: Reportable mode 6 B+C-mode (Abdominal, BMI1, 12 cm depth, largest color ROI at top)

Index label		MI	TIS		TIB		
			Below surface		Below surface		
Maximum index value			0.76	1.14		1.14	
Index component value			$\begin{gathered} 1: 2.84 \mathrm{E}-02 \\ 2: 1.11 \end{gathered}$	$\begin{gathered} 1: 2.84 \mathrm{E}-02 \\ 2: 1.11 \end{gathered}$	$\begin{gathered} 1: 2.84 \mathrm{E}-02 \\ 2: 1.11 \end{gathered}$	$\begin{gathered} 1: 2.84 \mathrm{E}-02 \\ 2: 1.11 \end{gathered}$	
	$p_{r, \alpha}$ at $z_{M I}(\mathrm{MPa})$	2: 1.09					
	$P(\mathrm{~mW})$		$\begin{gathered} 1: 2.43 \\ 2: 134.94 \end{gathered}$		$\begin{gathered} 1: 2.43 \\ 2: 134.94 \end{gathered}$		
	$P_{1 \times 1}(\mathrm{~mW})$		1. 2.19		2: 113.82		
	$z_{s}(\mathrm{~cm})$		$\begin{aligned} & 1: 5.37 \\ & 2: 3.97 \end{aligned}$				
	$z_{b}(\mathrm{~cm})$					$\begin{aligned} & 1: 4.80 \\ & 2: 3.97 \end{aligned}$	
	$z_{M 1}(\mathrm{~cm})$	2: 3.97					
	$z_{\text {pii, } \alpha}(\mathrm{cm})$	2: 3.97					
	$f_{\text {awf }}(\mathrm{MHz})$	2: 2.05					
	prr (Hz)	2: 5283					
-	srr (Hz)	2: 15					
-	$n_{p p s}$	2: 16					
E	$I_{\text {pa, } \alpha}$ at $z_{\text {pii, } \alpha}\left(\mathrm{W} / \mathrm{cm}^{2}\right)$	2: 59.28					
- 을	$\begin{aligned} & I_{\text {spta, } \alpha} \text { at } z_{\text {pii, } \alpha} \text { or } z_{\text {sii, } \alpha}(\mathrm{mW} / \\ & \left.\mathrm{cm}^{2}\right) \end{aligned}$	57.37					
	$l_{\text {spta }}$ at $z_{\text {pii }}$ or $z_{\text {sii }}\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	101.13					
	p_{r} at $z_{\text {pii }}(\mathrm{MPa})$	2: 1.44					
	Component 1: UTP4 Component 2: UTP57						
NOTE NOTE NOTE NOTE NOTE NOTE	1 Only one operating condition pe 2 Data should be entered for "at sur 3 If the requirements of 201.12.4.2a or TIB. 4 If the requirements of 201.12.4.2 5 Unshaded cells should have a nu entered in the operating control sect 6 The depths $z_{\text {pii }}$ and $z_{\text {pii, }}$ apply to SCANNING MODES.	dex. ce" and "be re met, it is are met, it is rical value. . ON-SCANN	ow surface" bo not required to not required to The equipment NG MODES, w	th in the colu enter any dat onter any da tetting relate hile the depth	mns related to in the column a in the colum d to the index $z_{s i i} \text { and } z_{s i i, \alpha}$	IS or TIB. related to TIS related to MI. as to be pply to	

Measurement accuracy

Measurement accuracy for distance and area in B-mode images are as follows:

- Axial measurement accuracy: Axial distance measurements in $2 D$ imaging modes shall be accurate to within $+/-2 \%$ of the displayed value (or 1 mm , whichever is larger).
- Lateral distance measurement accuracy: Lateral distance measurements in 2 D imaging modes shall be accurate to within $+/-2 \%$ of the displayed value (or 1 mm , whichever is larger).
- Diagonal measurement accuracy: Diagonal distance measurements in 2D imaging modes shall be accurate to within $+/-2 \%$ of the displayed value (or 1 mm , whichever is larger).
- Area measurement accuracy: Area measurement accuracy in 2D imaging modes shall be $+/-4 \%$ of the nominal value.

Measurement accuracy for distance and time in M-mode images are as follows:

- M-mode distance measurement: M-mode distance measurements shall be accurate to within $+/-3 \%$ of the displayed value.
- M-mode time measurement accuracy: M-mode time measurements shall be accurate to within $+/-2 \%$ of the displayed value.

Control effects

KOSMOS does not provide the user with direct control of acoustic output power. KOSMOS has been designed to automatically adjust the output to ensure that acoustic limits are not exceeded in any imaging mode. Since there is no direct user control for output, the user should rely on controlling exposure time and scanning technique to implement the ALARA principle.

Related references

- U.S. Dept. of Health and Human Services, Food and Drug Administration, Guidance for Industry and FDA Staff - Marketing Clearance of Diagnostic Ultrasound Systems and Transducers (2019)
- IEC 60601-2-37:2015 Medical electrical equipment - Part 2-37: Particular requirements for the basic safety and essential performance of ultrasonic medical diagnostic and monitoring equipment
- IEC 62359:2017 Ultrasonics - Field characterization - Test methods for the determination of thermal and mechanical indices related to medical diagnostic ultrasonic fields
- NEMA UD 2-2004 (R2009) Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment Revision 3

Transducer surface temperature rise

TABLE 9-7 summarizes the expected maximum temperature rise for KOSMOS. The values are based on a statistical sample test of production-equivalent systems and were measured in accordance with IEC 60601-2-37. The values listed in the table are determined with 90% confidence, that 90% of the systems will result in a temperature rise less than or equal to that stated in the table.

TABLE 9-7 Surface temperature rise

Test	Temperature rise $\left({ }^{\circ} \mathbf{C}\right)$
Still air	16.02
Simulated use	9.85

ECG supplemental information

- Recommended ECG electrodes: Use a fluid-resistant, foam-backed electrode, such as $3 \mathrm{M}^{\text {M }}$ Red Dot ${ }^{\text {TM }}$ Clear Plastic Monitoring Electrode 2235.
- KOSMOS uses single ECG filter from $0.65 \mathrm{~Hz}-47.5 \mathrm{~Hz}$.
- KOSMOS, with a fully charged battery, provides about two hours of continuous operation.
- The KOSMOS heart rate calculation is accurate to within $\hat{A} \pm 10 \%$ or $\hat{A} \pm 5 / \mathrm{min}$, whichever is greater for regular heart rates in the specified range per 60601-2-27 Heart Rate Accuracy Requirement.
- KOSMOS heart rate range (adult): $30 / \mathrm{min}$ to $200 / \mathrm{min}$.
- KOSMOS heart rate range (pediatric): $30 / \mathrm{min}$ to $250 / \mathrm{min}$.
- Noise suppression: Right leg drive max. voltage 2.12Vrms.
- Method of heart rate (HR) averaging: Data is analyzed for R-wave peaks in approx 2.5 seconds sampling periods. If required, two sampling periods are combined to capture a minimum of three R-wave peaks. The HR is updated after every sampling period.
- KOSMOS provides the following sweep speeds: $20 \mathrm{~mm} / \mathrm{sec}, 25 \mathrm{~mm} / \mathrm{sec}, 35$ $\mathrm{mm} / \mathrm{sec}$, and $50 \mathrm{~mm} / \mathrm{sec}$.
- When calculating heart rate, KOSMOS is capable of rejecting tall T-waves (as false QRS peaks) up to amplitudes that are up to 75% of QRS amplitude.

Ergonomics

A.	Repetitive ultrasound scanning may cause occasional discomfort in your thumbs, fingers, hands, arms, shoulders, eyes, neck, back, or other parts of your body. However, if you experience symptoms such as constant or recurring discomfort, soreness, pain, throbbing, aching, tingling, numbness, stiffness, burning sensation, muscle fatigue/weakness, or limited range of motion, do not ignore these warning signs. Promptly see a qualified health professional. Symptoms such as these can be linked with Work Related Musculoskeletal Disorders (WRMSDs). WRMSDs can be painful and may result in potentially disabling injuries to the nerves, muscles, tendons, or other parts of the body. Examples of WRMSDs include bursitis, tendonitis, tenosynovitis, carpal tunnel syndrome, and De Quervain syndrome. While researchers are not able to definitively answer many questions about WRMSDs, there is a general agreement that certain factors are associated with their occurrence, including preexisting medical and physical conditions, overall health, equipment, and body position while performing work, frequency of work, and duration of work.

KOSMOS is intended for quick-look applications by qualified health professionals. It is not intended for continual use in radiology or other departments. If you need to use the device for a continual period, take the following precautions:

- Position yourself comfortably, either with a chair with appropriate lower-back support or by sitting or standing upright.
- Minimize twisting, relax your shoulders, and support your arm with a cushion.
- Hold Kosmos Torso lightly, keep your wrist straight, and minimize the pressure applied to the patient.

Safety

- Take regular breaks.

Electromagnetic compatibility

A	The System complies with the Electromagnetic Compatibility requirements of AS/NZ CISPR 11:2015 and EN IEC 60601-1-2:2014. However, electronic and mobile communications equipment may transmit electromagnetic energy through air and there is no guarantee that interference will not occur in a particular installation or environment. Interference may result in artifacts, distortion, or degradation of the ultrasound image. If the System is found to cause or respond to interference, try re-orienting the System or the affected device, or increasing the separation distance between the devices. Contact <hyperlink>EchoNous customer support or your EchoNous distributor for further information.
\mathbf{A}	EchoNous does not recommend the use of high-frequency electromedical devices in proximity to its systems.EchoNous equipment has not been validated for use with high-frequency electrosurgical devices or procedures. Use of high-frequency electrosurgical devices in proximity to its systems may lead to abnormal system behavior or shutdown of the system. To avoid the risk of a burn hazard, do not use Kosmos Torso with high-frequency surgical equipment. Such a hazard may occur in the event of a defect in the high-frequency surgical neutral electrode connection.
\mathbf{A}	The System contains sensitive components and circuits. Failure to observe proper static control procedures may result in damage to the System. Any faults should be reported to <hyperlink>EchoNous or your EchoNous distributor for repair.

The System is intended for use in the electromagnetic environment specified below. The user of the System should assure that it is used in such an environment.

Electromagnetic emissions

TABLE 9-8 Guidance and manufacturer's declaration: electromagnetic emissions

Emissions test	Compliance	Electromagnetic environment: guidance RF emissions CISPR 11
The System uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.		
RF emissions	Class A	The System is suitable for use in
CISPR 11	all establishments other than domestic and those directly connected to the public low- voltage power supply network that supplies buildings used for domestic purposes.	
IEC 61000-3-2	Class A	
Voltage fluctuations/	Complies	
flicker emissions		

The System has Class A compliance in meaning it is suitable for use in all establishments other than domestic and those directly connected to the public low-voltage power supply network that supplies buildings used for domestic purposes. If the System is found to cause or respond to interference follow the guidelines in the warning section above.

Electromagnetic immunity

TABLE 9-9 Guidance and manufacturer's declaration: electromagnetic immunity

Immunity test	IEC 60601 test level	Compliance level	Electromagnetic environment: guidance
Electrostatic discharge (ESD) IEC 61000-4-2	$\pm 8 \mathrm{kV}$ contact $\pm 15 \mathrm{kV}$ air	$\pm 8 \mathrm{kV}$ contact $\pm 15 \mathrm{kV}$ air	Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.
Electrical fast transient/ burst IEC 61000-4-4	$\pm 2 \mathrm{kV}$ for power supply lines	$\pm 2 \mathrm{kV}$ for power supply lines	Mains power quality should be that of a typical commercial or hospital environment.
Surge IEC 61000-4-5	$\begin{aligned} & \pm 1 \mathrm{kV} \text { line(s) } \\ & \text { to line(s) } \\ & \pm 2 \mathrm{kV} \text { line(s) } \\ & \text { to earth } \end{aligned}$	$\pm 1 \mathrm{kV}$ differential mode $\pm 2 \mathrm{kV}$ common mode	Mains power quality should be that of a typical commercial or hospital environment.
Voltage dips, short interruptions and voltage variations on power supply input lines IEC 61000-411	$<5 \% U_{T}^{1}$ ($>95 \%$ dip in U_{T}) for 0.5 cycle $40 \% U_{T}(60 \%$ dip in U_{T}) for 5 cycles $70 \% U_{T}$ (30\% dip in U_{T} for 25 cycles $<5 \% U_{T}$ ($>95 \%$ dip in U_{T}) for 5 sec	$<5 \% U_{T}{ }^{1}$ ($>95 \%$ dip in U_{T}) for 0.5 cycle $40 \% U_{T}(60 \%$ dip in $\left.U_{T}\right)$ for 5 cycles $70 \% U_{T}(30 \%$ dip in U_{T} for 25 cycles $<5 \% U_{T}$ ($>95 \%$ dip in U_{T}) for 5 sec	Mains power quality should be that of a typical commercial or hospital environment.

TABLE 9-9 Guidance and manufacturer's declaration: electromagnetic immunity

Power frequency ($50 / 60 \mathrm{~Hz}$) magnetic field IEC 61000-4-8	$3 \mathrm{~A} / \mathrm{m}$	$3 \mathrm{~A} / \mathrm{m}$	Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.
2,3 Conducted RF IEC 61000-4- 6	3 Vrms 150kHZ 80 MHz	3 Vrms ${ }^{6}$	Portable and mobile RF communications equipment should be used no closer to any part of the system, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter Recommended separation distance $\mathrm{d}=1.2 \sqrt{\mathrm{P}}$

TABLE 9-9 Guidance and manufacturer's declaration: electromagnetic immunity

Radiated RF	$3 \mathrm{~V} / \mathrm{m}$	$3 \mathrm{~V} / \mathrm{m}$	$\mathrm{d}=1.2 \sqrt{\mathrm{P}} 80 \mathrm{MHz}$ to 800 MHz
IEC 61000-4-3	80 MHz 2.5		$\mathrm{~d}=2.3 \sqrt{\mathrm{P}} 800 \mathrm{MHz}$ to 2.5 GHz

Where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer and d is the recommended separations distance in meters (m).

Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey ${ }^{4}$, should be less than the compliance level in each frequency range ${ }^{5}$.
Interference may occur in the vicinity of equipment marked with the following symbol.

UT is the AC mains voltage prior to application of the test level
At 80 MHz and 800 MHz , the higher frequency range applies
These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.
4 Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the system is used exceeds the applicable RF compliance level above, the system should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as re-orientating or relocating the system.
Over the frequency range 150 kHz to 80 MHz , field strengths should be less than $3 \mathrm{~V} / \mathrm{m}$.
6 Conducted RF energy may cause noise in the ECG waveform. If noise is detected on the ECG waveform, disconnect the system from AC power.

A	When using the optional mobile stand, the System can be susceptible to ESD and may require manual intervention. If ESD results in a System error, unplug the probe and plug back in to restore operation.
A	Conducted RF energy may cause noise in the ECG waveform. If noise is detected on the ECG waveform, disconnect KOSMOS from AC power.

Separation distances

TABLE 9-10 Separation distances

Recommended separation distances between portable and mobile RF communications equipment and the EchoNous System			
Rated maximum output power of	Separation distance according to frequency of transmitter		
transmitter	150 kHz to 80	80 MHz to 800	800 MHz to 2,5
	MHz	MHz	GHz
	$\mathrm{d}=1.2 \sqrt{\mathrm{P}}$	$\mathrm{d}=1.2 \sqrt{\mathrm{P}}$	$\mathrm{d}=12.3 \sqrt{\text { P }}$
0.01	0.12	0.12	0.23
0.1	0.38	0.38	0.73
1	1.2	1.2	2.3
10	3.8	3.8	7.3
100	12	12	23
For transmitters rated at a maximum output power not listed above, the recommended separation distance d in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer. NOTE 1: At 80 MHz and 800 MHz , the separation distance for the higher frequency range applies. NOTE 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.			

Intentional radiator

FCC Intentional Radiator Certification contains:

- FCC ID: 2AU8B-ECHKMOS
- IC ID: 25670-ECHKMOS

KOSMOS contains an intentional radiator approved by the FCC under the FCC ID numbers, as shown above. KOSMOS complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) KOSMOS may not cause harmful interference and (2) KOSMOS must accept any interference received, including interference that may cause undesirable operation.

NO MODIFICATION: Modifications to KOSMOS shall not be made without the written consent of EchoNous, Inc. Unauthorized modifications may void the
authority granted under Federal Communications Commission rules permitting the operation of this device.

Operations in the $5.15-5.25 \mathrm{GHz}$ band are restricted to indoor usage only.

Class B device

KOSMOS has been tested and found to comply with the limits for a class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

KOSMOS has been verified to comply with the limits for a class B computing device, pursuant to FCC rules. In order to maintain compliance with FCC regulations, shielded cables must be used with this equipment. Operation with non-approved equipment or unshielded cables is likely to result in interference to radio and TV reception. The user is cautioned that changes and modifications made to the equipment without the approval of manufacturer could void the user's authority to operate this equipment.

Industry Canadian statement

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) I'appareil ne doit pas produire de brouillage, et (2) I'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Operation in the band $5150-5250 \mathrm{MHz}$ bands are restricted to indoor use to reduce potential for harmful interference to co-channel mobile satellite systems.

CAN ICES-3 (B)/NMB-3(B)

Standards

HIPAA

KOSMOS includes security settings that help you to meet the applicable security requirements listed in the HIPAA standard. Users are ultimately responsible for ensuring the security and protection of all electronic protected health information collected, stored, reviewed, and transmitted on the system.

The Health Insurance Portability and Accountability Act, Pub.L. No. 104-191 (1996). 45 CFR 160, General Administrative Requirements.

45 CFR 164, Security and Privacy

DICOM

KOSMOS conforms to the DICOM standard as specified in the KOSMOS DICOM Conformance Statement, available at www.echonous.com. This statement provides information about the purpose, characteristics, configuration, and specifications of the network connections supported by the system.

This page left intentionally blank

Specifications

System specifications

Kosmos Torso dimensions
Height: 150 mm (excluding cable (the hard plastic housing length))
Width: 56 mm
Depth: 35 mm
Weight: 260 grams (with ferrite-equipped cable)
Cable dimensions: 1.8 meters
Kosmos Bridge dimensions
Height: 146 mm
Width: 216 mm
Depth: 59 mm
Weight: 657 grams
Binaural headset
Length: 800 mm
Width: 120 mm
Depth: 25 mm

Specifications

Weight: 100 grams
ECG cable

Cable length: 860 mm
Weight: 35 grams

Power supply

Length: 117.5 mm

Width: 53.5 mm

Depth: 34.2 mm

Weight: 260 grams
DC cable dimension: 1 meter

Environmental operating and storage conditions

Kosmos Bridge and Kosmos Torso are intended to be used and stored in normal ambient conditions inside a medical facility.

Operating, charging, transport, and storage condition ranges

	Operating	Transport/Storage
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	0 C to +40 C	-20 C to +60 C
Relative humidity (non-condensing)	15% to 95%	15% to 95%
Pressure	62 kPa to 106 kPa	62 kPa to 106 kPa

Mode of operation

After storage at extreme temperatures, check the Kosmos Torso surface temperature before applying to a patient. A cold or hot surface may burn the patient.
Only operate, charge, and store Kosmos Bridge and Kosmos Torso within the approved environmental parameters.

When used in high ambient temperatures (such as 40 deg C), the KOSMOS safety feature may disable scanning to maintain safe touch temperature.

Kosmos Bridge enforces scanning limits when using Kosmos Torso to maintain safe user enclosurecontact temperatures.

Power supply (charger)

Rated input: $100-240 \mathrm{~V} \sim, 50-60 \mathrm{~Hz}, 1.5 \mathrm{~A}$

Watts: 60

Volts out: $5 \mathrm{~V}, 5.8 \mathrm{~V}, 8.9 \mathrm{~V}, 11.9 \mathrm{~V}, 15 \mathrm{~V}, 20 \mathrm{~V}$

Current out (Amps): 4.6A, 4.6A, 4.4A, 4A, 3.6A, 3A

Specifications

Internal batteries

Kosmos Bridge

Li-lon main battery: 3.6V, 6.4 Ah

Li-lon coin cell battery: 3V, 5.8mAh
Battery charging time: The time to charge the battery from 0\% to 90% of capacity is ~ 3 hours

Battery life: A fully charged battery will provide ~ 2 hours of uninterrupted scanning

IT Network

Wireless networking

Functions

You can connect KOSMOS to an IT network to perform the following:

- Storing exam data (static images and clips) acquired by KOSMOS in Picture Archiving and Communication System (PACS) by DICOM communication.
- Setting KOSMOS time correctly by inquiring the network time service.

Connection specifications

Hardware specification

$802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n} / \mathrm{ac}$, Bluetooth 4.2 or later

Software Specification

KOSMOS is connected to PACS by the DICOM standard. For details, refer to the DICOM Conformance Statement that is on the USB flash drive.

Network for connecting the device

To ensure safety, use an IT network that is isolated from the external environment by a firewall.

Specifications for the connection

Hardware specification

$802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n}$, Bluetooth 4.0

Software specifications

KOSMOS is connected to PACS by DICOM standard. Refer to the DICOM Conformance Statement of this device for details.

When available, this device connects to the network time server at startup.

Security

This device has no listening ports open to the WLAN interface. A network entity cannot initiate a connection to KOSMOS from the WLAN. However, KOSMOS can initiate a connection to servers on the WLAN and beyond.

The KOSMOS USB port can only be used to export data to a USB memory stick. Computer access to the device through the USB port is blocked.

The following TCP/IP ports are used for outgoing communication to the WLAN:

- Port for DICOM communication (specified by the user in the system settings; typically port 104, 2762, or 11112)
- Port 443 for encrypted traffic to HTTPS time/web servers
- Port 80 for HTTP web servers

Anti-virus software is not installed on this device.

IT network failure recovery measures

Connection to an IT network may become, at times, unreliable, and this may lead to failure to perform the functions described in Functions. As a result, the following hazardous situations may occur:

Network failure	Impact on equipment	Hazard	Countermeasures
IT network becomes unstable	Unable to transmit exam data to PACS	Delay of diagnosis	KOSMOS has internal memory, and exam data is
	Delay of transmission to a PACS		stored in it. After the IT network has returned to stable, the user can reinitiate the transfer of data.
	Incorrect data transmitted to a PACS	Misdiagnosis	Integrity of the data is ensured by the TCP/IP and DICOM protocols used by KOSMOS.
	Unable to get the time from a time server	Incorrect exam data	KOSMOS has the capability of entering data and time manually.
	Incorrect time data		KOSMOS always indicates the date and the time on the main screen.
Firewall has broken down	Attack via network	Manipulation of exam data	KOSMOS closes unnecessary network ports.
	Infection by computer virus	Leak of exam data	KOSMOS prevents a user from loading software and executing it.

- Connection of equipment to an IT network that includes other systems could result in previously unidentified risks to patients, operators, or third parties. Before connecting the equipment to an uncontrolled IT Network, make sure that all potential risks resulting from such connections were identified and evaluated, and suitable countermeasures were put in place. IEC 80001-1:2010 provides guidance for addressing these risks.
- When a setting of the IT network to which KOSMOS is connected has been changed, check that the change does not affect it, and take measures, if necessary. Changes to the IT network include:
- Changing the network configuration (IP address, router, and so on)
- Connecting additional items
- Disconnecting items
- Updating equipment
- Upgrading equipment
- Any changes to the IT network could introduce new risks requiring additional evaluation to be performed.

Term	Description
Annotation	Annotations are text notes, arrows, and/or measurements that a clinician may add to an image or clip. An annotation appears as an overlay on the image/clip.
Archive	After a report is generated, the patient information is updated in the hospital's EMR/PACS system. The device needs to have a secure connection for data transfer. Once an exam is archived, it cannot be edited. At this point, it is safe to purge the exam from KOSMOS to create more room for new studies.
Anrow	An arrow is an arrow icon that a clinician may put on a certain location of an image/clip to highlight something. This displays as an overlay on the image/clip.
Auscultation	Auscultation is listening to the internal sounds of the body, usually using a stethoscope, for the purpose of examining the circulatory and respiratory systems (heart and breath sounds) as well as the gastrointestinal system (bowel sounds).
Body mass index.	

Term	Description
Clip	A clip is a short sequences of multiple frames like a movie. Cardiac output. Once an exam is completed, you won't be able to add images to the exam. You can add/edit/delete any annotations that have been saved as overlays on images/clips until the exam is archived. Once archived, you cannot edit anything. If the clinician does not complete an exam, KOSMOS will automatically complete the exam when KOSMOS is turned off.
	Digital auscultation. Digital Imaging and Communications in Medicine.
DA	DICOM is the most universal and fundamental standard in digital medical imaging. It's an all- encompassing data transfer, storage, and display protocol built and designed to cover all functional aspects of contemporary medicine. PACS
functionality is DICOM driven.	
ECG	Electrocardiogram. Electrocardiography is the process of recording the electrical activity of the heart over a period of time using electrodes placed over the skin. These electrodes detect the tiny electrical changes on the skin that arise from the heart muscle's electro physiologic pattern of depolarizing and re-polarizing during each
heartbeat.	
An exam contains all the objects, images, clips,	
Exam reports that are saved during a clinical	

Term	Description
Frozen state	The state KOSMOS gets into when you tap the Freeze button in live imaging. During the frozen state, you can add annotations to one frame of the cine and save the still image. The measurements only stay on one frame of the cine, but the annotations will persist in the whole cine. When you save a clip from the cine, annotations are saved as overlays on the clip, but the measurement won't be saved in the clip. That is because usually measurements are relevant to only one frame of a cine instead of the whole series of frames.
	Heart rate.
An image is a single frame of an ultrasound view	
captured by KOSMOS.	

Term	Description
Ping test	A ping test is used to test a TCP/IP connection. If the test is successful, the connection between the KOSMOS and PACS archive is working.
Report	A report consists of details of an exam, along with the notes entered by the clinician.
Review	This is the state of KOSMOS where you can review and edit patient data if it has not been archived.
ROI	Region of Interest. The ROI refers to the bounded region in the field of view where color flow information is depicted.
Scan	A scan is a system preset where system parameters are optimized for scanning a certain organ, such as heart or lungs. Scans can include multiple images, clips, and reports that you can
save. The scan preset drives calculations,	
measurements, and reports.	

This page left intentionally blank

[^0]: A. Some reprocessing chemicals may cause an allergic reaction in some individuals.

 Ensure that cleaning and disinfecting solutions and wipes are not expired.

 Do not allow cleaning solution or disinfectant into the Kosmos Bridge or Kosmos Torso connectors.

 A Wear the appropriate personal protective equipment (PPE) recommended by the chemical manufacturer, such as protective eye wear and gloves.
 A. Do not skip any steps or abbreviate the cleaning and disinfecting process in any way.
 A. Do not spray cleaners or disinfectants directly on Kosmos Bridge surfaces or on Kosmos Bridge and Kosmos Torso connectors. Doing so may cause solution to leak into KOSMOS, damaging it and voiding the warranty.
 Do not attempt to clean or disinfect Kosmos Bridge, Kosmos Torso, or the Kosmos Torso cable using a method that is not included here or chemical not listed in this guide. Doing so can damage Kosmos Torso and void the warranty.

[^1]: A. Always disconnect the USB cable from Kosmos Torso before cleaning and disinfecting.
 A. Always use protective eye wear and gloves when disinfecting any equipment.
 A. Before disinfecting, clean Kosmos Torso by following the appropriate instructions to remove all gels, fluids, and particulates that may interfere with the disinfection process.

 Use only EchoNous-recommended disinfectants. Using a nonrecommended disinfecting wipe can damage Kosmos Torso and void the warranty.

