

TEST REPORT

Report No.:	BCTC2308902856E	
Applicant:	Shenzhen Aita Technology Co., Ltd	
Product Name:	Bluetooth Headset	
Model/Type reference:	HKLEDBTHP1-FB	CHENZH
Tested Date:	2023-08-28 to 2023-09-11	
Issued Date:	2023-09-11	
She	nzhen BCTC Testing Co., Ltd.	
No.: BCTC/RF-EMC-007	Page: 1 of 79	Edition: B.0

FCC ID:2AU75BTHP1-FB

Product Name:	Bluetooth Headset
Trademark:	N/A
Model/Type Reference:	HKLEDBTHP1-FB AT-BT883
Prepared For:	Shenzhen Aita Technology Co., Ltd
Address:	Floor 1, 2 & 4, No. 114, East Xintang Village, Dakang Community, Henggang Street, Longgang District shenzhen
Manufacturer:	Shenzhen Aita Technology Co., Ltd
Address:	Floor 1, 2 & 4, No. 114, East Xintang Village, Dakang Community, Henggang Street, Longgang District shenzhen
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2023-08-28
Sample tested Date:	2023-08-28 to 2023-09-11
Issue Date:	2023-09-11
Report No.:	BCTC2308902856E
Test Standards	FCC Part15.247 ANSI C63.10-2013
Test Results	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by:

kelsey Ton

Kelsey Tan/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 79

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	8
4.1	Product Information	
4.2	Test Setup Configuration	8
4.3	Support Equipment	9
4.4	Channel List	9
4.5	Test Mode	
4.6	Table Of Parameters Of Text Software Setting	10
5.	Test Facility And Test Instrument Used	11
5.1	Test Facility	11
5.2	Test Instrument Used	11
6.	Conducted Emissions	13
6.1	Block Diagram Of Test Setup	13
6.2	Limit	
6.3	Test procedure	
6.4	EUT operating Conditions	
6.5	Test Result	
7.	Radiated emissions	16
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	19
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Opera	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	24
8.4	EUT operating Conditions	
8.5	Test Result	
9.	Spurious RF Conducted Emissions	26
9.1	Block Diagram Of Test Setup	26
9.2	Limit Test procedure Test Result	26
9.3	Test procedure	26
9.4	Test Result	27
10.		48
10.1	Block Diagram Of Test Setup Limit	
10.2	Limit	
10.3		48
10.4		48
11.	Maximum Peak Output Power	54
11.1	Block Diagram Of Test Setup	54
11.2	Limit	54

Page: 3 of 79

,TC 3C

PR

》测

11.3 Test procedure	54
11.4 Test Result	
12. Hopping Channel Separation	60
12.1 Block Diagram Of Test Setup	60
12.2 Limit	60
12.3 Test procedure	60
12.4 Test Result	60
13. Number Of Hopping Frequency	66
13.1 Block Diagram Of Test Setup	66
13.2 Limit	66
13.3 Test procedure	66
13.4 Test Result	66
14. Dwell Time	69
14.1 Block Diagram Of Test Setup	69
14.2 Limit	69
14.3 Test procedure	69
14.4 Test Result	69
15. Antenna Requirement	75
15.1 Limit	75
15.2 Test Result	75
16. EUT Photographs	76
17. EUT Test Setup Photographs	77

(Note: N/A Means Not Applicable)

检

Page: 4 of 79

1. Version

Report No.	Issue Date	Description	Approved
BCTC2308902856E	2023-09-11	Original	Valid

No.: BCTC/RF-EMC-007

Page: 5 of 79

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
6	Dwell Time	§15.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

Page: 6 of 79

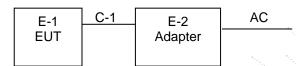
3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

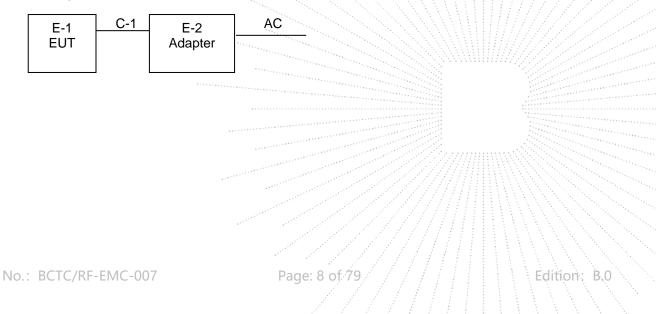
No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59 ℃

Page: 7 of 79

4. Product Information And Test Setup


4.1 Product Information

Model/Type reference:	HKLEDBTHP1-FB AT-BT883
Model differences:	All the model are the same circuit and RF module, except model names and appearance of the color.
Bluetooth Version:	5.1
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK, π/ 4 DQPSK, 8DPSK
Number Of Channel	79CH
Antenna installation:	Internal antenna
Antenna Gain:	1.7 dBi
Ratings:	USB: DC 5V Battery: DC 3.7V


4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Bluetooth Headset	N/A	HKLEDBTHP1-FB	N/A	EUT
E-2	Adapter	N/A	HW-110600C02	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	1M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	1

,TC 3C PR

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(π/ 4 DQPSK)	2402MHz	2441MHz	2480MHz		
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz		
4	Transmitting (Conducted emission & Radiated emission)					

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version		SecureCRT	
Frequency	2402 MHz	2441 MHz	2480 MHz
Parameters	DEF	DEF	DEF

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850

A2LA certificate registration number is: CN1212

ISED Registered No.: 23583

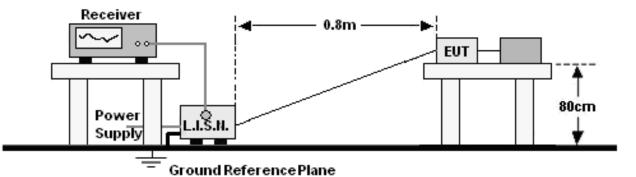
ISED CAB identifier: CN0017

5.2 Test Instrument Used

Conducted Emissions Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024		
LISN	R&S	ENV216	101375	May 15, 2023	May 14, 2024		
Software	Frad	EZ-EMC	EMC-CON 3A1	١	\		
Attenuator	١	10dB DC-6GHz	1650	May 15, 2023	May 14, 2024		

		RF Cond	ucted Test	. :	
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Power Meter	Keysight	E4419	l l l	May 15, 2023	May 14, 2024
Power Sensor (AV)	Keysight	E9300A		May 15, 2023	May 14, 2024
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 15, 2023	May 14, 2024
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024
Radio frequency control box	MAIWEI	MW100-RFC B			
Software	MAIWEI	MTS 8310	· · · · · · · · · · · · · · · · · · ·		

	Radiated Emissions Test (966 Chamber01)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026		
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024		
Receiver	R&S	ESRP	101154	May 15, 2023	May 14, 2024		
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 15, 2023	May 14, 2024		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 29, 2023	May 28, 2024		
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 31, 2023	May 30, 2024		
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 15, 2023	May 14, 2024		
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 31, 2023	May 30, 2024		
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 15, 2023	May 14, 2024		
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	May 31, 2023	May 30, 2024		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024		
Software	Frad	EZ-EMC	FA-03A2 RE	١	\		


No.: BCTC/RF-EMC-007

Page: 12 of 79

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit	(dBuV)
Frequency (MHz)	Quas-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

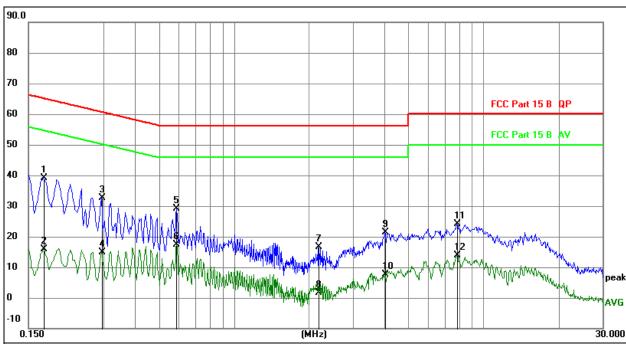
6.3 Test procedure

Receiver Parameters		Setting
Attenuation		10 dB
Start Frequency		0.15 MHz
Stop Frequency	1. N.	30 MHz
IF Bandwidth		9 kHz
		シーター・カーカード ちょうちょう ちょうさん ちょうぶん たいがく たいせい 読

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

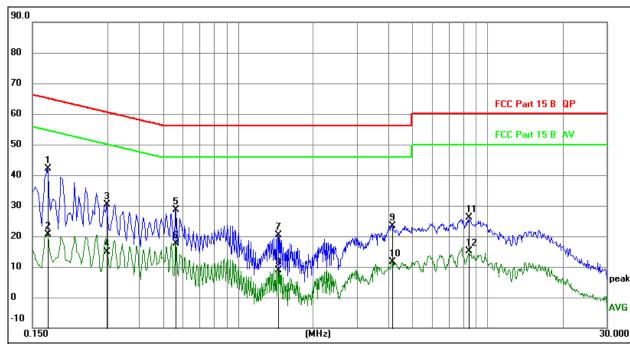
6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit

			Pooding	Correct	Measure			
No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1	*	0.1722	29.49	9.55	39.04	64.85	-25.81	QP
2		0.1722	6.43	9.55	15.98	54.85	-38.87	AVG
3		0.2940	22.91	9.61	32.52	60.41	-27.89	QP
4		0.2940	5.37	9.61	14.98	50.41	-35.43	AVG
5		0.5885	19.57	9.62	29.19	56.00	-26.81	QP
6		0.5885	7.85	9.62	17.47	46.00	-28.53	AVG
7		2.1783	6.81	9.74	16.55	56.00	-39.45	QP
8		2.1783	-8.19	9.74	1.55	46.00	-44.45	AVG
9		4.0275	11.43	9.84	21.27	56.00	-34.73	QP
10		4.0275	-2.30	9.84	7.54	46.00	-38.46	AVG
11		7.8102	14.50	9.72	24.22	60.00	-35.78	QP
12		7.8102	4.20	9.72	13.92	50.00	-36.08	AVG


No.: BCTC/RF-EMC-007

Edition:

E

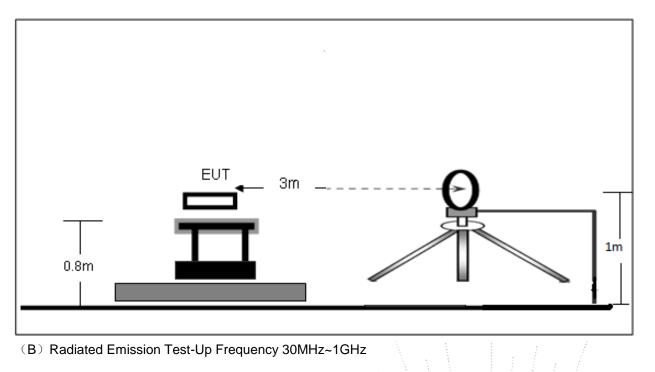
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

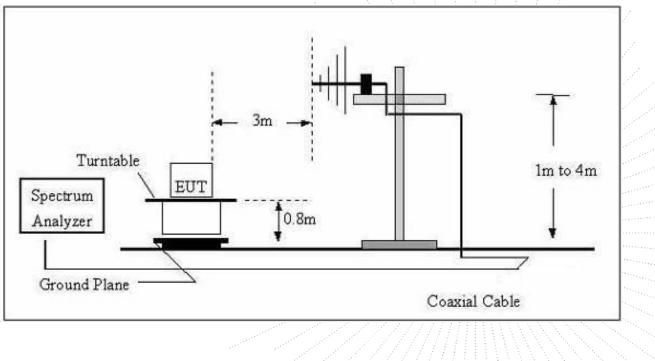
Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor

|--|

1 * 0.1725 32.47 9.56 42.03 64.84 -22.81 QP 2 0.1725 11.09 9.56 20.65 54.84 -34.19 AVG 3 0.2985 20.86 9.61 30.47 60.28 -29.81 QP 4 0.2985 5.29 9.61 14.90 50.28 -35.38 AVG 5 0.5639 19.13 9.62 28.75 56.00 -27.25 QP 6 0.5639 7.96 9.62 17.58 46.00 -28.42 AVG 7 1.4460 10.53 9.73 20.26 56.00 -35.74 QP								
1 * 0.1725 32.47 9.56 42.03 64.84 -22.81 QP 2 0.1725 11.09 9.56 20.65 54.84 -34.19 AVG 3 0.2985 20.86 9.61 30.47 60.28 -29.81 QP 4 0.2985 5.29 9.61 14.90 50.28 -35.38 AVG 5 0.5639 19.13 9.62 28.75 56.00 -27.25 QP 6 0.5639 7.96 9.62 17.58 46.00 -28.42 AVG 7 1.4460 10.53 9.73 20.26 56.00 -35.74 QP	No. Mk	. Freq.				Limit	Over	
2 0.1725 11.09 9.56 20.65 54.84 -34.19 AVG 3 0.2985 20.86 9.61 30.47 60.28 -29.81 QP 4 0.2985 5.29 9.61 14.90 50.28 -35.38 AVG 5 0.5639 19.13 9.62 28.75 56.00 -27.25 QP 6 0.5639 7.96 9.62 17.58 46.00 -28.42 AVG 7 1.4460 10.53 9.73 20.26 56.00 -35.74 QP		MHz		dB	dBuV	dBuV	dB	Detector
3 0.2985 20.86 9.61 30.47 60.28 -29.81 QP 4 0.2985 5.29 9.61 14.90 50.28 -35.38 AVG 5 0.5639 19.13 9.62 28.75 56.00 -27.25 QP 6 0.5639 7.96 9.62 17.58 46.00 -28.42 AVG 7 1.4460 10.53 9.73 20.26 56.00 -35.74 QP	1 *	0.1725	32.47	9.56	42.03	64.84	-22.81	QP
4 0.2985 5.29 9.61 14.90 50.28 -35.38 AVG 5 0.5639 19.13 9.62 28.75 56.00 -27.25 QP 6 0.5639 7.96 9.62 17.58 46.00 -28.42 AVG 7 1.4460 10.53 9.73 20.26 56.00 -35.74 QP	2	0.1725	11.09	9.56	20.65	54.84	-34.19	AVG
5 0.5639 19.13 9.62 28.75 56.00 -27.25 QP 6 0.5639 7.96 9.62 17.58 46.00 -28.42 AVG 7 1.4460 10.53 9.73 20.26 56.00 -35.74 QP	3	0.2985	20.86	9.61	30.47	60.28	-29.81	QP
6 0.5639 7.96 9.62 17.58 46.00 -28.42 AVG 7 1.4460 10.53 9.73 20.26 56.00 -35.74 QP	4	0.2985	5.29	9.61	14.90	50.28	-35.38	AVG
7 1.4460 10.53 9.73 20.26 56.00 -35.74 QP	5	0.5639	19.13	9.62	28.75	56.00	-27.25	QP
	6	0.5639	7.96	9.62	17.58	46.00	-28.42	AVG
8 1 4460 0 93 9 73 8 80 46 00 37 20 AVG	7	1.4460	10.53	9.73	20.26	56.00	-35.74	QP
6 1.4460 -0.35 3.75 6.60 46.00 -37.20 AVG	8	1.4460	-0.93	9.73	8.80	46.00	-37.20	AVG
9 4.1415 13.51 9.84 23.35 56.00 -32.65 QP	9	4.1415	13.51	9.84	23.35	56.00	-32.65	QP
10 4.1415 1.87 9.84 11.71 46.00 -34.29 AVG	10	4.1415	1.87	9.84	11.71	46.00	-34.29	AVG
11 8.4480 16.45 9.70 26.15 60.00 -33.85 QP	11	8.4480	16.45	9.70	26.15	60.00	-33.85	QP
12 8.4480 5.46 9.70 15.16 50.00 -34.84 AVG	12	8.4480	5.46	9.70	15.16	50.00	-34.84	AVG


Edition:



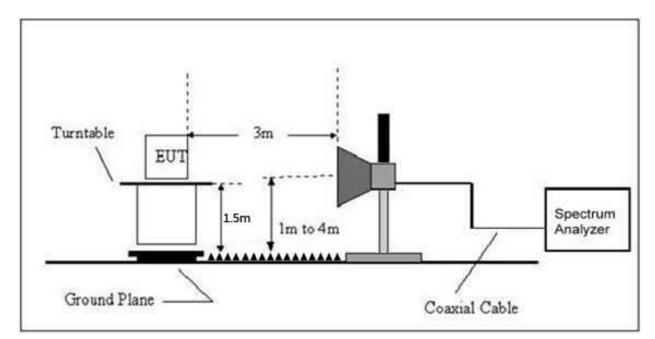
7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

No.: BCTC/RF-EMC-007

Page: 16 of 79


Edition: B.0

TE,

检

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Field Strength	Distance	Field Strength Lir	nit at 3m Distance
uV/m	(m)	uV/m	dBuV/m
2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
30	30	100 * 30	20log ⁽³⁰⁾ + 40
100	3	100	20log ⁽¹⁰⁰⁾
150	3	150	20log ⁽¹⁵⁰⁾
200	3	200	20log ⁽²⁰⁰⁾
500	3	500	20log ⁽⁵⁰⁰⁾
	uV/m 2400/F(kHz) 24000/F(kHz) 30 100 150 200	uV/m (m) 2400/F(kHz) 300 24000/F(kHz) 30 30 30 100 3 150 3 200 3	uV/m (m) uV/m 2400/F(kHz) 300 10000 * 2400/F(kHz) 24000/F(kHz) 30 100 * 24000/F(kHz) 30 30 100 * 30 100 3 100 150 3 150 200 3 200

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)	
Frequency (MHz)	Peak	Average
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting		
Attenuation	Auto		
9kHz~150kHz	RBW 200Hz for QP		
150kHz~30MHz	RBW 9kHz for QP		
30MHz~1000MHz	RBW 120kHz for QP		

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

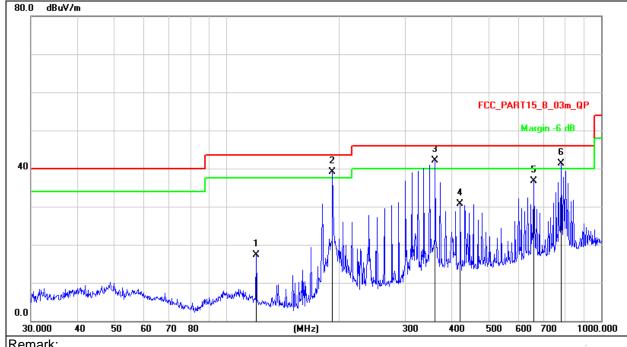
7.5 Test Result

Below 30MHz

Temperature:	26 °C	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage :	AC 120V/60Hz
Test Mode:	Mode 4	Polarization :	\wedge H II /////////////////////////////////
	·		NN E E E E E E E E E E E E E E E E E E

	Reading	Limit	State
(MHz)	(dBuV/m)	(dBuV/m) (dB)	P/F
			PASS
			PASS

Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHZ – 1GHZTemperature:26 °CRelative Humidity:54%					
Pressure:	101KPa	Phase :	Horizontal		
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz		

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.
 Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		119.8556	36.34	-19.07	17.27	43.50	-26.23	QP
2	İ	191.7450	56.99	-17.98	39.01	43.50	-4.49	QP
3	*	360.4476	54.75	-12.67	42.08	46.00	-3.92	QP
4		420.5803	42.64	-11.91	30.73	46.00	-15.27	QP
5		661.1505	44.24	-7.59	36.65	46.00	-9.35	QP
6	İ	782.3453	47.08	-5.85	41.23	46.00	-4.77	QP

No.: BCTC/RF-EMC-007

E

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement = Reading Level + Correct Factor

3.	Over	= Measurement - Limit	
			_

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		90.5374	34.51	-19.15	15.36	43.50	-28.14	QP
2	1	91.7450	42.68	-17.98	24.70	43.50	-18.80	QP
3	3	36.0352	44.12	-13.29	30.83	46.00	-15.17	QP
4	4	80.5276	38.83	-10.73	28.10	46.00	-17.90	QP
5	6	01.4265	38.95	-8.38	30.57	46.00	-15.43	QP
6	* 7	82.3453	37.05	-5.85	31.20	46.00	-14.80	QP

JC JC JC

测

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
		(GFSK Low ch	annel			
V	4804.00	74.68	-19.99	54.69	74.00	-19.31	PK
V	4804.00	65.16	-19.99	45.17	54.00	-8.83	AV
V	7206.00	64.41	-14.22	50.19	74.00	-23.81	PK
V	7206.00	54.13	-14.22	39.91	54.00	-14.09	AV
Н	4804.00	72.42	-19.99	52.43	74.00	-21.57	PK
Н	4804.00	62.99	-19.99	43.00	54.00	-11.00	AV
Н	7206.00	63.01	-14.22	48.79	74.00	-25.21	PK
Н	7206.00	55.70	-14.22	41.48	54.00	-12.52	AV
		G	FSK Middle c	hannel			
V	4882.00	72.47	-19.84	52.63	74.00	-21.37	PK
V	4882.00	65.66	-19.84	45.82	54.00	-8.18	AV
V	7323.00	61.50	-13.90	47.60	74.00	-26.40	PK
V	7323.00	53.31	-13.90	39.41	54.00	-14.59	AV
Н	4882.00	69.06	-19.84	49.22	74.00	-24.78	PK
Н	4882.00	59.09	-19.84	39.25	54.00	-14.75	AV
Н	7323.00	59.48	-13.90	45.58	74.00	-28.42	PK
Н	7323.00	50.62	-13.90	36.72	54.00	-17.28	AV
		(GFSK High ch	annel			
V	4960.00	75.09	-19.68	55.41	74.00	-18.59	PK
V	4960.00	66.13	-19.68	46.45	54.00	-7.55	AV
V	7440.00	67.29	-13.57	53.72	74.00	-20.28	PK
V	7440.00	58.27	-13.57	44.70	54.00	-9.30	AV
Н	4960.00	73.23	-19.68	53.55	74.00	-20.45	PK
Н	4960.00	62.57	-19.68	42.89	54.00	-11.11	AV
Н	7440.00	65.17	-13.57	51.60	74.00	-22.40	РК
Н	7440.00	56.37	-13.57	42.80	54.00	-11.20	AV

Between 1GHz – 25GHz

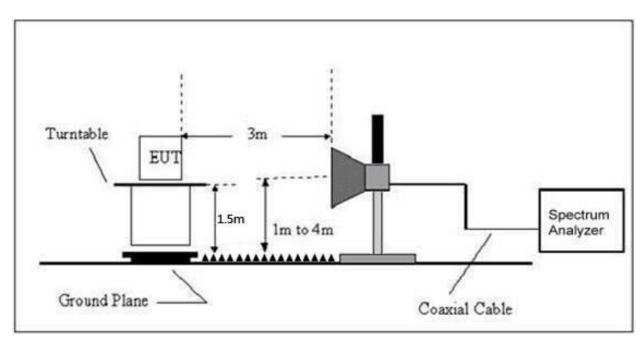
Remark:

1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
 The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.


TE, Т OVI

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)			
	Peak	Average		
Above 1000	74	54		

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting			
Attenuation	Auto			
Start Frequency	2300MHz			
Stop Frequency	2520			
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average			

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

Test mode	Polar (H/V)	Frequency (MHz)	Reading Level (dBuV/m)	Correct Factor (dB)	Measure- ment (dBuV/m)	Limits (dBuV/m)		Result				
	(1., •)				РК	PK	AV	l				
		Low Channel 2402MHz										
GFSK	Н	2390.00	72.88	-25.43	47.45	74.00	54.00	PASS				
	Н	2400.00	76.63	-25.40	51.23	74.00	54.00	PASS				
	V	2390.00	73.06	-25.43	47.63	74.00	54.00	PASS				
	V	2400.00	77.80	-25.40	52.40	74.00	54.00	PASS				
	High Channel 2480MHz											
	Н	2483.50	76.48	-25.15	51.33	74.00	54.00	PASS				
	Н	2500.00	70.31	-25.10	45.21	74.00	54.00	PASS				
	V	2483.50	76.41	-25.15	51.26	74.00	54.00	PASS				
	V	2500.00	73.22	-25.10	48.12	74.00	54.00	PASS				
π/4DQPSK		Low Channel 2402MHz										
	Н	2390.00	72.99	-25.43	47.56	74.00	54.00	PASS				
	Н	2400.00	77.83	-25.40	52.43	74.00	54.00	PASS				
	V	2390.00	72.10	-25.43	46.67	74.00	54.00	PASS				
	V	2400.00	76.57	-25.40	51.17	74.00	54.00	PASS				
		High Channel 2480MHz										
	Н	2483.50	75.18	-25.15	50.03	74.00	54.00	PASS				
	Н	2500.00	70.22	-25.10	45.12	7,4.00	54.00	PASS				
	V	2483.50	75.77	-25.15	50.62	74.00	54.00	PASS				
	V	2500.00	71.17	-25.10	46.07	74.00	54.00	PASS				
8DPSK			Low	Channel 24	402MHz							
	Н	2390.00	72.92	-25.43	47.49	74.00	54.00	PASS				
	Н	2400.00	76.64	-25.40	51.24	74.00	54.00	PASS				
	V	2390.00	72.75	-25.43	47.32	74.00	54.00	PASS				
	V	2400.00	76.40	-25.40	51.00	74.00	54.00	PASS				
ODPSK		High Channel 2480MHz										
	Н	2483.50	75.78	-25.15	50.63	74.00	54.00	PASS				
	Н	2500.00	70.64	-25.10	45.54	74.00	54.00	PASS				
	V	2483.50	76.55	-25.15	51.40	74.00	54.00	PASS				
	V	2500.00	72.37	-25.10	47.27	74.00	54.00	PASS				

1. Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level – Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

9. Spurious RF Conducted Emissions

9.1 Block Diagram Of Test Setup

9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

9.3 Test procedure

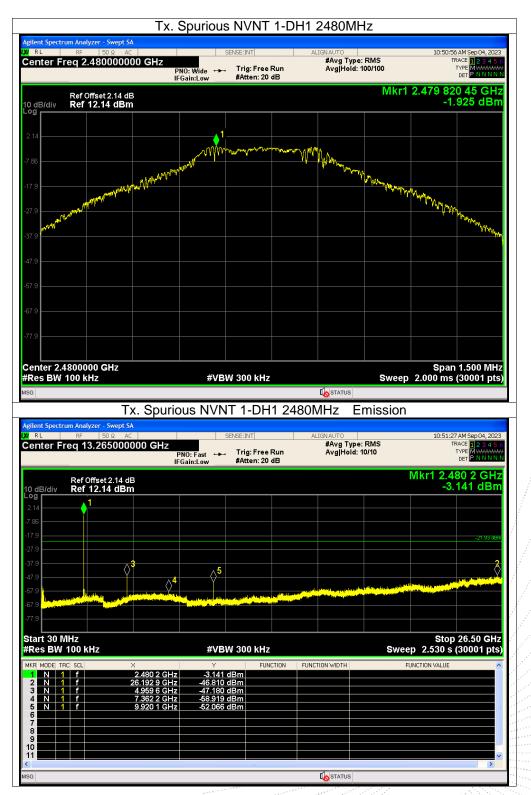
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

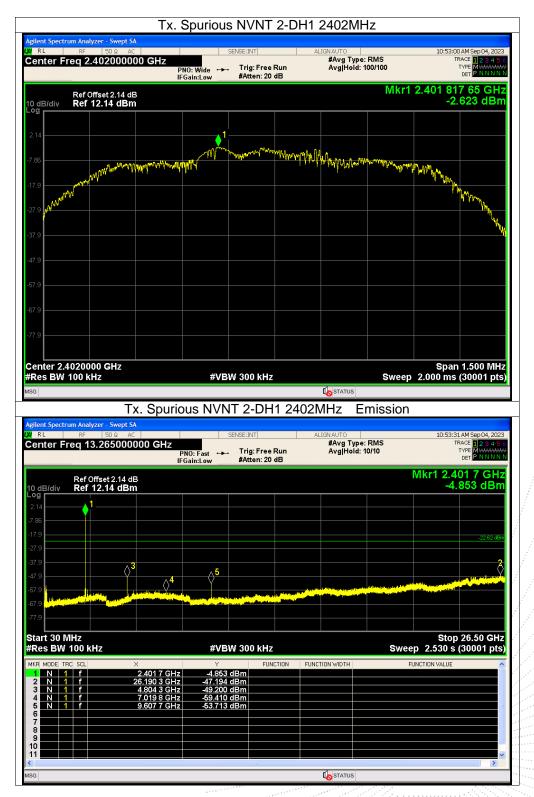
2. Set the spectrum analyzer: Below 30MHz: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold Above 30MHz: RBW = 100KHz, VBW = 300KHz, Sweep = auto Detector function = peak, Trace = max hold **B E** Al

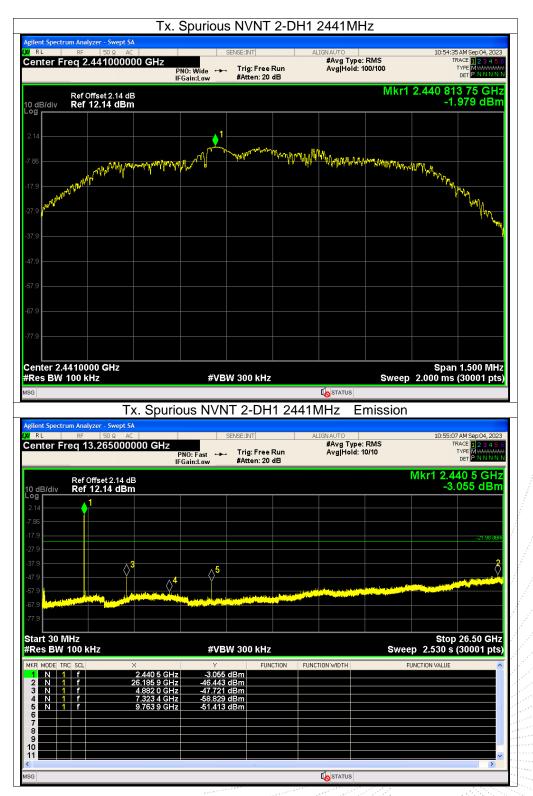
Page: 26 of 7

9.4 Test Result

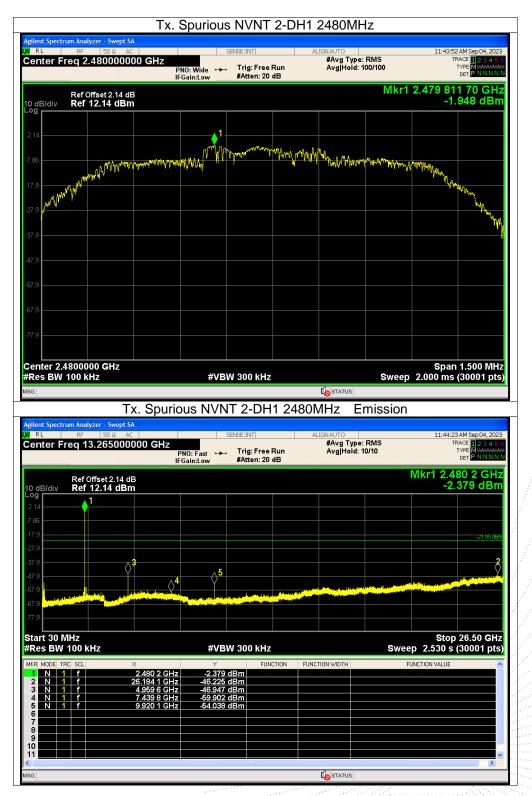
,TC 3C PPR



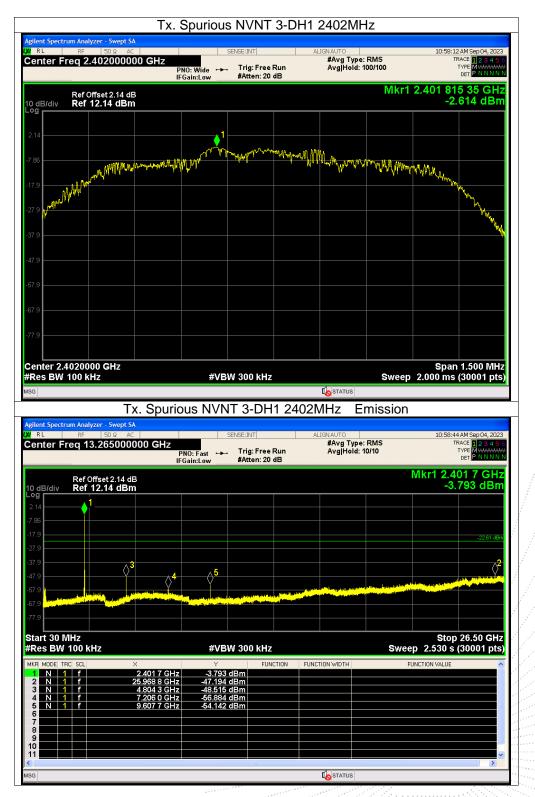

Page: 28 of 79

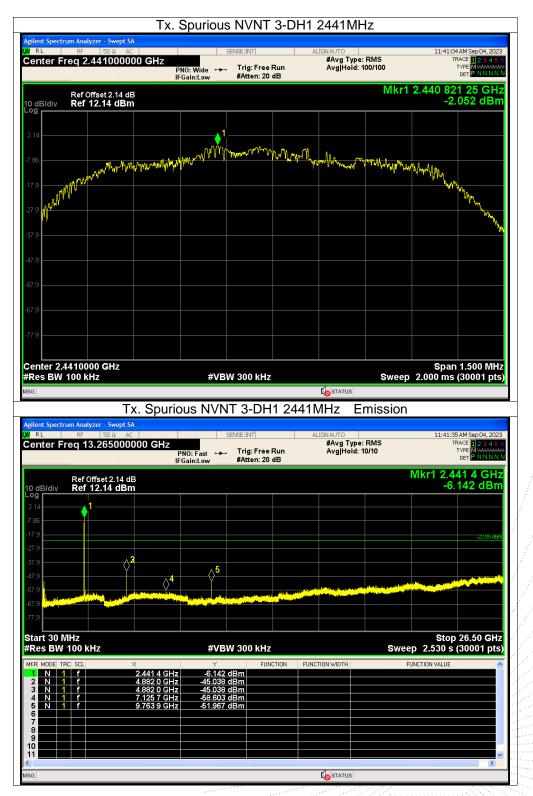


No.: BCTC/RF-EMC-007

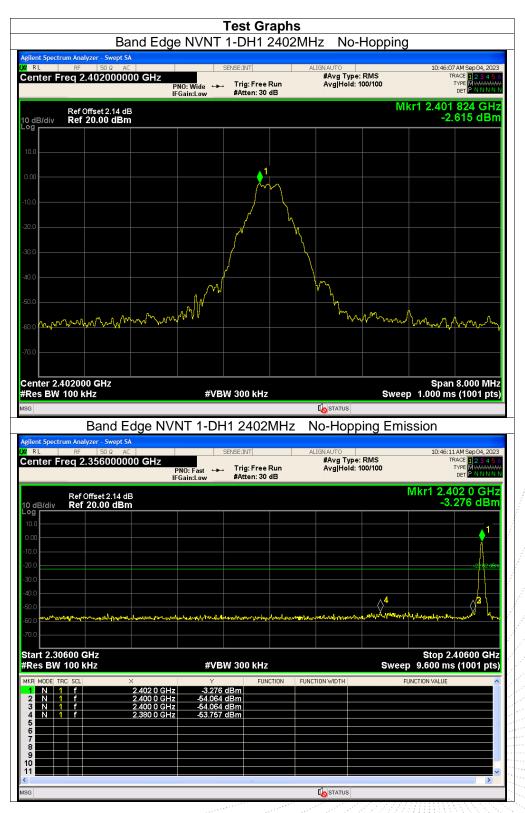


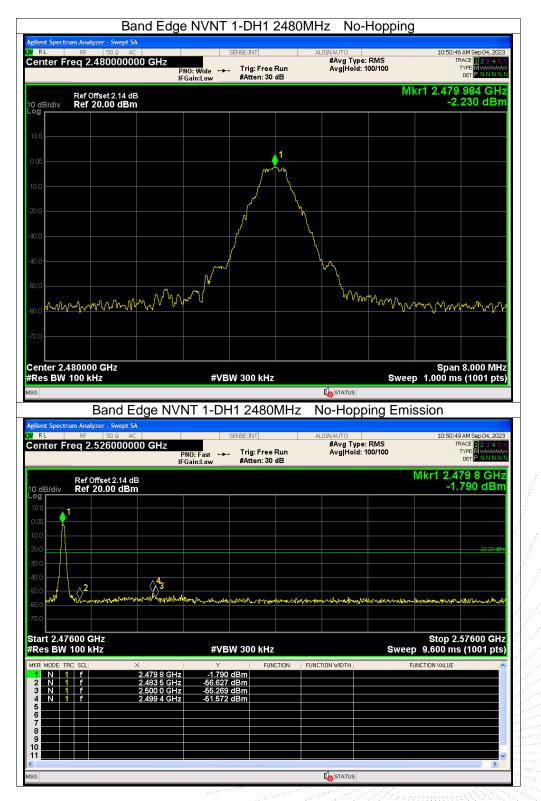
Page: 31 of 79


7

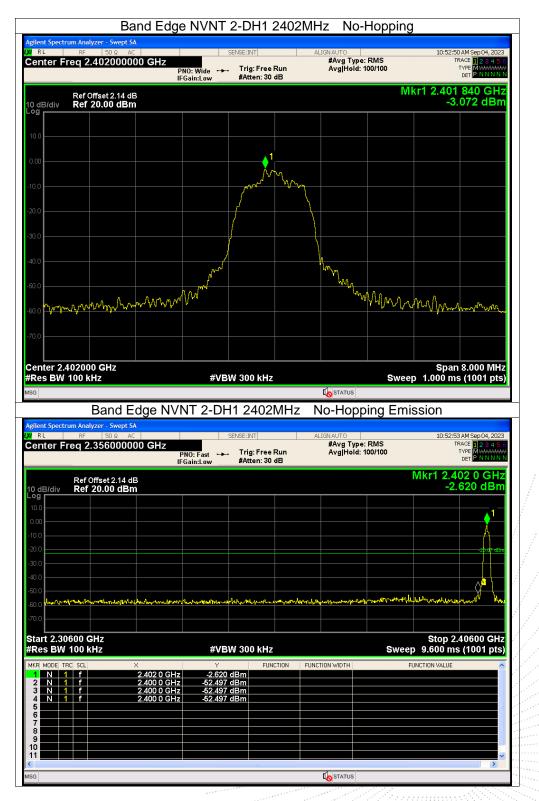




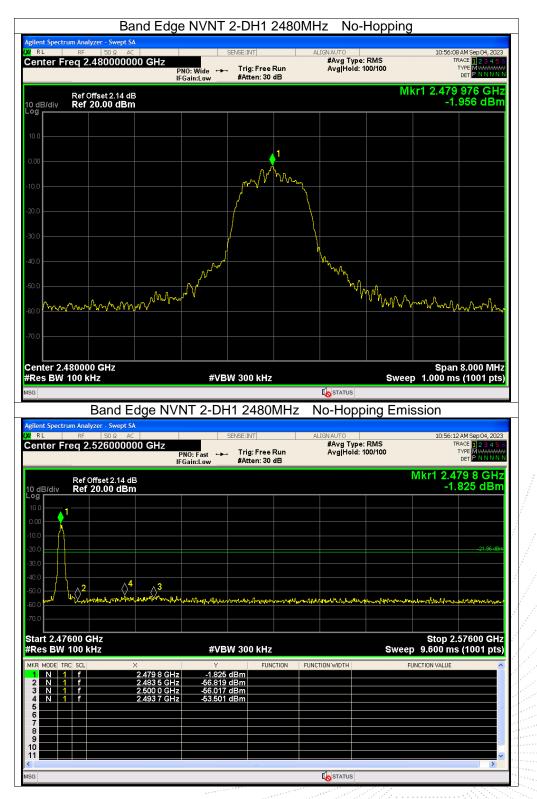


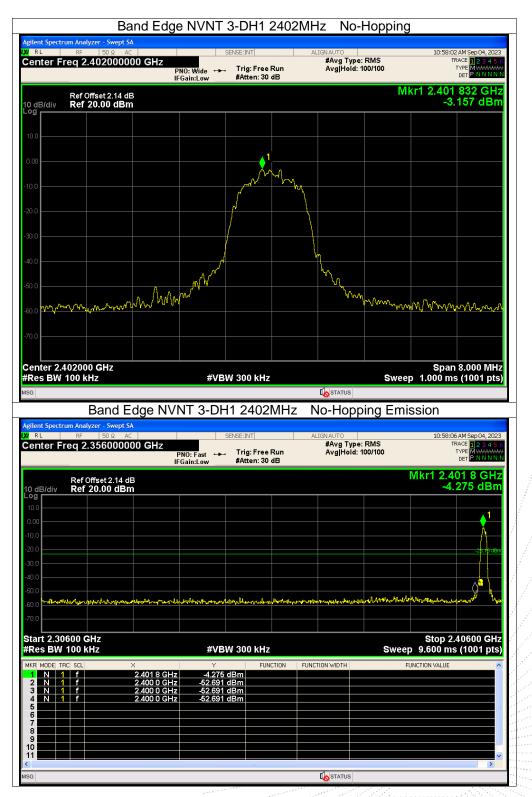


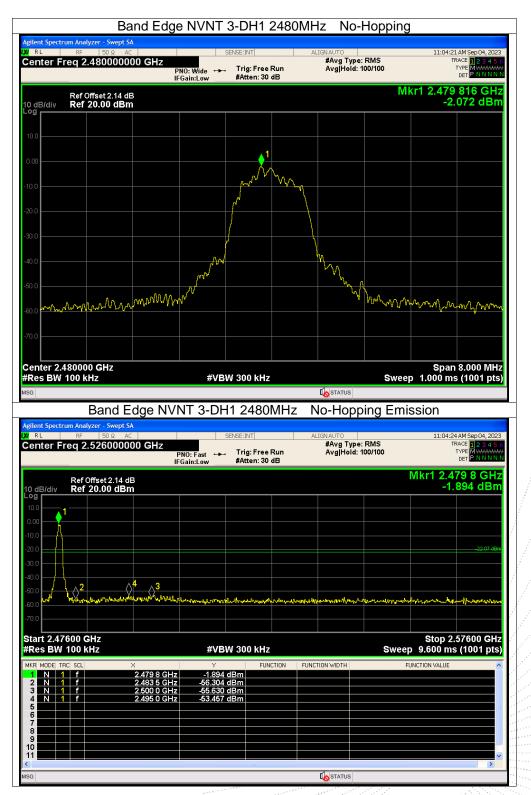
No.: BCTC/RF-EMC-007



Edition: B.0


No.: BCTC/RF-EMC-007





Page: 40 of 79

Page: 41 of 79

C 00.,LT

10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

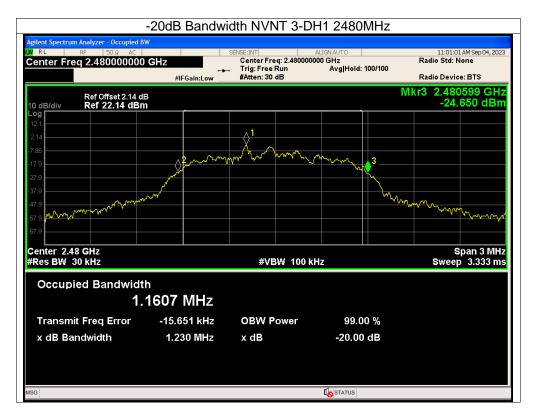
10.3 Test procedure

- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.892	Pass
NVNT	1-DH1	2441	0.984	Pass
NVNT	1-DH1	2480	0.928	Pass
NVNT	2-DH1	2402	1.247	Pass
NVNT	2-DH1	2441	1.262	Pass
NVNT	2-DH1	2480	1.259	Pass
NVNT	3-DH1	2402	1.221	Pass
NVNT	3-DH1	2441	1.241	Pass
NVNT	3-DH1	2480	1.23	Pass



检

No.: BCTC/RF-EMC-007

Page: 53 of 79

11. Maximum Peak Output Power

11.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

11.2 Limit

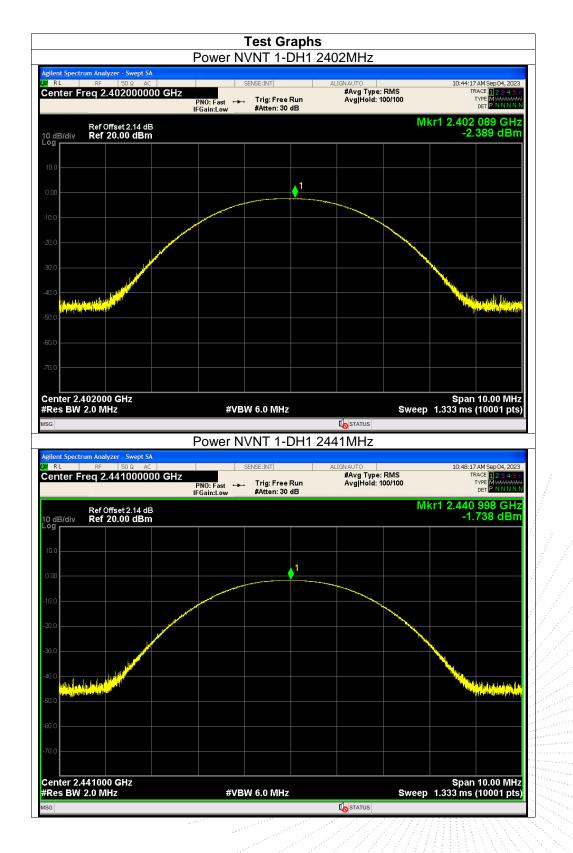
FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS	

11.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

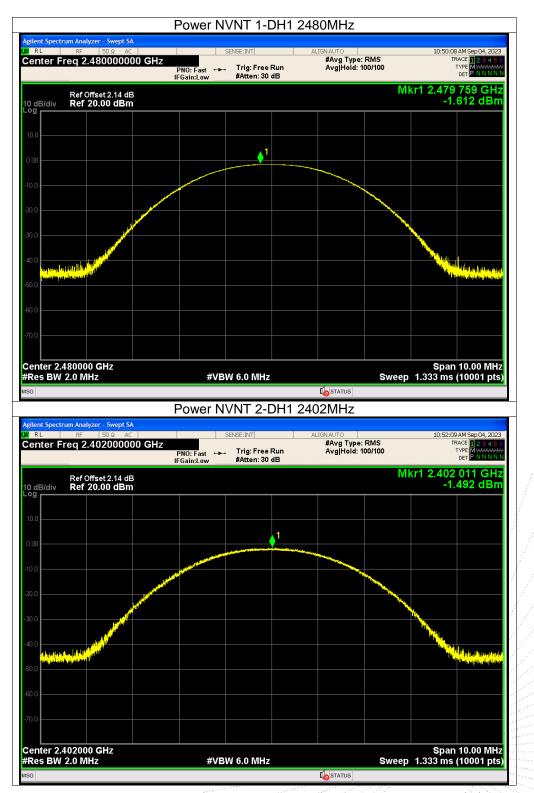
2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.

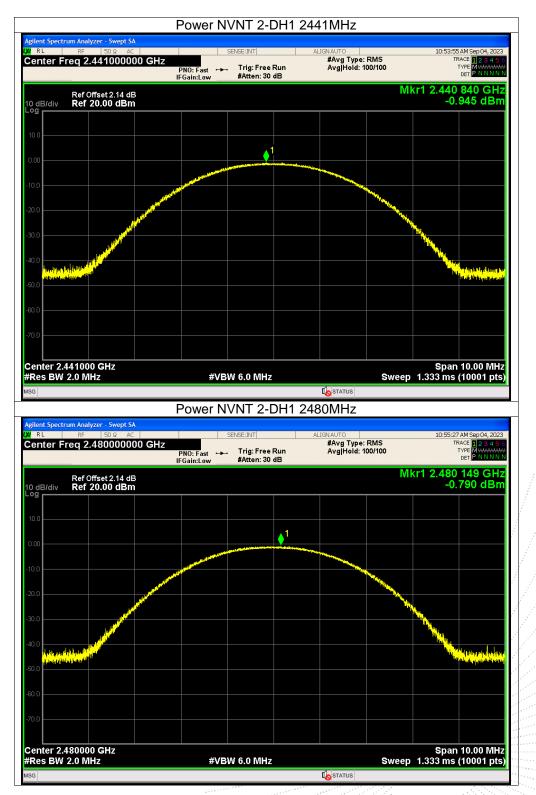
3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

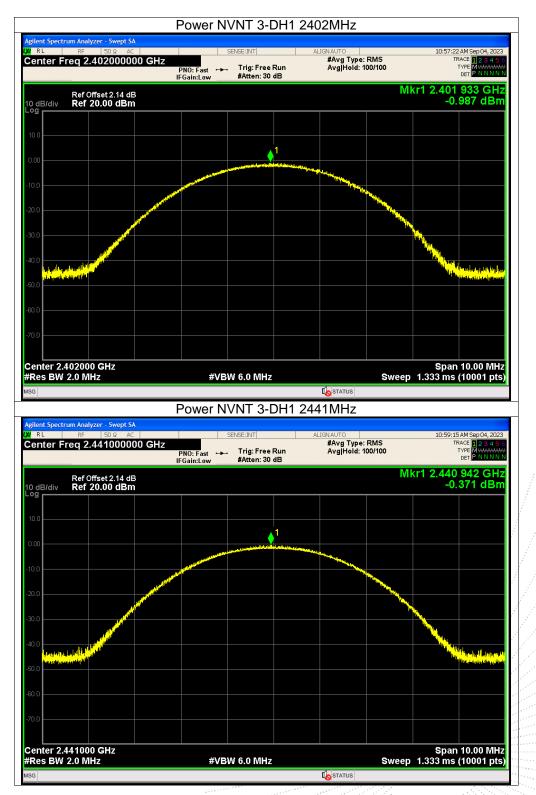

11.4 Test Result

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-2.39	21	Pass
NVNT	1-DH1	2441	-1.74	21	Pass
NVNT	1-DH1	2480	-1.61	21	Pass
NVNT	2-DH1	2402	-1.49	21	Pass
NVNT	2-DH1	2441	-0.95	21	Pass
NVNT	2-DH1	2480	-0.79	21	Pass
NVNT	3-DH1	2402	-0.99	21	Pass
NVNT	3-DH1	2441	-0.37	21	Pass
NVNT	3-DH1		-0.23	21	Pass

No.: BCTC/RF-EMC-007







No.: BCTC/RF-EMC-007

Page: 59 of 79

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.814	2402.812	0.998	0.595	Pass
NVNT	1-DH1	2440.812	2441.814	1.002	0.656	Pass
NVNT	1-DH1	2478.812	2479.812	1	0.619	Pass
NVNT	2-DH1	2401.814	2402.814	1	0.831	Pass
NVNT	2-DH1	2440.814	2441.814	1	0.841	Pass
NVNT	2-DH1	2478.81	2479.814	1.004	0.839	Pass
NVNT	3-DH1	2401.814	2402.814	1	0.814	Pass
NVNT	3-DH1	2440.812	2441.812	1	0.827	Pass
NVNT	3-DH1	2478.814	2479.812	0.998	0.82	Pass

12.4 Test Result

VEN ZUS

No.: BCTC/RF-EMC-007

Page: 61 of 79

gilent Spectrum Analyzer - Sw RL RF 50 Ω enter Freq 2.47950	AC 00000 GHz	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	10:50:41 AM Sep 04, TRACE 12 2 3 TYPE MWW DET P N N	2023 4 5 6
	PNO: W IFGain:		Avginera.> toorioo		_
Ref Offset 2. dB/div Ref 20.00				Mkr1 2.478 812 G -3.385 di	HZ 3m
og 10.0	1				
	·		2	~~~~	
20.0					
0.0					
50.0					
0.0					
				0.5.5.5.2.000.8	al 1-
enter 2.479500 GHz Res BW 30 kHz		#VBW 100 kHz	s	Span 2.000 N weep 2.133 ms (1001)	
KR MODE TRC SCL	× 2.478 812 GHz	Y FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	^
2 N 1 f 3 4	2.479 812 GHz	-3.400 dBm			
5 6					=
7 8 9					
0 1					~
G			I STATUS		>
	CF	S NVNT 2-DH1	2402MHz		
<mark>ilent Spectrum Analyzer - Sw</mark> RL RF 50 Ω		SENSE:INT	ALIGNAUTO	10:52:45 AM Sep 04,	2023
enter Freq 2.40250		ide 🖵 Trig: Free Run	#Avg Type: RMS Avg Hold:>100/100	TRACE 1 2 3 TYPE MWW DET P N N	456
Ref Offset 2. dB/div Ref 20.00	14 dB dBm			Mkr1 2.401 814 G -4.294 di	Hz 3m
og 0.0	1				
					~
.0.0					
30.0					
40.0					
30.0 40.0 50.0 50.0					
enter 2.402500 GHz		#VBW 100 kHz	S	Span 2.000 M weep 2.133 ms (1001	/IHz pts)
enter 2.402500 GHz Res BW 30 kHz	× 2.401 814 GHz	Y FUNCTION	S	Span 2.000 N weep 2.133 ms (1001) FUNCTION VALUE	/IHz pts)
3000				weep 2.133 ms (1001	/IHz pts)
0.0	× 2.401 814 GHz	Y FUNCTION		weep 2.133 ms (1001	/IHz pts)
000	× 2.401 814 GHz	Y FUNCTION		weep 2.133 ms (1001	/IHz pts)
800 0 800 × 2.401 814 GHz	Y FUNCTION		weep 2.133 ms (1001	/IHz pts)	

NALIANANS

No.: BCTC/RF-EMC-007

ilent Spectrum Analyzer -				
enter Freq 2.441	PN	0: Wide Trig: Free Ru Sain:Low #Atten: 30 dE		
Ref Offset dB/div Ref 20.0	2.14 dB	Anne ow Anne of Al		Mkr1 2.440 814 GH -3.597 dBr
^{pg}	U UBIII			
.00	↓ ¹		<mark>2</mark>	
	\frown	\sim		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
J.O				
1.0 1.0				
0.0				
0.0				
J.0				
enter 2.441500 GH Res BW 30 kHz	łz	#VBW 100 kHz		Span 2.000 MH Sweep 2.133 ms (1001 pts
R MODE TRC SCL	×	Y FUNCT	ION FUNCTION WIDTH	FUNCTION VALUE
1 N 1 f 2 N 1 f 3	2.440 814 GHz 2.441 814 GHz	-3.597 dBm -3.618 dBm		
4				
6				
B B B				
1				
				>
3			STATUS	
3	(CFS NVNT 2-DF		
ilent Spectrum Analyzer -	Swept SA	CFS NVNT 2-DF	11 2480MHz	
i <mark>lent Spectrum Analyzer -</mark> RL RF 5(Swept SA DΩ AC	SENSE:INT	11 2480MHz	10:56:04 AM Sep 04, 203 MS TRACE 2 3 4 8
i <mark>lent Spectrum Analyzer -</mark> RL RF 5(Swept SA DQ AC 500000 GHz PN		ALIGN AUTO #Avg Type: Ri an Avg Hold:: 100	10:56:04 AM Sep 04, 20 MS TRACE 12 3 4 F M100 TYPE MUNITY DET P NNN
lent Spectrum Analyzer - RL RF 50 enter Freq 2.479 Ref Offset	Swept SA DQ AC 5000000 GHz PN IFC 2.14 dB	SENSE:INT 0: Wide 😱 Trig: Free Ru	ALIGN AUTO #Avg Type: Ri an Avg Hold:: 100	10:55:04 AM Sep 04, 20 MS TRACE 12 3 4 M100 TYPE MWWW DET PININ MKr1 2,478 810 GH
RL RF Sectrum Analyzer - RL RF Sector enter Freq 2.479 Ref Offset dB/div Ref 20.0	Swept SA DQ AC 5000000 GHz PN IFC 2.14 dB	SENSE:INT 0: Wide 😱 Trig: Free Ru	ALIGN AUTO #Avg Type: Ri an Avg Hold:: 100	10:56:04 AM Sep 04, 20 MS TRACE 12 3 4 F M100 TYPE MUNITY DET P NNN
RL RF Sectrum Analyzer - RL RF Sector enter Freq 2.479 Ref Offset dB/div Ref 20.0	Swept SA DQ AC 5000000 GHz PN IFC 2.14 dB	SENSE:INT 0: Wide 😱 Trig: Free Ru	ALIGN AUTO #Avg Type: Ri an Avg Hold:: 100	10:55:04 AM Sep 04, 20 MS TRACE 12 3 4 M100 TYPE MWWW DET PININ MKr1 2,478 810 GH
RL RF S enter Freq 2.479 Ref Offset dB/div Ref 20.0	Swept SA 500000 GHz PN PN PN PC PN PN PN PN PN PN PN PN PN PN	SENSE:INT 0: Wide 😱 Trig: Free Ru	11 2480MHz ALIGNAUTO #Avg Type: Ri Avg Hold>100	10:55:04 AM Sep 04, 20 MS TRACE 12 3 4 M100 TYPE MWWW DET PININ MKr1 2,478 810 GH
ilent Spectrum Analyzer - RL RF 50 enter Freq 2.479 Ref Offset	Swept SA 500000 GHz PN PN PN PC PN PN PN PN PN PN PN PN PN PN	SENSE:INT 0: Wide 😱 Trig: Free Ru	11 2480MHz ALIGNAUTO #Avg Type: Ri Avg Hold>100	10:55:04 AM Sep 04, 20 MS TRACE 12 3 4 M100 TYPE MWWW DET PININ MKr1 2,478 810 GH
RL RF Spectrum Analyzer - RL RF Si enter Freq 2.479 Ref Offset dB/div Ref 20.0	Swept SA 500000 GHz PN PN PN PC PN PN PN PN PN PN PN PN PN PN	SENSE:INT 0: Wide 😱 Trig: Free Ru	11 2480MHz ALIGNAUTO #Avg Type: Ri Avg Hold>100	10:55:04 AM Sep 04, 20 MS TRACE 12 3 4 M100 TYPE MWWW DET PININ MKr1 2,478 810 GH
RL RF Spectrum Analyzer - RL RF Si enter Freq 2.479 Ref Offset dB/div Ref 20.0	Swept SA 500000 GHz PN PN PN PC PN PN PN PN PN PN PN PN PN PN	SENSE:INT 0: Wide 😱 Trig: Free Ru	11 2480MHz ALIGNAUTO #Avg Type: Ri Avg Hold>100	10:55:04 AM Sep 04, 20 MS TRACE 12 3 4 M100 TYPE MWWW DET PININ MKr1 2,478 810 GH
RL RF Spectrum Analyzer - RL RF S enter Freq 2.479 Ref Offset dB/div Ref 20.0	Swept SA 500000 GHz PN PN PC PN PC PN PC PC PC PC PC PC PC PC PC PC	SENSE:INT 0: Wide 😱 Trig: Free Ru	11 2480MHz ALIGNAUTO #Avg Type: Ri Avg Hold>100	10:55:04 AM Sep 04, 20 MS TRACE 12 3 4 M100 TYPE MWWW DET PININ MKr1 2,478 810 GH
RL RF Spectrum Analyzer - RL RF Spectrum Analyzer - Spectrum Analyzer - Spectrum Analyzer - Spectrum Analyzer - Spectrum Ref Offset dB/div Ref 20.0	Swept SA 500000 GHz PN PN PC PN PC PN PC PC PC PC PC PC PC PC PC PC	SENSE:INT 0: Wide 😱 Trig: Free Ru	11 2480MHz ALIGNAUTO #Avg Type: Ri Avg Hold>100	10:55:04 AM Sep 04, 20 MS TRACE 12 3 4 M100 TYPE MWWW DET PININ MKr1 2,478 810 GH
Ret RF St enter Freq 2.479 Ref Offset dB/div Ref 2.00 0	Swept SA SO AC 500000 GHz PN PN PC PC PC PC PC PC PC PC PC PC	SENSE:INT 0: Wide 😱 Trig: Free Ru	11 2480MHz ALIGNAUTO #Avg Type: Ri Avg Hold>100	10.55:04 AM Sep 04, 20 MS TRACE 12 3 4 TYPE MWAN DET 2010 MIKIT 2.478 810 GH -3.709 dBr
Ret Offset Ret Ref Offset d B/div Ref 2.479	Swept SA SO AC 500000 GHz PN PN PC PC PC PC PC PC PC PC PC PC	SENSE:INT 0: Wide 😱 Trig: Free Ru	11 2480MHz ALIGNAUTO #Avg Type: Ri Avg Hold>100	10:56:04 AM Sep 04, 20 MS TRACE 2: 34 E TYPE MANNA Mkr1 2:478 810 GH -3.709 dBr -3.709 dBr -3.709 dBr -3.700 dBr -3.70
Ret Offset Bl/div Ref Offset dB/div Ref 20.0 Ref Offset dB/div Ref 20.0 Ref	Swept SA 500000 GHz PN PN PC 2.14 dB 0 dBm 1 1 1 1 2.17 810 GHz	SENSE:INT O: Wide D: Wide D: Wide D: Trig: Free Rt #Atten: 30 dE #Atten: 30 dE #Atten: 40 dE #Atten: 40 dE #Atten: 40 dE #Atten: 40 dE #UBW 100 kHz Y FUNCTI -3,709 dBm	11 2480MHz	10.55:04 AM Sep 04, 20 MS TRACE 12 3 4 TYPE MWAN DET 2010 MIKIT 2.478 810 GH -3.709 dBr
Ref Offset RE Ref Offset dB/div Ref 20.0 00 00 00 00 00 00 00 00 00 00 00 00	Swept SA SQ AC S00000 GHz PN PN PN PN PN PN PN PN PN PN	SENSE:INT O: Wide Sain:Low Trig: Free Rt #Atten: 30 dE	11 2480MHz	10:56:04 AM Sep 04, 20 MS TRACE 2: 34 E TYPE MANNA Mkr1 2:478 810 GH -3.709 dBr -3.709 dBr -3.709 dBr -3.700 dBr -3.70
Rt RF S0 enter Freq 2.479 Ref Offset dB/div Ref 20.0 0	Swept SA 500000 GHz PN PN PC 2.14 dB 0 dBm 1 1 1 1 2.17 810 GHz	SENSE:INT O: Wide D: Wide D: Wide D: Trig: Free Rt #Atten: 30 dE #Atten: 30 dE #Atten: 40 dE #Atten: 40 dE #Atten: 40 dE #Atten: 40 dE #UBW 100 kHz Y FUNCTI -3,709 dBm	11 2480MHz	10:56:04 AM Sep 04, 20 MS TRACE 2: 34 E TYPE MANNA Mkr1 2:478 810 GH -3.709 dBr -3.709 dBr -3.709 dBr -3.700 dBr -3.70
Ret Spectrum Analyzer - Ref Status Ref Offset Ref Offset Ref Offset Ref Offset Ref Offset Offset Offset Ref Offset Ref Offset Offset <th< td=""><td>Swept SA 500000 GHz PN PN PC 2.14 dB 0 dBm 1 1 1 1 2.17 810 GHz</td><td>SENSE:INT O: Wide D: Wide D: Wide D: Trig: Free Rt #Atten: 30 dE #Atten: 30 dE #Atten: 40 dE #Atten: 40 dE #Atten: 40 dE #Atten: 40 dE #UBW 100 kHz Y FUNCTI -3,709 dBm</td><td>11 2480MHz</td><td>10:56:04 AM Sep 04, 20 MS TRACE 2: 34 E TYPE MANNA Mkr1 2:478 810 GH -3.709 dBr -3.709 dBr -3.709 dBr -3.700 dBr -3.70</td></th<>	Swept SA 500000 GHz PN PN PC 2.14 dB 0 dBm 1 1 1 1 2.17 810 GHz	SENSE:INT O: Wide D: Wide D: Wide D: Trig: Free Rt #Atten: 30 dE #Atten: 30 dE #Atten: 40 dE #Atten: 40 dE #Atten: 40 dE #Atten: 40 dE #UBW 100 kHz Y FUNCTI -3,709 dBm	11 2480MHz	10:56:04 AM Sep 04, 20 MS TRACE 2: 34 E TYPE MANNA Mkr1 2:478 810 GH -3.709 dBr -3.709 dBr -3.709 dBr -3.700 dBr -3.70
Ilent Spectrum Analyzer - RL RF Si RL RF Si enter Freq 2.479 Ref Offset dB/div Ref 20.0 00	Swept SA 500000 GHz PN PN PC 2.14 dB 0 dBm 1 1 1 1 2.17 810 GHz	SENSE:INT O: Wide D: Wide D: Wide D: Trig: Free Rt #Atten: 30 dE #Atten: 30 dE #Atten: 40 dE #Atten: 40 dE #Atten: 40 dE #Atten: 40 dE #UBW 100 kHz Y FUNCTI -3,709 dBm	11 2480MHz	10:56:04 AM Sep 04, 20 MS TRACE 2: 34 E TYPE MANNA Mkr1 2:478 810 GH -3.709 dBr -3.709 dBr -3.709 dBr -3.700 dBr -3.70

RL RF 50Ω AC	SENSE:INT	ALIGNAUTO #Avg Type: RMS	10:57:58 AM Sep 04, 2023
nter Freq 2.402500000 G	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB		TRACE 123456 TYPE MWWWW DET PNNNN
Ref Offset 2.14 dB dB/div Ref 20.00 dBm		Mk	r1 2.401 814 GHz -4.402 dBm
		2	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.0			
.0			
.0			
enter 2.402500 GHz			Span 2.000 MHz
es BW 30 kHz	#VBW 100 kHz		2.133 ms (1001 pts)
N 1 f 2.4018 N 1 f 2.4028	14 GHz -4.402 dBm 14 GHz -4.345 dBm		
			~
		STATUS	
	CFS NVNT 3-DH		
ent Spectrum Analyzer - Swept SA RL RF 50 Ω AC	SENSE:INT	1 2441MHz	TRACE 1 2 3 4 5 6
ent Spectrum Analyzer - Swept SA	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 123456 TYPE MWWWWW DET PNNNN
ent Spectrum Analyzer - Swept SA RL RF 50Ω AC Inter Freq 2.441500000 G Ref Offset 2.14 dB	HZ PN0: Wide _ Trig: Free Run	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 12345 ( TYPE MWWWWW DET PNNNN
ent Spectrum Analyzer - Swept SA RL RF 50Ω AC Inter Freq 2.441500000 G	HZ PN0: Wide _ Trig: Free Run	1 2441MHz ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100 Mk	TRACE 12345 6 TYPE MWWWWW DET P NNNN r1 2.440 812 GHz
ent Spectrum Analyzer - Swept SA RL RF 150Ω AC Inter Freq 2.441500000 G Ref Offset 2.14 dB dB/div Ref 20.00 dBm	HZ PN0: Wide _ Trig: Free Run	ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 12345 6 TYPE MWWWWW DET P NNNN r1 2.440 812 GHz
ent Spectrum Analyzer - Swept SA RL RF 50Ω AC Inter Freq 2.441500000 G Ref Offset 2.14 dB	HZ PN0: Wide _ Trig: Free Run	1 2441MHz ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100 Mk	10:59:47 AM Sep 04, 2023 TRACE [] 2 3 4 5 TYPE [] 2 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4 TYPE [] 3 4
ent Spectrum Analyzer - Swept SA RL RF 50Ω AC Inter Freq 2.441500000 G Ref Offset 2.14 dB	HZ PN0: Wide _ Trig: Free Run	1 2441MHz ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100 Mk	TRACE 12345 6 TYPE MWWWWW DET P NNNN r1 2.440 812 GHz
ent Spectrum Analyzer - Swept SA RL RF 50Ω AC inter Freq 2.441500000 G Ref Offset 2.14 dB dB/div Ref 20.00 dBm	HZ PN0: Wide _ Trig: Free Run	1 2441MHz ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100 Mk	TRACE 12345 6 TYPE MWWWWW DET P NNNN r1 2.440 812 GHz
ent Spectrum Analyzer - Swept SA RL RE 50 Ω AC inter Freq 2.441500000 G Ref Offset 2.14 dB dB/div Ref 20.00 dBm	HZ PN0: Wide _ Trig: Free Run	1 2441MHz ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100 Mk	TRACE 12345 6 TYPE MWWWWW DET P NNNN r1 2.440 812 GHz
ent Spectrum Analyzer - Swept SA RL RF 50Ω AC inter Freq 2.441500000 G Ref Offset 2.14 dB dB/div Ref 20.00 dBm	HZ PN0: Wide _ Trig: Free Run	1 2441MHz ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100 Mk	TRACE 12345 6 TYPE MWWWWW DET P NNNN r1 2.440 812 GHz
ent Spectrum Analyzer - Swept SA RL RF 150 Ω AC inter Freq 2.441500000 G Ref Offset 2.14 dB B/div Ref 20.00 dBm	HZ PNO: Wide IFGain:Low HAtten: 30 dB	1 2441MHz	rtace in 2 3 4 5 6 Type Municipal State of the PNNNN of the PNNNN of the PNNNN of the PNNNN of the PNNN
ent Spectrum Analyzer - Swept SA RL RF 150 Ω AC mter Freq 2.441500000 G Ref Offset 2.14 dB Ref 20.00 dBm	HZ PNO: Wide IFGain:Low #Atten: 30 dB	1 2441MHz	rtace in 2345 c rtace
ent Spectrum Analyzer - Swept SA RL RF 50 Ω AC Triter Freq 2.441500000 G Ref Offset 2.14 dB dB/div Ref 20.00 dBm 0 0 0 0 0 0 0 0 0 0 0 0 0	HZ PNO: Wide IFGain:Low #Atten: 30 dB #VBW 100 kHZ Y FUNCTION H2 GHZ -3,678 dBm	1 2441MHz	rtace in 2 3 4 5 6 Type Municipal State of the PNNNN of the PNNNN of the PNNNN of the PNNNN of the PNNN
ent Spectrum Analyzer - Swept SA RL RF 150 Ω AC inter Freq 2.441500000 G Ref Offset 2.14 dB Ref Offset 2.14 dB ref 20.00 dBm 0 0 0 0 0 0 0 0 0 0 0 0 0	HZ PNO: Wide IFGain:Low #Atten: 30 dB	1 2441MHz	rtace in 2345 c rtace
ent Spectrum Analyzer - Swept SA RL RF 150 Ω AC Ther Freq 2.441500000 G Ref Offset 2.14 dB dB/div Ref 20.00 dBm 0 0 0 0 0 0 0 0 0 0 0 0 0	HZ PNO: Wide IFGain:Low #Atten: 30 dB #VBW 100 kHZ Y FUNCTION H2 GHZ -3,678 dBm	1 2441MHz	rtace in 2345 c rtace
ent Spectrum Analyzer - Swept SA RL RE S0 Ω AC inter Freq 2.441500000 G Ref Offset 2.14 dB dB/div Ref 20.00 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	HZ PNO: Wide IFGain:Low #Atten: 30 dB #VBW 100 kHZ Y FUNCTION H2 GHZ -3,678 dBm	1 2441MHz	rtace in 2345 c rtace

# 

测



	CFS NVNT	3-DH1 24	180MHz		
Agilent Spectrum Analyzer - Swept SA					
Center Freq 2.479500000 GHz	PNO: Wide 😱 Trig	⊤ : Free Run en: 30 dB	ALIGN AUTO #Avg Type: R Avg Hold:>10		11:01:29 AM Sep 04, 202: TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
Ref Offset 2.14 dB 10 dB/div Ref 20.00 dBm				Mkr1	2.478 814 GH: -3.480 dBm
10.0			^2		
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30.0					
40.0					
60.0					
Center 2.479500 GHz Res BW 30 kHz	#VBW 100	kHz		Sweep 2	Span 2.000 MH .133 ms (1001 pts
MKR MODE TRC SCL X	Y	FUNCTION F	FUNCTION WIDTH	FUNCT	ION VALUE
1 N 1 f 2.478 814 1 2 N 1 f 2.479 812 1 3					
4 5					
6 7 8					
9 10 11					
sg			STATUS		<u>></u>

Page: 65 of 79

13. Number Of Hopping Frequency

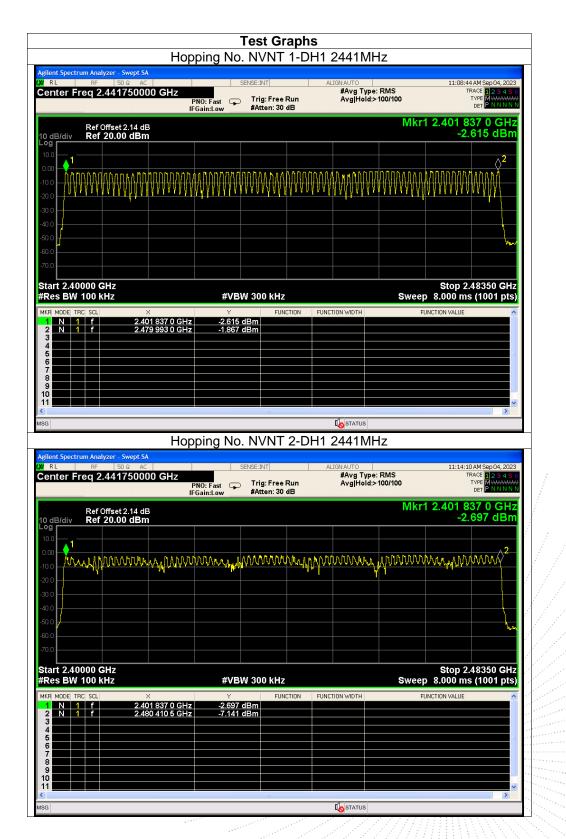
13.1 Block Diagram Of Test Setup

13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

13.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

13.4 Test Result

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH1	79	15	Pass
NVNT	2-DH1	79	15	Pass
NVNT	3-DH1	79	15	Pass

No one

No.: BCTC/RF-EMC-007

Page: 67 of 79

	Hopping No. N	VNT 3-DH1 244	41MHz	
Agilent Spectrum Analyzer - Swept SA U RL RF 50 Ω AC Center Freq 2.441750000 (PNO: East 😱 Tri	##	uto wg Type: RMS vg Held:>100/100	11:19:37 AM Sep 04, 2023 TRACE 12345 6 TYPE MWWWWW DET P N N N N N
Ref Offset 2.14 dB 10 dB/div Ref 20.00 dBm 10.0			Mkr1 2	401 837 0 GHz -2.587 dBm
0.00 -10.0 -20.0 -30.0	www.www.www.	AND WWWARDAN	www.www.www	MMM MM
-40.0				
Start 2.40000 GHz #Res BW 100 kHz	#VBW 30		Sweep 8	Stop 2.48350 GHz .000 ms (1001 pts)
MKR MODE TRC SCL × 1 N 1 f 2.401 83 2 N 1 f 2.402 83 3 4 - - 5 - - - 6 - - - 7 - - - 8 - - -	¥ 37 0 GHz -2.587 dBm 94 0 GHz -8.598 dBm	FUNCTION FUNCTION V		ON VALUE
9 10 11 MSG			STATUS	~

No.: BCTC/RF-EMC-007

Page: 68 of 79