

TEST REPORT

Product: SMART WIRELESS DOOR OPENER

Trade mark : N/A

Model/Type reference : GD810/GD811/GD812

Serial Number : N/A

Report Number : EED32L00337602

FCC ID : 2AU7E-GD81X

Date of Issue: : Mar. 27, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

ShenZhen SigmaWit Technology Co., Ltd 11th floor, Lingyun Building Honglang North 2nd Road, Bao'an, ShenZhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by:

| Compiled by: | Sunlight Sun | Sunli

Date: Mar. 27, 2020 Check No.: 3096310179

Report Seal

2 Version

Version No.	Date	Description			
00	Mar. 27, 2020		Original		
/			(0)	0	

Test Summary

rest Summary				
Test Item	Test Requirement	Test method	Result PASS	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013		
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

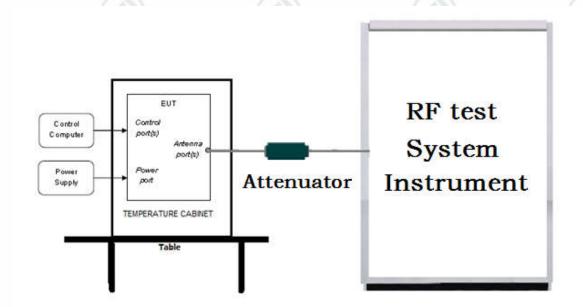
Model No.:GD810/GD811/GD812

Only the model GD810 was tested, Their electrical circuit design, layout, components used and internal wiring are identical, Only the type the name, number of external keys is different

Page 4 of 71

4 Content

1 C	OVER PAGE		•••••	•••••	1
2 V	ERSION	•••••			, , , , , , , , , , , , , , , , , , ,
3 TI	EST SUMMARY	•••••			
4 C	ONTENT				4
5 TI	EST REQUIREMENT				
5	5.1.1 For Conducted 5.1.2 For Radiated Er 5.1.3 For Conducted 5.2 TEST ENVIRONMENT	test setup missions test setup Emissions test setup			
6 G	ENERAL INFORMATION	ON			
6 6 6 6 6	5.2 GENERAL DESCRIPTION 5.3 PRODUCT SPECIFICAT 5.4 DESCRIPTION OF SUP 5.5 TEST LOCATION 5.6 DEVIATION FROM STA 5.7 ABNORMALITIES FROM 5.8 OTHER INFORMATION	ON OF EUT FION SUBJECTIVE TO THIS SUPPORT UNITS INDARDS INDARDS INDARDS REQUESTED BY THE CUSTER TAINTY (95% CONFIDENCE)	TANDARD		
8 R	ADIO TECHNICAL RE	QUIREMENTS SPECIFIC	CATION		11
	Appendix B): Carrier I Appendix C): Dwell Ti Appendix D): Hopping Appendix E): Conduc Appendix F): Band-ed Appendix G): RF Con Appendix H) Pseudor Appendix I) Antenna I Appendix J) AC Powe Appendix K) Restricte Appendix L) Radiated	ccupied Bandwidth Frequency Separation g Channel Number dge for RF Conducted Enducted Spurious Emissionandom Frequency Hoppi Requirement er Line Conducted Emissional Bands around fundamed Spurious Emissional Spurious Emissional Spurious Emissional Spurious Emissional Spurious Emissiona	nissionsng Sequenceon	ed)	
		T SETUP			
PH		CONSTRUCTIONAL DE			50



Report No.: EED32L00337602 Page 5 of 71

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

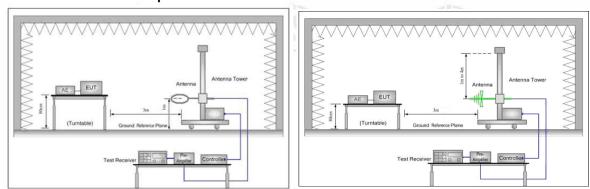
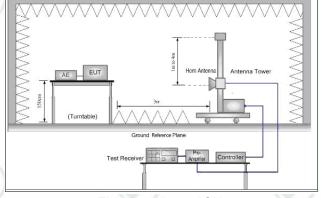
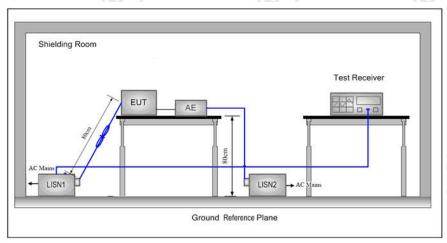


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

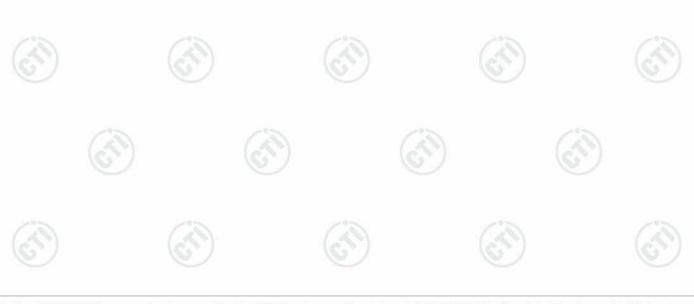



Figure 3. Above 1GHz

Report No.: EED32L00337602 Page 6 of 71

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup



5.2 Test Environment

Operating Environment:					
Temperature:	23.0 °C				
Humidity:	54 % RH	(G)	(6,1)		
Atmospheric Pressure:	1010mbar				

5.3 Test Condition

Toot Mode	Ty/Dy	RF Channel			
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2478 MHz	Channel 1	Channel 8	Channel 15	
Grok		2402MHz	2440MHz	2478MHz	

Report No.: EED32L00337602 Page 7 of 71

6 General Information

6.1 Client Information

Applicant:	ShenZhen SigmaWit Technology Co., Ltd		
Address of Applicant:	11th floor, Lingyun Building Honglang North 2nd Road, Bao'an, ShenZhen, China		
Manufacturer:	ShenZhen SigmaWit Technology Co., Ltd		
Address of Manufacturer:	11th floor, Lingyun Building Honglang North 2nd Road, Bao'an, ShenZhen, China		
Factory:	ShenZhen SigmaWit Technology Co., Ltd		
Address of Factory:	11th floor, Lingyun Building Honglang North 2nd Road, Bao'an, ShenZhen, China		

6.2 General Description of EUT

0144 DT 14"DEL 500 D				
SMART WIRELESS D	OOR OPENER			
GD810/GD811/GD812				
GD810		(3)		
N/A		(6,0)		
2402MHz to 2478MHz				
Adapter	MODEL:XSC-0501000SU INPUT:100-240V~50/60Hz 0.4A OUTPUT:5V1000mA)		
LITHIUM BATTERY	MODEL:CR2450, DC 3V			
Nov. 13, 2019				
Nov. 13, 2019 to Jan. 06, 2020				
	GD810/GD811/GD812 GD810 N/A 2402MHz to 2478MHz Adapter LITHIUM BATTERY Nov. 13, 2019	GD810/GD811/GD812 GD810 N/A 2402MHz to 2478MHz MODEL:XSC-0501000SU INPUT:100-240V~50/60Hz 0.4A OUTPUT:5V1000mA LITHIUM BATTERY MODEL:CR2450, DC 3V		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz to 2478MHz		
Modulation Type:	GFSK		150
Number of Channel:	15	2) (2	(1)
Test Power Grade:	Tx power :8 dBm		
Hopping Channel Type:	Adaptive Frequency Hopping system	ms	
Test Software of EUT:	SecureCRT.exe	100	-6-2
Antenna Type:	PCB Antenna		(41)
Antenna Gain:	0dBi	(0)	6
Test Voltage:	DC 3V		

Operation	Frequency ea	ch of channe	1		\	(1)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	5	2420MHz	9	2446MHz	13	2465MHz
2	2408MHz	6	2425MHz	10	2450MHz	14	2473MHz
3	2410MHz	7	2434MHz	11	2456MHz	15	2478MHz
4	2413MHz	8	2440MHz	12	2461MHz		

Report No.: EED32L00337602 Page 8 of 71

6.4 Description of Support Units

Associa	ted equipment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Notebook	HP	HP 430 G3	5CD6082JLC	CTI	CTI
		Ta'	1		(I)	(3)

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

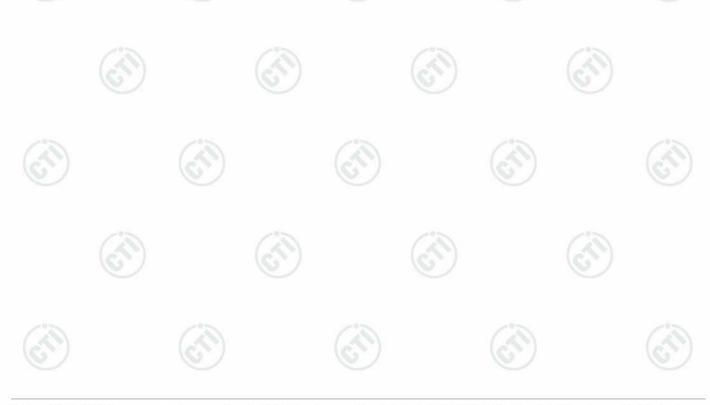
None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty(95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE newer conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
2	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)	
3 R	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	
	19.7	1907 /	



Report No.: EED32L00337602 Page 9 of 71

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	<u> </u>	01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY56376072	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	158060006	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		03-01-2019	02-29-2020

Page 10 of 71

		3M full-anechoi	i e		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	05-21-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-16-2019	01-15-2020
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test method	Test item	Verdict	Note
ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
ANSI 63.10	Dwell Time	PASS	Appendix C)
ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
ANSI 63.10	Antenna Requirement	PASS	Appendix I)
ANSI 63.10	AC Power Line Conducted Emission	N/A	Appendix J
ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)
	ANSI 63.10 ANSI 63.10	ANSI 63.10 ANSI 63.10 Carrier Frequencies Separation ANSI 63.10 Dwell Time ANSI 63.10 Hopping Channel Number ANSI 63.10 Conducted Peak Output Power ANSI 63.10 Band-edge for RF Conducted Emissions ANSI 63.10 Restricted bands around fundamental frequency (Radiated) Emission) Radiated Spurious Radiated Spurious	ANSI 63.10 ANSI 63.10 Carrier Frequencies Separation ANSI 63.10 Dwell Time PASS ANSI 63.10 Hopping Channel Number PASS ANSI 63.10 Conducted Peak Output Power ANSI 63.10 Band-edge for RF Conducted Emissions ANSI 63.10 RF Conducted Spurious Emissions ANSI 63.10 ANSI 63.10 ANSI 63.10 Antenna Requirement ANSI 63.10 ANSI 63.10 Restricted bands around fundamental frequency (Radiated) Emission) Restricted Spurious ANSI 63.10 Rediated Spurious RASS PASS

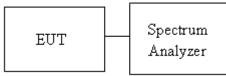
Report No.: EED32L00337602 Page 12 of 71

Appendix A): 20dB Occupied Bandwidth

Test Limit

According to §15.247(a) (1),

20 dB Bandwidth: For reporting purposes only.


Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100kHz, VBW = 300kHz and Detector = Peak, to measurement 20dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Page 13 of 71

Test Result

99% OBW

Mode	Channel.	99% OBW [MHz]	Verdict
GFSK	LCH	0.08435	PASS
GFSK	MCH	0.08136	PASS
GFSK	HCH	0.08336	PASS

20 dB Bandwidth

Mode	Channel.	20dB Bandwidth [MHz]	Verdict
GFSK	LCH	0.2670	PASS
GFSK	MCH	0.2658	PASS
GFSK	HCH	0.2691	PASS

Page 14 of 71

Test Graph

99% OBW

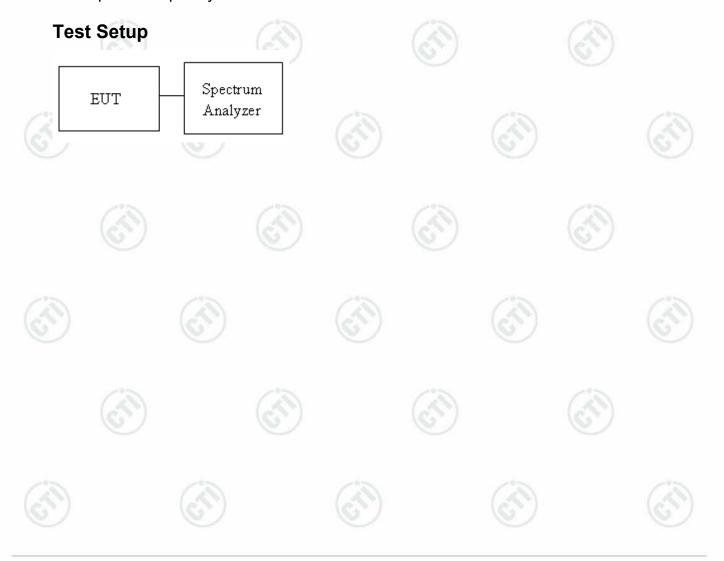
20 dB Bandwidth

Report No.: EED32L00337602 Page 16 of 71

Appendix B): Carrier Frequency Separation

Test Limit

According to §15.247(a)(1),

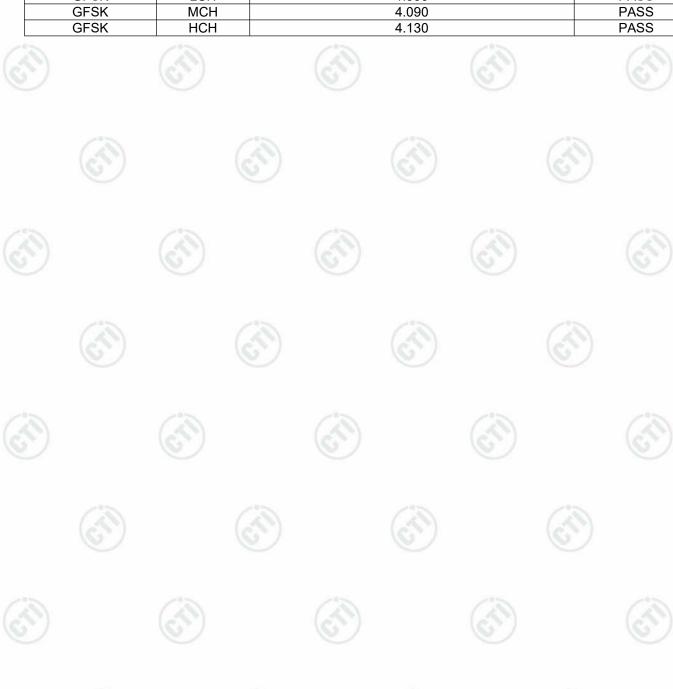

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit	> two-thirds of the 20 dB bandwidth

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = approximately 30% of the channel spacing,

 VBW ≧RBW, Sweep = auto.Max hold, mark 3 peaks of hopping channel and record the
 3 peaks frequency



Page 17 of 71

Result Table

1 20 31				
Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict	
GFSK	LCH	1.999	PASS	
GFSK	MCH	4.090	PASS	
GFSK	HCH	4.130	PASS	

Report No.: EED32L00337602 Page 18 of 71

Test Graph

Appendix C): Dwell Time

Test Limit

According to §15.247(a)(1)(iii),

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

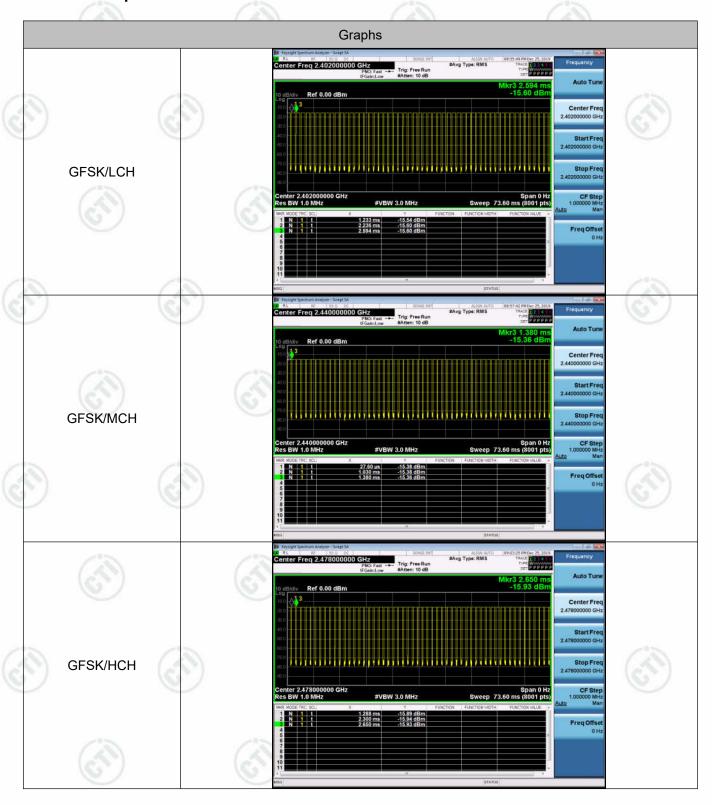
- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Sweep = auto

Test Setup



Result Table

Mode	Chann el	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	LCH	1.0028	106.7	0.107	0.74	PASS
GFSK	MCH	1.0028	106.7	0.107	0.74	PASS
GFSK	HCH	1.012	106.7	0.108	0.74	PASS



Report No.: EED32L00337602 Page 21 of 71

Test Graph

Report No.: EED32L00337602 Page 22 of 71

Appendix D): Hopping Channel Number Test Limit

According to §15.247(a)(1)(iii)

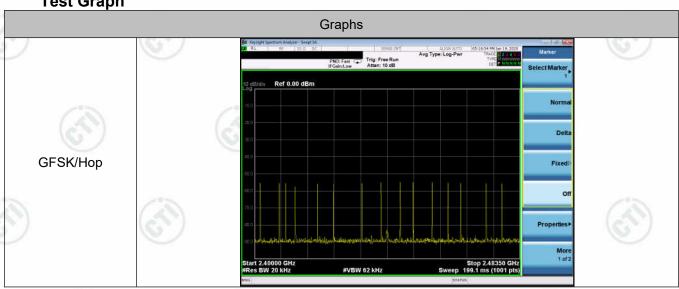
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller., VBW ≧ RBW.
- 4.Max hold, view and count how many channel in the band.

Test Setup Spectrum EUT Analyzer



Report No.: EED32L00337602 Page 23 of 71

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	15	PASS

Test Graph

Report No.: EED32L00337602 Page 24 of 71

Appendix E): Conducted Peak Output Power Test Limit

According to §15.247(b)(1).

Peak output power:

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

(3)	
Limit	☐ Antenna with DG greater than 6 dBi : 21dBm
	[Limit = $30 - (DG - 6)$]

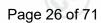
Average output power: For reporting purposes only.

Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

Test Setup

Report No. : EED32L00337602 Page 25 of 71


Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	3.963	PASS
GFSK	MCH	4.390	PASS
GFSK	HCH	3.841	PASS

Test Graph

Appendix F): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

Limit	-20 dBc		(3)
		127.7	

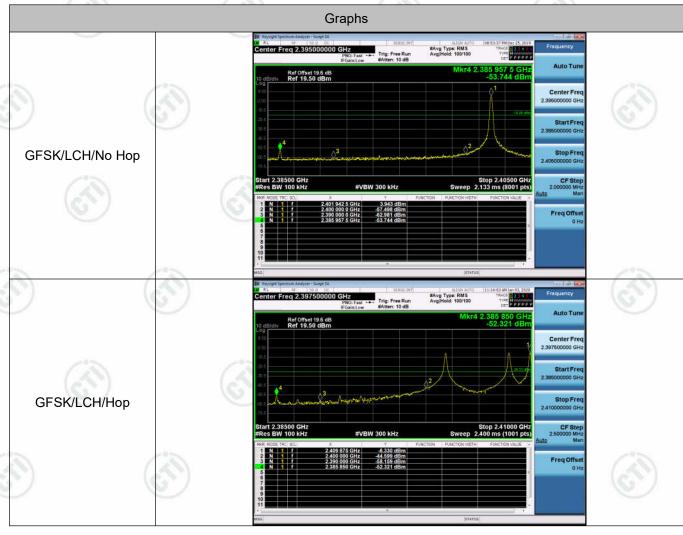
Test Procedure

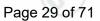
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

Test Setup

Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequenc y Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
GFSK	LCH	2402	3.943	Off	-53.744	-16.06	PASS
			-6.330	On	-52.321	-26.33	PASS
GFSK	нсн	2480	3.875	Off	-45.963	-16.13	PASS
			-5.255	On	-48.312	-25.26	PASS

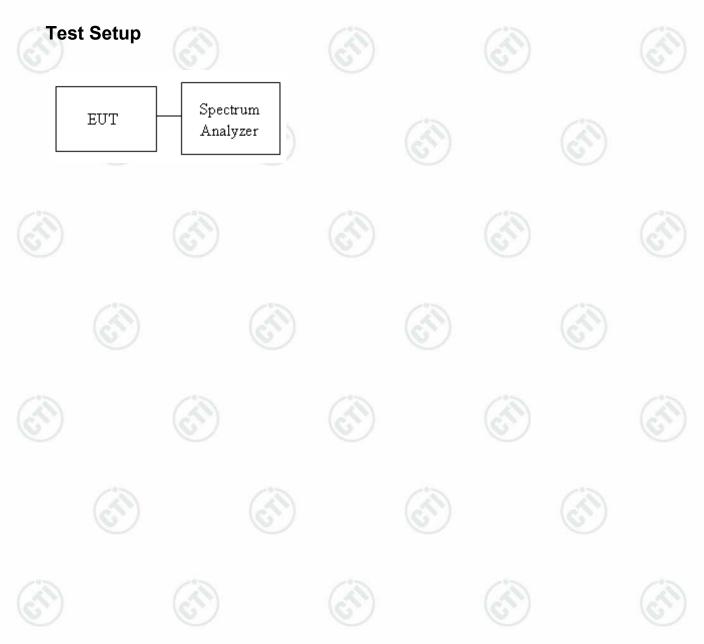



Report No.: EED32L00337602 Page 28 of 71

Test Graph



Appendix G): RF Conducted Spurious Emissions

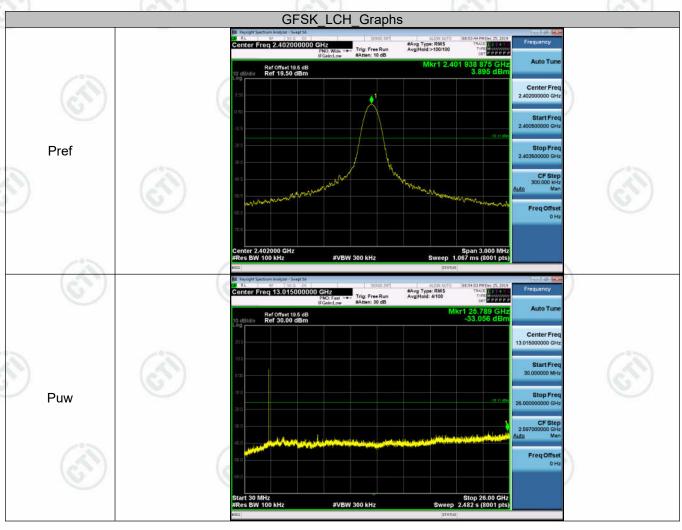

Test Limit

According to §15.247(d),

-		
0.00		70-
I impit	20 4D 2	7 257
Limit	1-20 abc	7 (6.34)
Th. 1	1 A 3	1.60
		N. W. T. A. C. Y.

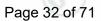
Test Procedure

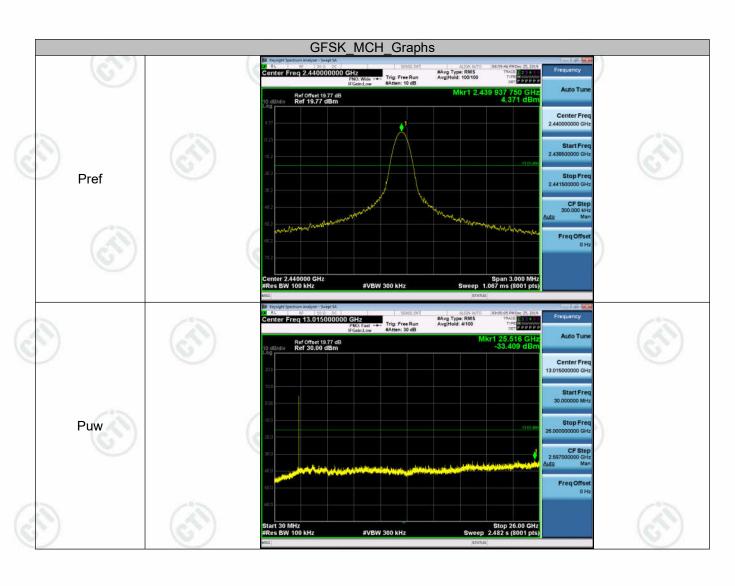
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

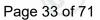


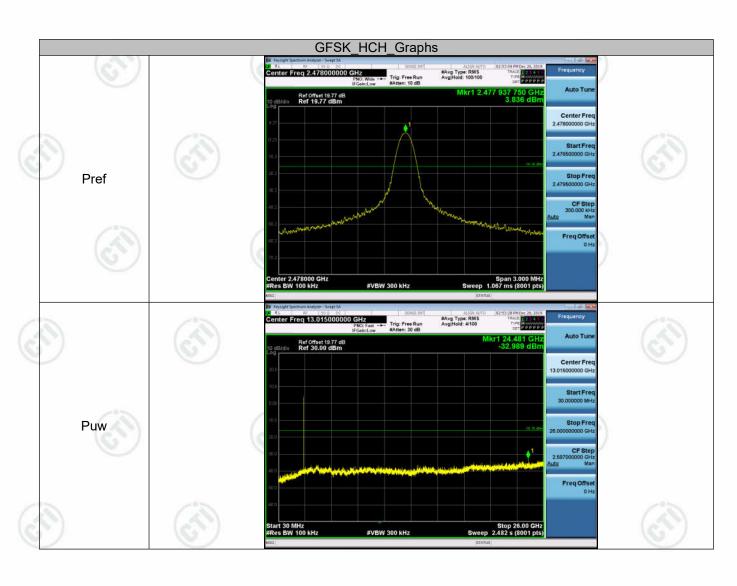
Report No. : EED32L00337602 Page 31 of 71

Result Table


Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	3.895	<limit< th=""><th>PASS</th></limit<>	PASS
GFSK	MCH	4.371	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	3.836	<limit< td=""><td>PASS</td></limit<>	PASS

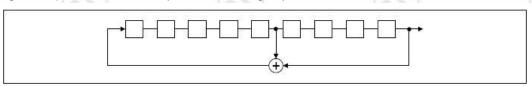

Test Graph





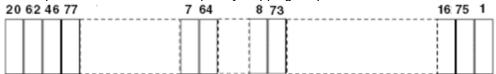
Appendix H) Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15**C Section 15.247 (a)(1) requirement:**


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

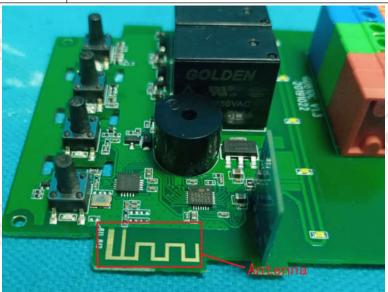
Each frequency used equally on the average by each transmitter.

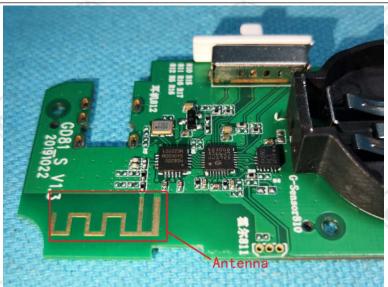
The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32L00337602 Page 35 of 71

Appendix I) Antenna Requirement


15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

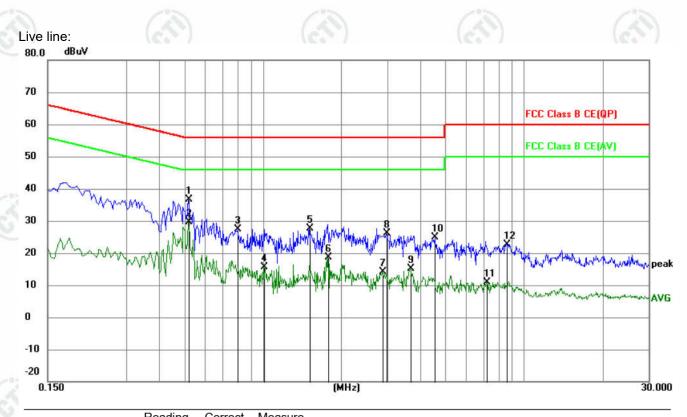
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0 dBi.

Report No. : EED32L00337602 Page 36 of 71

Appendix J) AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-	·30MHz					
	1) The mains terminal disturba		conducted in a shie	lded room.			
	2) The EUT was connected to	•					
	Stabilization Network) whic						
	power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect						
	multiple power cables to a s	ingle LISN provided t	he rating of the LIS	N was not			
	exceeded.						
	 The tabletop EUT was place reference plane. And for flothorizontal ground reference 	or-standing arrangem					
	4) The test was performed with	th a vertical ground re	•				
	EUT shall be 0.4 m from the						
	reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a						
	ground reference plane for LISNs mounted on top of the ground reference						
	plane. This distance was be						
	All other units of the EUT a LISN 2.	nd associated equipi	ieni was at least o.	o III IIOIII UIE			
	5) In order to find the maximum	m emission, the relat	ive positions of eq	uipment and			
	all of the interface cables conducted measurement.	must be changed	according to ANS	C63.10 or			
Limit:		Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*	(1)			
	0.5-5	56	46	(0,)			
	5-30	60	50				
	* The limit decreases linearly v	with the logarithm of	the treduency in the	- range () 1			
	* The limit decreases linearly \	with the logarithm of	the frequency in the	e range 0.18			
	* The limit decreases linearly with MHz to 0.50 MHz. NOTE: The lower limit is applied.	(1)	(17)	e range 0.18			



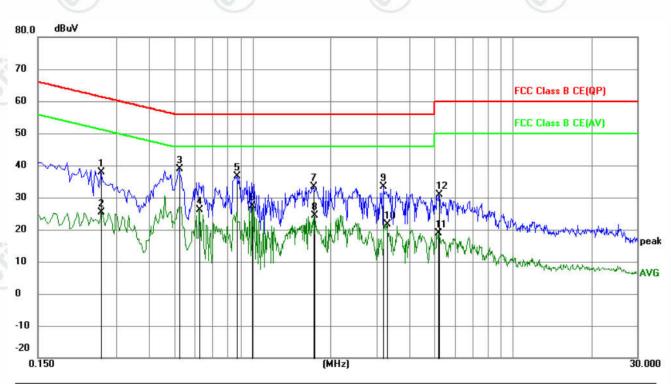
Page 37 of 71

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.5190	26.71	10.02	36.73	56.00	-19.27	QP	
	2	*	0.5190	19.72	10.02	29.74	46.00	-16.26	AVG	
	3		0.8025	17.50	9.91	27.41	56.00	-28.59	QP	
	4		1.0050	5.65	9.91	15.56	46.00	-30.44	AVG	
	5		1.5090	17.81	9.87	27.68	56.00	-28.32	QP	
	6		1.7745	8.72	9.85	18.57	46.00	-27.43	AVG	
1	7		2.8815	4.25	9.83	14.08	46.00	-31.92	AVG	
	8		2.9715	16.18	9.83	26.01	56.00	-29.99	QP	
	9		3.6825	5.22	9.83	15.05	46.00	-30.95	AVG	
	10		4.5690	15.13	9.83	24.96	56.00	-31.04	QP	
	11		7.1835	1.03	9.86	10.89	50.00	-39.11	AVG	
	12		8.6325	12.77	9.91	22.68	60.00	-37.32	QP	
-										



Page 38 of 71

Neutral line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2625	27.74	10.07	37.81	61.35	-23.54	QP	
2	0.2625	15.27	10.07	25.34	51.35	-26.01	AVG	
3 *	0.5235	28.76	10.03	38.79	56.00	-17.21	QP	
4	0.6270	16.16	9.99	26.15	46.00	-19.85	AVG	
5	0.8745	26.73	9.92	36.65	56.00	-19.35	QP	
6	0.9960	17.49	9.91	27.40	46.00	-18.60	AVG	
7	1.7115	23.49	9.85	33.34	56.00	-22.66	QP	
8	1.7295	14.64	9.85	24.49	46.00	-21.51	AVG	
9	3.1875	23.57	9.83	33.40	56.00	-22.60	QP	
10	3.2865	11.72	9.83	21.55	46.00	-24.45	AVG	
11	5.1810	8.98	9.83	18.81	50.00	-31.19	AVG	
12	5.1945	21.06	9.83	30.89	60.00	-29.11	QP	

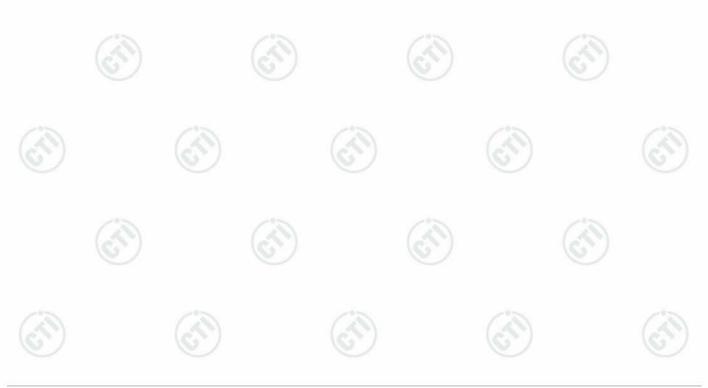
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix K) Restricted bands around fundamental frequency (Radiated)

	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	(
(P)		Ab 4011-	Peak	1MHz	3MHz	Peak	(3)
3		Above 1GHz	Peak	1MHz	10Hz	Average	
	Test Procedure:	Below 1GHz test procedur	e as below:				
		 a. The EUT was placed or at a 3 meter semi-anech determine the position of the EUT was set 3 met was mounted on the top of the antenna height is videtermine the maximum polarizations of the antental discourage of the antenna was tuned table was turned from 0 e. The test-receiver system Bandwidth with Maximum f. Place a marker at the end frequency to show compliants. Save the spectrum for lowest and highest or determine the position of the provided from the position of the EUT was placed in the provided from the EUT was placed in the position of the EUT was placed in the provided from the EUT was placed in the provided from the EUT was placed in the position of the EUT was placed in the position of the EUT was placed in the EUT wa	noic camber. The of the highest rac ers away from the of a variable-he aried from one m ovalue of the fiel enna are set to m ission, the EUT of to heights from 1 degrees to 360 m was set to Pea m Hold Mode. and of the restricted bliance. Also me um analyzer plot	e table wa diation. he interfere eight anter heter to fo d strength hake the m was arran I meter to degrees to k Detect I ed band c asure any	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasurement ged to its no 4 meters a o find the no function a losest to the	of the grade of th	to n, which ound to vertical and then able ading.
		g. Different between above to fully Anechoic Chamber metre (Above 18GHz th h. b. Test the EUT in the low. The radiation measuren Transmitting mode, and j. Repeat above procedure	e is the test site, per and change f e distance is 1 n pwest channel , t nents are perforr found the X axis	form table neter and the Highes med in X, s positioni	0.8 metre table is 1.5 st channel Y, Z axis p ng which i	to 1.5 metre). cositioning fo t is worse ca	(E)
	Limit:	Frequency	Limit (dBuV/n		1,0	mark	
		30MHz-88MHz	40.0	(2011.)		eak Value	
		88MHz-216MHz	43.5			eak Value	
103		216MHz-960MHz	46.0	(A	· ·	eak Value	
		960MHz-1GHz	54.0	(0)		eak Value	
			54.0			e Value	
		Above 1GHz	74.0			Value	
					, can	. 2.100	
	(63)	(6/2)	(6)		(1		

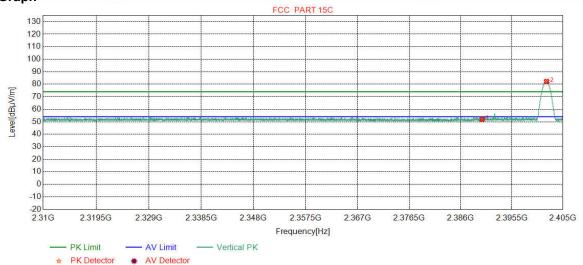
Report No.: EED32L00337602 Page 40 of 71

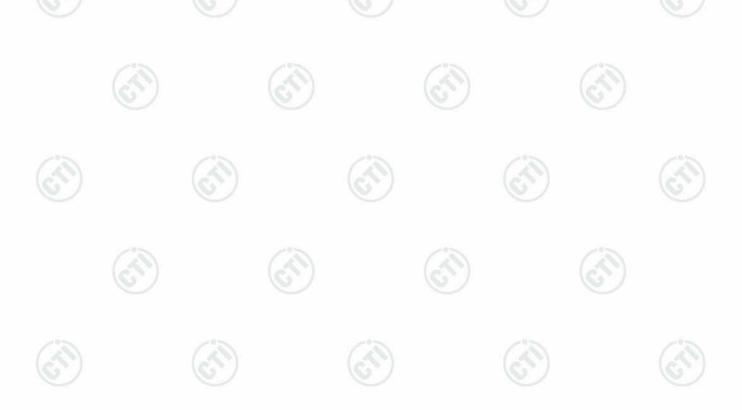

Test plot as follows:

Mode:	GFSK	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2385.7200	32.24	13.41	-42.44	51.63	54.84	74.00	19.16	Pass	Horizontal
2	2390.0000	32.25	13.37	-42.44	48.18	51.36	74.00	22.64	Pass	Horizontal
3	2401.9788	32.26	13.31	-42.43	89.50	92.64	74.00	-18.64	Pass	Horizontal

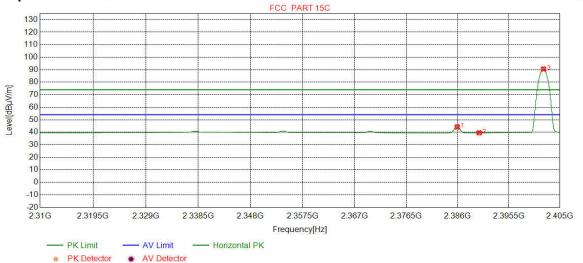


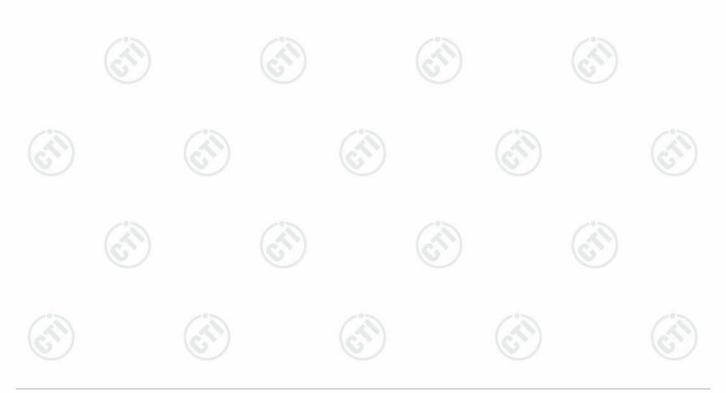

Page	41	of 71	
. ago		O1 / 1	

Mode:	GFSK	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	48.77	51.95	74.00	22.05	Pass	Vertical
2	2401.9598	32.26	13.31	-42.43	79.06	82.20	74.00	-8.20	Pass	Vertical

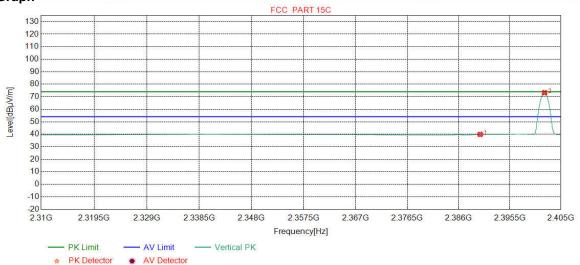


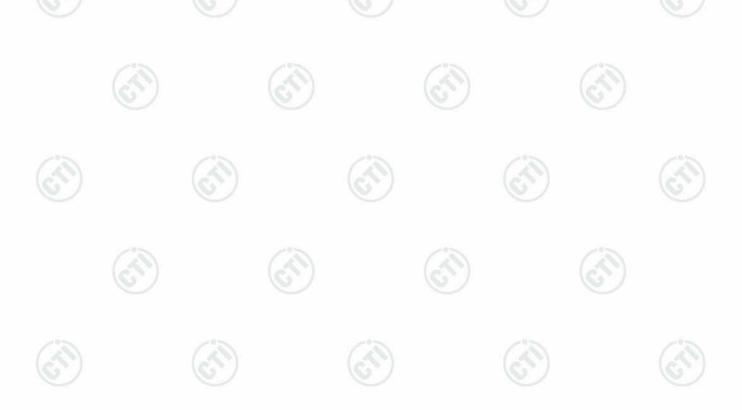


Mode:	GFSK	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2385.9354	32.24	13.40	-42.44	41.06	44.26	54.00	9.74	Pass	Horizontal
2	2390.0000	32.25	13.37	-42.44	36.41	39.59	54.00	14.41	Pass	Horizontal
3	2401.9535	32.26	13.31	-42.43	87.43	90.57	54.00	-36.57	Pass	Horizontal

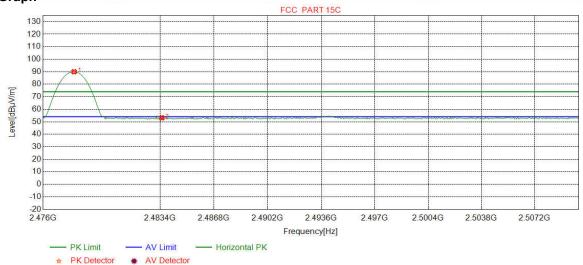


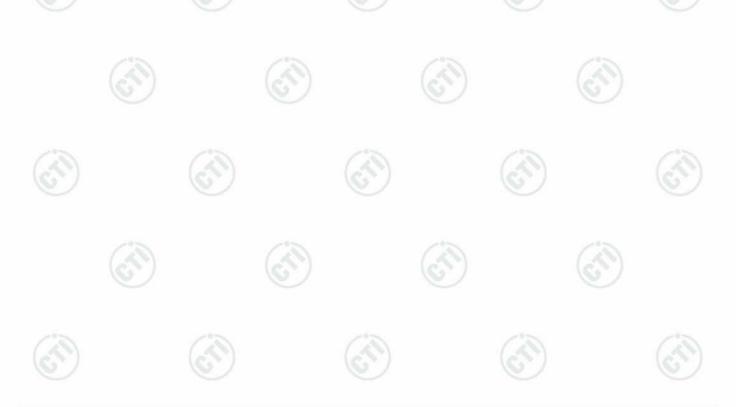


Mode:	GFSK	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	36.71	39.89	54.00	14.11	Pass	Vertical
2	2401.9535	32.26	13.31	-42.43	70.10	73.24	54.00	-19.24	Pass	Vertical

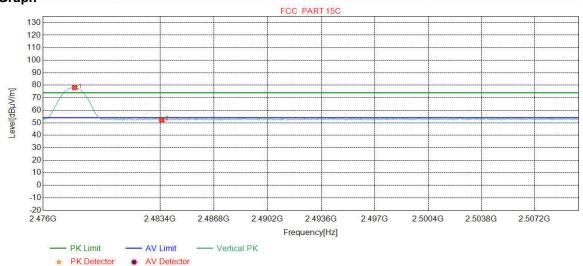


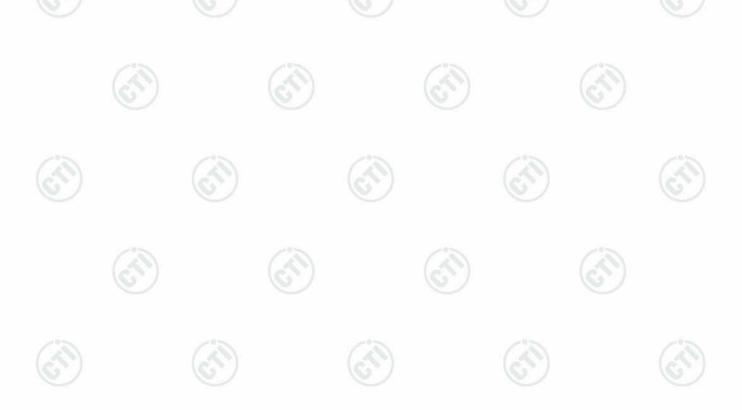

Page	44	of	7	1
ı ayc	TT	O	•	•

Mode:	GFSK	Channel:	2478
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2477.9574	32.37	13.40	-42.40	86.59	89.96	74.00	-15.96	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.79	53.15	74.00	20.85	Pass	Horizontal

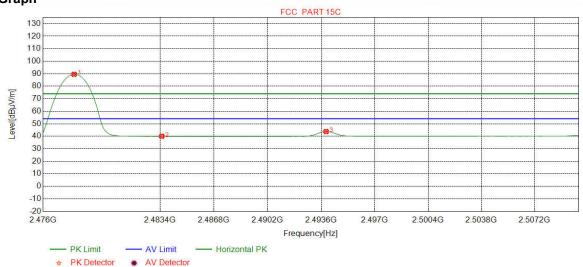




Mode:	GFSK	Channel:	2478
Remark:	PK		

Test Graph

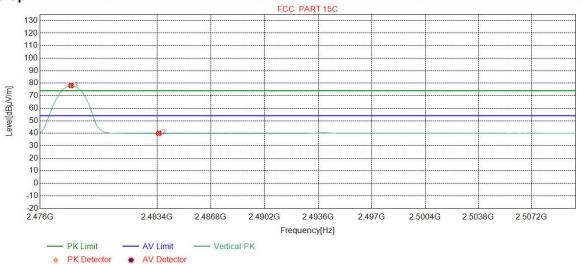
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2478.0000	32.37	13.40	-42.40	74.76	78.13	74.00	-4.13	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	48.98	52.34	74.00	21.66	Pass	Vertical



Mode:	GFSK	Channel:	2478
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2477.9574	32.37	13.40	-42.40	86.14	89.51	54.00	-35.51	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.65	40.01	54.00	13.99	Pass	Horizontal
3	2493.9149	32.39	13.33	-42.39	40.46	43.79	54.00	10.21	Pass	Horizontal



Page	47	of 71	
raye	41	01 / 1	

Mode:	GFSK	Channel:	2478
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2477.9574	32.37	13.40	-42.40	74.73	78.10	54.00	-24.10	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.60	39.96	54.00	14.04	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the GFSK of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix L) Radiated Spurious Emissions

Receiver	Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

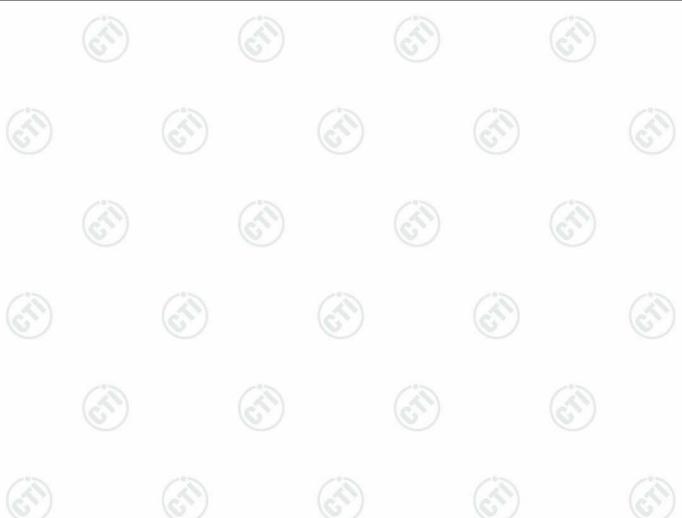
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

j. Repeat above procedures until all frequencies measured was complete.

ı	i	m	it	

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30	
1.705MHz-30MHz	30	-	-	30	
30MHz-88MHz	100	40.0	Quasi-peak	3	
88MHz-216MHz	150	43.5	Quasi-peak	3	
216MHz-960MHz	200	46.0	Quasi-peak	3	
960MHz-1GHz	500	54.0	Quasi-peak	3	
Above 1GHz	500	54.0	Average	3	

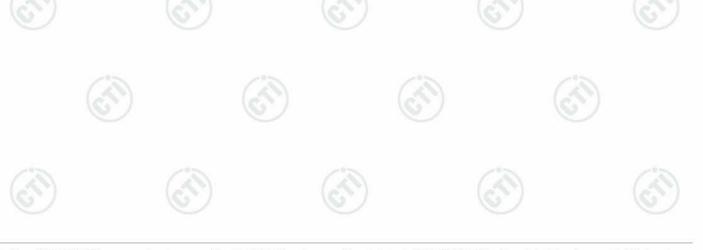
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Report No.: EED32L00337602 Page 49 of 71

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode:			GFSK T	ransmitting	3		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	42.5143	12.75	0.74	-32.11	39.51	20.89	40.00	19.11	Pass	Н	PK
2	122.8383	8.77	1.31	-32.05	40.96	18.99	43.50	24.51	Pass	Н	PK
3	241.1901	11.97	1.84	-31.89	51.69	33.61	46.00	12.39	Pass	Н	PK
4	288.3368	12.97	2.02	-31.89	48.61	31.71	46.00	14.29	Pass	Н	PK
5	600.0290	19.00	2.96	-31.99	43.44	33.41	46.00	12.59	Pass	Н	PK
6	974.9715	22.55	3.75	-30.95	42.63	37.98	54.00	16.02	Pass	Н	PK
7	53.7674	12.60	0.83	-32.09	41.34	22.68	40.00	17.32	Pass	V	PK
8	184.3424	9.41	1.59	-31.98	46.69	25.71	43.50	17.79	Pass	V	PK
9	208.8859	11.13	1.71	-31.94	45.44	26.34	43.50	17.16	Pass	V	PK
10	411.4421	15.58	2.42	-31.83	38.96	25.13	46.00	20.87	Pass	V	PK
11	600.0290	19.00	2.96	-31.99	43.34	33.31	46.00	12.69	Pass	V	PK
12	974.9715	22.55	3.75	-30.95	41.18	36.53	54.00	17.47	Pass	V	PK



Report No. : EED32L00337602 Page 50 of 71

Transmitter Emission above 1GHz

Mode:			GFSK T	ransmitting	9		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2966.3966	33.15	4.45	-42.14	50.64	46.10	74.00	27.90	Pass	Н	PK
2	3468.0312	33.39	4.45	-41.84	49.93	45.93	74.00	28.07	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	53.07	51.46	74.00	22.54	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	51.94	53.04	74.00	20.96	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	46.04	49.55	74.00	24.45	Pass	Н	PK
6	12010.000	39.31	7.60	-41.21	46.72	52.42	74.00	21.58	Pass	Н	PK
7	2997.1997	33.20	4.54	-42.12	51.97	47.59	74.00	26.41	Pass	V	PK
8	3379.0253	33.35	4.54	-41.89	49.33	45.33	74.00	28.67	Pass	V	PK
9	4804.0000	34.50	4.55	-40.66	54.74	53.13	74.00	20.87	Pass	V	PK
10	7206.0000	36.31	5.81	-41.02	48.04	49.14	74.00	24.86	Pass	V	PK
11	9608.0000	37.64	6.63	-40.76	46.13	49.64	74.00	24.36	Pass	V	PK
12	12010.000	39.31	7.60	-41.21	45.50	51.20	74.00	22.80	Pass	V	PK

Mode:			GFSK T	ransmitting	3		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2925.9926	33.08	4.39	-42.16	50.89	46.20	74.00	27.80	Pass	Н	PK
2	3947.0631	33.76	4.34	-40.89	50.20	47.41	74.00	26.59	Pass	Н	PK
3	4880.0000	34.50	4.80	-40.60	54.05	52.75	74.00	21.25	Pass	Н	PK
4	7320.0000	36.42	5.85	-40.92	51.11	52.46	74.00	21.54	Pass	Н	PK
5	9760.0000	37.70	6.73	-40.62	46.70	50.51	74.00	23.49	Pass	Н	PK
6	12200.000	39.42	7.67	-41.17	45.67	51.59	74.00	22.41	Pass	Н	PK
7	3199.0133	33.28	4.65	-42.00	51.29	47.22	74.00	26.78	Pass	V	PK
8	3944.0629	33.76	4.34	-40.90	49.77	46.97	74.00	27.03	Pass	V	PK
9	4880.0000	34.50	4.80	-40.60	55.07	53.77	74.00	20.23	Pass	V	PK
10	7320.0000	36.42	5.85	-40.92	48.52	49.87	74.00	24.13	Pass	V	PK
11	9760.0000	37.70	6.73	-40.62	46.40	50.21	74.00	23.79	Pass	V	PK
12	12200.000	39.42	7.67	-41.17	45.57	51.49	74.00	22.51	Pass	V	PK

Page 51 of 71

Mode:			GFSK T	ransmitting				Channel:		2478	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2997.9998	33.20	4.54	-42.12	50.76	46.38	74.00	27.62	Pass	Н	PK
2	3808.0539	33.65	4.37	-41.18	50.38	47.22	74.00	26.78	Pass	Н	PK
3	4956.0000	34.50	4.82	-40.54	53.25	52.03	74.00	21.97	Pass	Н	PK
4	7434.0000	36.53	5.85	-40.82	50.74	52.30	74.00	21.70	Pass	Н	PK
5	9912.0000	37.76	6.78	-40.48	46.72	50.78	74.00	23.22	Pass	Н	PK
6	12390.000	39.53	7.82	-41.12	45.89	52.12	74.00	21.88	Pass	Н	PK
7	3069.0046	33.23	4.79	-42.08	51.04	46.98	74.00	27.02	Pass	V	PK
8	3890.0593	33.71	4.34	-41.00	50.18	47.23	74.00	26.77	Pass	V	PK
9	4956.0000	34.50	4.82	-40.54	53.60	52.38	74.00	21.62	Pass	V	PK
10	7434.0000	36.53	5.85	-40.82	49.23	50.79	74.00	23.21	Pass	V	PK
11	9912.0000	37.76	6.78	-40.48	45.79	49.85	74.00	24.15	Pass	V	PK

Note:

12

12390.000

39.53

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

51.76

74.00

22.24

Pass

V

PΚ

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

45.53

Final Test Level =Receiver Reading - Correct Factor

7.82

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

-41.12

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

