

Report No.: IC 1910105-04 File reference No.: 2019-11-19

Applicant: VisionLabs.B.V.

Product: Biometrical access control terminals VisionLabs LUNA ACE

Model No.: ACE-0001

Trademark: N/A

Test Standards: FCC Part 15 Subpart E, Paragraph 15.407

Test result: It is herewith confirmed and found to comply with the

requirements set up by ANSI C63.10,FCC Part 15 Subpart C,

Paragraph 15.247 for the evaluation of electromagnetic

compatibility

Approved By

Jack Chung

Jack Chung

Manager

Dated: November 19, 2019

Results appearing herein relate only to the sample tested

The technical reports is issued errors and omissions exempt and is subject to withdrawal at

SHENZHEN TIMEWAY TESTING LABORATORIES

Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le Village, Nanshan District, Shenzhen, China

Tel (755) 83448688, Fax (755) 83442996, E-Mail:info@timeway-lab.com

Report No.: IC1910105-04 Page 2 of 98

Date: 2019-11-19

Special Statement:

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meet with ISO/IEC-17025 requirements, which is approved by CNAL. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAL-LAB Code: L2292

The EMC Laboratory has been assessed and in compliance with CNAL/AC01:2002 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:1999 General Requirements) for the Competence of testing Laboratories.

FCC-Registration No.: 744189

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 744189.

Industry Canada (IC) — Registration No.:5205A

The EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 5205A.

A2LA (Certification Number:5013.01)

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number:5013.01

Page 3 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Test Report Conclusion

Content

1.0	General Details	4
1.1	Test Lab Details.	4
1.2	Applicant Details	4
1.3	Description of EUT	4
1.4	Submitted Sample	5
1.5	Test Duration.	5
1.6	Test Uncertainty.	5
1.7	Test By	5
2.0	List of Measurement Equipment.	6
3.0	Technical Details	7
3.1	Summary of Test Results	7
3.2	Test Standards.	7
4.0	EUT Modification.	7
5.0	Power Line Conducted Emission Test.	8
5.1	Schematics of the Test.	8
5.2	Test Method and Test Procedure.	8
5.3	Configuration of the EUT	8
5.4	EUT Operating Condition.	9
5.5	Conducted Emission Limit.	9
5.6	Test Result.	9
6.0	Undesirable Emission and Restrict band	12
7.0	Bandwidth Measurement	31
8.0	Peak Transmit Power Measurement.	66
9.0	Peak Power Spectral Density Measurement	72
10.0	Frequency Stability	93
11.0	Antenna Requirement	95
12.0	FCC ID Label	96
13.0	Photo of Test Setup and EUT View.	97

Date: 2019-11-19

1.0 General Details

1.1 Test Lab Details

Name: SHENZHEN TIMEWAY TESTING LABORATORIES.

Address: Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le

Village, Nanshan District, Shenzhen, China

Telephone: (755) 83448688 Fax: (755) 83442996

Site Listed with Federal Communications commission (FCC)

Registration Number:744189 For 3m Anechoic Chamber

Site Listed with Industry Canada of Ottawa, Canada

Registration Number: IC: 5205A-02

For 3m Anechoic Chamber

1.2 Applicant Details

Applicant: VisionLabs.B.V.

Address: Vijzelstraat 20,4th Floor,1017 HK,Amsterdam,The Netherlands

Telephone: +31 20 369 0493

Fax: -1.3 Description of EUT

Product: Biometrical access control terminals VisionLabs LUNA ACE

Manufacturer: GLORY STAR TECHNICS (SHENZHEN) CO., LTD.

Address: 4/Floor, west block, Longzhu Road, Xin WuCun Industry Building, NanShan

District, Shen Zhen

Brand Name: N/A
Additional Brand Name: N/A

Model Number: ACE-0001

Additional Model Number: N/A

Type of Modulation IEEE 802.11a/n (HT20/HT40): OFDM(64QAM, 16QAM, QPSK, BPSK);

IEEE 802.11ac: BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM

Frequency Band 1: 5180MHz-5240MHz;

Channel Separation 802.11a/802.11n20:20MHz, 802.11n40:40MHz, 802.11ac: 80MHz

Air Data Rate IEEE 802.11a: 54, 48,36, 24, 18, 12, 9, 6 Mbps

 $IEEE\ 802.11n/HT20:\ mcs0:\ 6.5Mbps, mcs1:13Mbps, mcs2:19.5Mbps, mcs3:26Mbps,$

mcs4:39 Mbps, mcs5:52 Mbps, mcs6:58.5 Mbps, mcs7:65 Mbps

IEEE 802.11n/HT40: mcs0:15Mbps,mcs1:30Mbps,mcs2:45Mbps,mcs3:60Mbps,

mcs4:90Mbps, mcs5:120Mbps, mcs6:135Mbps, mcs7:150Mbps

IEEE 802.11ac: Up to 433.3Mbps

Antenna: Two Integral antennas used.

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Date: 2019-11-19

Page 5 of 98

Antenna Gain: Maximum 3.0dBi for each one

Test Mode: During testing, EUT was set to 100% duty cycle. 6Mbps air data rate was the worst case

for 802.11a mode; mcs0 air data rate was the worst case for 802.11n mode; 23.9Mbps air

data rate was the worst case for 802.11ac mode.

Frequency Selection By software

Input Voltage: DC5V, 5A from power supply or POE 48V

Each Channel Operation Frequency

··· - · · · · · · · · · · · · · · · · ·	Zuen Chambel Opolation Frequency						
	Band 1						
802.11a / 11n HT	20 / 802.11ac VHT20	802.11n H	T40 / 802.11acVHT40	802.11	ac VHT80		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190 MHz	42	5210 MHz		
40	5200 MHz	46	5230 MHz				
44	5220 MHz						
48	5240 MHz						

The selected test channels as follows:

The beleeted test chambels as follows.							
Band 1							
802.11a	/ 11n HT20	802.11	n HT40	802.11ac VHT80			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190 MHz	42	5210 MHz		
40	5200 MHz	46	5230 MHz				
48	5240 MHz						

Note: 802.11ac VHT20/VHT40 is similar with 802.11n HT20/HT40.

1.4 Submitted Sample: 1 Samples

1.5 Test Duration

2019-10-17 to 2019-11-18

1.6 Test Uncertainty

Conducted Emissions Uncertainty =3.6dB Radiated Emissions Uncertainty =4.7dB

1.7 Test Engineer

Terry Tang

The sample tested by

Print Name: Terry Tang

Page 6 of 98 Report No.: IC1910105-04

Date: 2019-11-19

2.0 Test Equipment					
Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	R&S	ESPI 3	100379	2019-06-21	2020-06-20
TWO Line-V-NETW	R&S	EZH3-Z5	100294	2019-06-21	2020-06-20
TWO Line-V-NETW	R&S	EZH3-Z5	100253	2019-06-21	2020-06-20
Impuls-Begrenzer	R&S	ESH3-Z2	100281	2019-06-21	2020-06-20
Loop Antenna	EMCO	6507	00078608	2020-06-20	2020-06-20
Spectrum	R&S	FSIQ26	100292	2019-06-21	2020-06-20
Horn Antenna	A-INFO	LB-180400-KF	J211060660	2019-06-21	2020-06-20
Horn Antenna	R&S	BBHA 9120D	9120D-631	2018-07-09	2021-07-08
Power meter	Anritsu	ML2487A	6K00003613	2019-08-22	2020-08-21
Power sensor	Anritsu	MA2491A	32263	2019-08-22	2020-08-21
Bilog Antenna	Schwarebeck	VULB9163	9163/340	2018-07-04	2021-07-03
9*6*6 Anechoic			N/A	2018-02-07	2021-02-06
EMI Test Receiver	RS	ESVB	826156/011	2019-06-21	2020-06-20
EMI Test Receiver	RS	ESH3	860904/006	2019-06-21	2020-06-20
Spectrum	HP/Agilent	ESA-L1500A	US37451154	2019-06-21	2020-06-20
Spectrum	HP/Agilent	E4407B	MY50441392	2019-06-21	2020-06-20
Spectrum	RS	FSP	1164.4391.38	2019-01-20	2020-01-19
RF Cable	Zhengdi	ZT26-NJ-NJ-8M/FA		2019-06-21	2020-06-20
RF Cable	Zhengdi	7m		2019-06-21	2020-06-20
RF Switch	EM	EMSW18	060391	2019-06-21	2020-06-20
Pre-Amplifier	Schwarebeck	BBV9743	#218	2019-06-21	2020-06-20
Pre-Amplifier	HP/Agilent	8449B	3008A00160	2019-06-21	2020-06-20
LISN	SCHAFFNER	NNB42	00012	2019-01-08	2020-01-07

Date: 2019-11-19

3.0 **Technical Details**

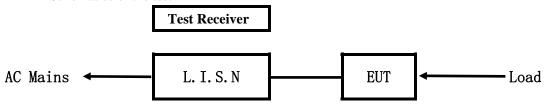
3.1 **Summary of test results**

The EUT has been tested ac	ccording to the following spec	ifications:	
Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.107 & 15.407	Conducted Emission Test	PASS	Complies
FCC Part 15 Subpart E Paragraph 15.407 (b1/4/5/6/7), Part 15.205 and Part 15.209	Undesirable Emission and Restrict band	PASS	Complies
FCC Part 15, Paragraph 15.407 (a1/2/3)	Peak Transmit Power	PASS	Complies
FCC Part 15, Paragraph 15.407 (a)(6)	Peak Power Excursion	PASS	Complies
FCC Part 15, Paragraph 15.407 (a/1/2/3)	Peak Power Spectral Density	PASS	Complies
FCC Part 15, Paragraph 15.407(g)	Frequency Stability	PASS	Complies

3.2 **Test Standards**

FCC Part 15 Subpart & Subpart C, Paragraph 15.247, ANSI C63.10:2013, ANSI C63.4:2014 789033 D02 General UNII Test Procedures New Rules v01r04

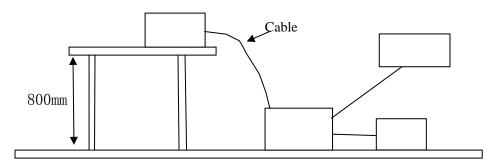
4.0 **EUT Modification**


No modification by SHENZHEN TIMEWAY TESTING LABORATORIES.

Date: 2019-11-19

5. Power Line Conducted Emission Test

5.1 Schematics of the test



EUT: Equipment Under Test

5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.10-2009. The Frequency spectrum From 0.15MHz to 30MHz was investigated. The LISN used was 50ohm/50uH as specified by section 5.1 of ANSI C63.10-2013.

Test Voltage: 120V~, 60Hz Block diagram of Test setup

5.3 Configuration of The EUT

The EUT was configured according to ANSI C63.10-2013. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

A. EUT

Device	Manufacturer	Model	FCC ID
Biometrical access control terminals VisionLabs LUNA ACE	GLORY STAR TECHNICS (SHENZHEN) CO., LTD.	ACE-0001	2AU6Z-ACE-0001HID

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Report No.: IC1910105-04 Page 9 of 98

Date: 2019-11-19

B. Internal Device

Device	Manufacturer	Model	Rating

C. Peripherals

Device	Manufacturer	Model	Rating
Power	FUJIA	FJ-SW528G0505000E	Input: 100-240V~, 50/60Hz, 1.5A;
Supply			Output: DC5V, 5A

5.4 EUT Operating Condition

Operating condition is according to ANSI C63.10 -2013.

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition

5.5 Power line conducted Emission Limit according to Paragraph 15.207 and 15.107

Frequency	Class A Lim	its (dB µ V)	Class B Limits (dB µ V)		
(MHz)	Quasi-peak Level	Average Level	Qua i-peak Level	Avera e Level	
$0.15 \sim 0.50$	79.0	66.0	66.0~56.0	56.0~46.0*	
$0.50 \sim 5.00$	73.0	60.0	56.0	46.0	
5.00 ~ 30.00	73.0	60.0	60.0	50.0	

Notes:

- 1. *Decreasing linearly with logarithm of frequency.
- 2. The tighter limit shall apply at the transition frequencies

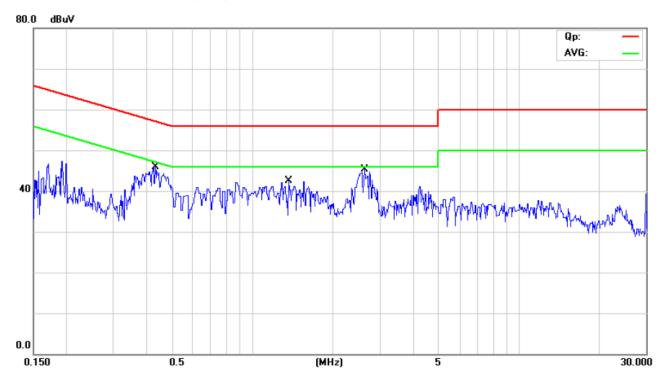
5.6 Test Results

The frequency spectrum from 0.15MHz to 30MHz was investigated. All reading are quasi-peak values with a resolution bandwidth of 9kHz.

Date: 2019-11-19

A: Conducted Emission on Live Terminal (150kHz to 30MHz)

EUT Operating Environment


Temperature: 26°C Humidity: 65%RH Atmospheric Pressure: 101 KPa

EUT set Condition: Keeping WIFI Transmitting

Equipment Level: Class B

Results: PASS

Please refer to following diagram for individual

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.4284	28.00	9.77	37.77	57.28	-19.51	QP	
2	0.4284	3.30	9.77	13.07	47.28	-34.21	AVG	
3	1.3693	23.10	9.79	32.89	56.00	-23.11	QP	
4	1.3693	2.00	9.79	11.79	46.00	-34.21	AVG	
5 *	2.6091	27.60	9.83	37.43	56.00	-18.57	QP	
6	2.6091	7.70	9.83	17.53	46.00	-28.47	AVG	

Date: 2019-11-19

B: Conducted Emission on Neutral Terminal (150kHz to 30MHz)

EUT Operating Environment

Temperature: 26°C Humidity: 65%RH Atmospheric Pressure: 101 KPa

EUT set Condition: Keeping WIFI Transmitting

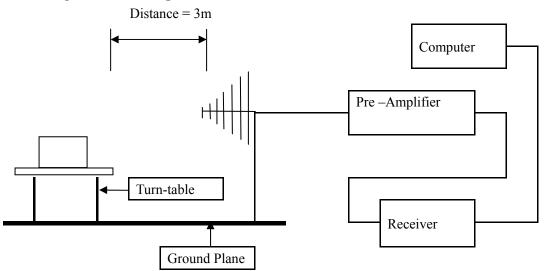
Equipment Level: Class B

Results: Pass

Please refer to following diagram for individual

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.4250	28.70	9.76	38.46	57.35	-18.89	QP	
2	0.4250	4.10	9.76	13.86	47.35	-33.49	AVG	
3	2.6853	23.70	9.83	33.53	56.00	-22.47	QP	
4	2.6853	10.00	9.83	19.83	46.00	-26.17	AVG	
5 *	13.5630	36.00	10.32	46.32	60.00	-13.68	QP	
6	13.5630	11.30	10.32	21.62	50.00	-28.38	AVG	

Date: 2019-11-19



6 Undesirable Emission and Restrict band

- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.10-2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No.744189
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.10-2013.
- (3) The frequency spectrum from 30 MHz to 40 GHz was investigated. All readings from 30 MHz to 1 GHz are Quasi-peak values with a resolution bandwidth of 120 kHz. For measurement above 1GHz, peak values with RBW=1MHz, VBW=3MHz and PK detector.

 Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "QP" in the data table.
- (6) The antenna polarization: Vertical polarization and Horizontal polarization.

Block diagram of Test setup

- 6.2 Configuration of The EUT
 Same as section 5.3 of this report
- 6.3 EUT Operating Condition
 Same as section 5.4 of this report.

Report No.: IC1910105-04 Page 13 of 98

Date: 2019-11-19

6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

Frequencies in restricted band are complied to limit on Paragraph 15.209 and 15.109

Frequency Range (MHz)	Distance (m)	Field strength (dB μ V/m)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

- (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm/MHz
- (2) For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27dBm/MHz.

Note: 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)

- 2. In the Above Table, the higher limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4. Only the worst cases were recorded

Report No.: IC1910105-04 Page 14 of 98

Date: 2019-11-19

Test result

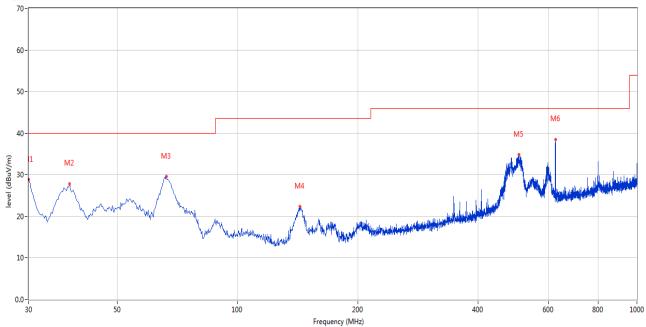
General Radiated Emission Data and Harmonics Radiated Emission Data

Radiated Emission In Horizontal (30MHz----1000MHz)

EUT set Condition: Keeping WIFI Transmitting

Results: Pass

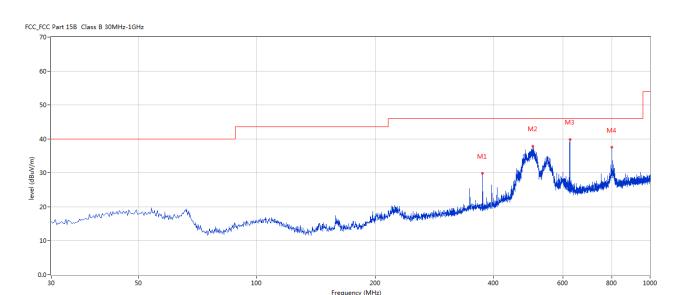
Page 15 of 98


Report No.: IC1910105-04

Date: 2019-11-19

Test Figure:

No.	Frequency	Results	Factor (dB)	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(o)	(cm)		
1	30.000	28.85	-14.19	40.0	-11.15	Peak	360.00	100	V	Pass
2	38.000	27.83	-12.74	40.0	-12.17	Peak	354.00	100	V	Pass
3	66.366	29.57	-14.08	40.0	-10.43	Peak	0.00	200	V	Pass
4	143.462	22.39	-17.18	43.5	-21.11	Peak	0.00	200	V	Pass
5	506.636	34.78	-6.89	46.0	-11.22	Peak	271.00	100	V	Pass
6	625.189	38.50	-4.84	46.0	-7.50	Peak	83.00	100	V	Pass


Page 16 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Test Figure:

No.	Frequen	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
	cy (MHz)	(dBuV/m	(dB)	(dBuV/m	Limit			(cm)		
))	(dB)					
1	374.991	29.87	-9.44	46.0	-16.13	Peak	78.00	100	Н	Pass
2	503.484	37.91	-7.01	46.0	-8.09	Peak	296.00	200	Н	Pass
3	625.189	39.87	-4.84	46.0	-6.13	Peak	0.00	200	Н	Pass
4	799.988	37.52	-2.96	46.0	-8.48	Peak	0.00	200	Н	Pass

Report No.: IC1910105-04 Page 17 of 98

Date: 2019-11-19

Operation Mode: Keeping Transmitting under CH36 for 11g at 6Mbps

Frequency (MHz)	Level@3m (dB \u03b4 V/m)	Antenna Polarity	Limit@3m (dB μ V/m)	
5180.00	96.96 (PK)	Н	Eundamental Eraguenay	
5180.00	85.73 (PK)	V	Fundamental Frequency	
10360	1	Н	74(Peak)/ 54(AV)	
15540	1	V	74(Peak)/ 54(AV)	
20720		H/V	74(Peak)/ 54(AV)	
25900	1	H/V	74(Peak)/ 54(AV)	
31080	-	H/V	74(Peak)/ 54(AV)	
36260		H/V	74(Peak)/ 54(AV)	

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

2. Remark "---" means that the emissions level is too low to be measured

3. For 802.11a mode 6Mbps

Operation Mode: Keeping Transmitting under CH40 for 11g at 6Mbps

	1 0		-
Frequency (MHz)	Level@3m (dB \u03b4 V/m)	Antenna Polarity	Limit@3m (dB \(\mu \)V/m)
5200.00	86.26 (PK)	Н	Evandom antal Engavanov
5200.00	98.16 (PK)	V	Fundamental Frequency
10400		Н	74(Peak)/ 54(AV)
15600		V	74(Peak)/ 54(AV)
20800		H/V	74(Peak)/ 54(AV)
26000		H/V	74(Peak)/ 54(AV)
31200		H/V	74(Peak)/ 54(AV)
36400		H/V	74(Peak)/ 54(AV)

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

2. Remark "---" means that the emissions level is too low to be measured

3. For 802.11a mode 6Mbps

Report No.: IC1910105-04 Page 18 of 98

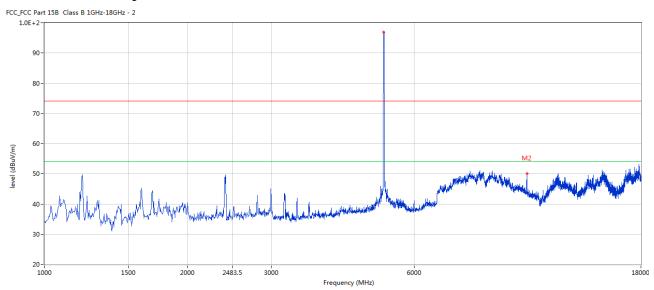
Date: 2019-11-19

Operation Mode: Keeping Transmitting under CH48 for 11g at 6Mbps

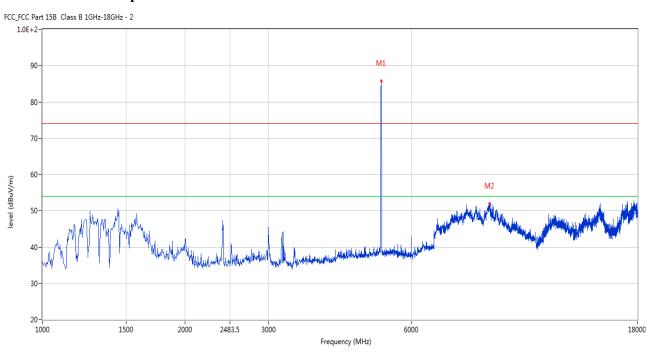
	1 0	0	
Frequency (MHz)	Level@3m (dB \u03b4 V/m)	Antenna Polarity	Limit@3m (dB \(\mu \)V/m)
5240.00	97.53 (PK)	Н	Eundomontal Eroguanay
5240.00	85.47 (PK)	V	Fundamental Frequency
10480		Н	74(Peak)/ 54(AV)
15720		V	74(Peak)/ 54(AV)
20960		H/V	74(Peak)/ 54(AV)
26200		H/V	74(Peak)/ 54(AV)
31440		H/V	74(Peak)/ 54(AV)
36680		H/V	74(Peak)/ 54(AV)

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

2. Remark "---" means that the emissions level is too low to be measured

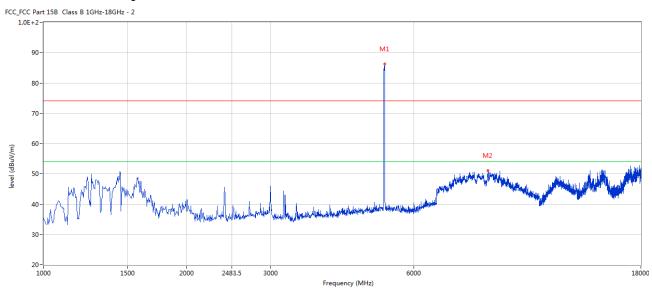

3. For 802.11a mode 6Mbps

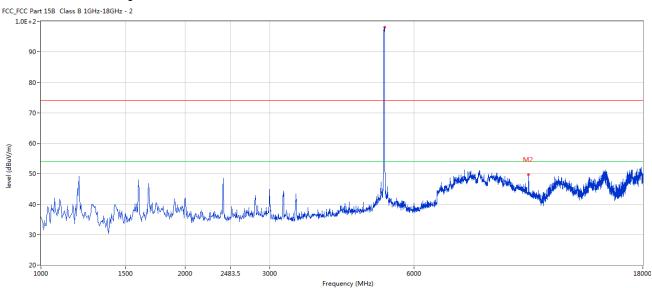
Date: 2019-11-19



Please refer to the following test plots for details:

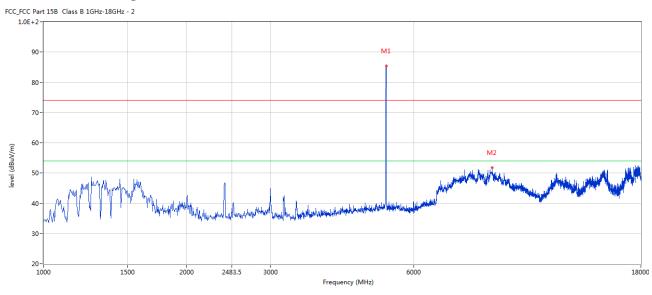
CH36 for 11a at 6Mbps: Horizontal


CH36 for 11a at 6Mbps: Vertical

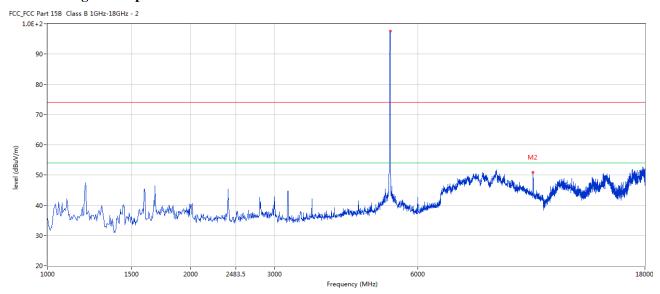

Date: 2019-11-19

CH40 for 11a at 6Mbps: Vertical

CH40 for 11a at 6Mbps: Horizontal


Page 21 of 98

Report No.: IC1910105-04


Date: 2019-11-19

CH48 for 11a at 6Mbps: Vertical

CH48 for 11g at 6Mbps: Horizontal

Note: 1. For radiated Emissions from 18-40GHz, it is only the floor noise.

2. 802.11a is the worst case.

Page 22 of 98

Report No.: IC1910105-04

Date: 2019-11-19

EUT	Biometrical access control terminals		Test Mode:	Channel 36 (5180MHz)-11a		
EUI			rest wrode.	Chamier 30 (3180WH12)-11a		
3.5.1		os LUNA ACE				
Mode		Transmitting	Input Voltage	120V~		
Temperature	24	deg. C,	Humidity	56% RH		
Test Result:		Pass	Detector	PK		
5150	PK (dBμV/m)	47.33 (PK)	.	25 ID (1.57)		
	EIRP (dBm)	-45.29	Limit	-27dBm/MHz		
Polarity	Но	rizontal				
est Figure			-			
FCC_FCC Part 15B Class B 1GH:	z-18GHz - 2					
1.1E+2-				M2		
1.0E+2-				L.N		
90 -				and a		
90-						
80-						
70-						
Œ,						
(m/N) 60 - 60 - 50 - 50 - 50 - 50 - 50 - 50 -						
<u>8</u> 50-				M1		
		a de la company de la comp	بالمنابع المنابع المنابع	معاسرين أدرار والرابي المرابية المرابي المرابط والمرابط المرابط المرابط والمرابط المرابط والمرابط والم		
40-	the drawn of the Land	the account of the afford and a contract of the	The state of the s	And the state of t		

					rrequency (i					
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	5150.00	47.33	3.73	74.0	-26.67	Peak	271.00	100	Н	Pass

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m]=47.33 \ dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=47.33-95.2=-47.87dBm$

Page 23 of 98

5300

Report No.: IC1910105-04

Date: 2019-11-19

Restricted band M	easurement					
EUT	Biometrical access control terminals		Test Mode:	Channel 36 (5180MHz)-11a		
	VisionLa	bs LUNA ACE				
Mode	Keeping	Transmitting	Input Voltage	120V~		
Temperature	Temperature 24 deg. C,		Humidity	56% RH		
Test Result:		Pass	Detector	PK		
5150	PK (dBμV/m)	38.23 (PK)	T : '/	27 10 / 411		
	EIRP (dBm)	-56.97	Limit	-27dBm/MHz		
Polarity	V	Vertical				
Test Figure			1			
FCC_FCC Part 15B Class B 1GHz-	18GHz - 2					
1.1E+2-						
1.0E+2-						
90-				M2		
80 -				M		
00-						
70-						
60 - 60 - 50 - 50 - 50 - 50 - 50 - 50 -						
p)						
				M1		

No.	Frequency	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit (dB)			(cm)		
1	5150.00	38.23	3.73	74.0	-35.77	Peak	360.00	100	V	Pass

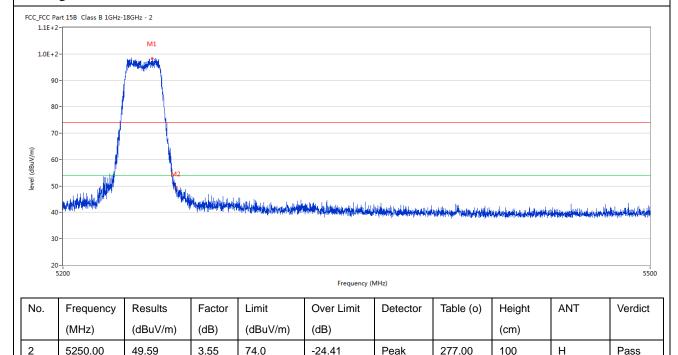
Frequency (MHz)

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

20-4500

For Example, if $E[dB\mu V/m]=38.23 dB\mu V/m$,


 $EIRP[dBm] = E[dB\mu V/m] - 95.2=38.23-95.2=-56.97dBm$

Date: 2019-11-19

Restricted band Measurement								
EUT	Biometrical acc	cess control terminals	Test Mode:	Channel 48 (5240MHz)-11a				
	VisionLa	bs LUNA ACE						
Mode	Keeping	g Transmitting	Input Voltage	120V~				
Temperature	24	deg. C,	Humidity	56% RH				
Test Result:		Pass	Detector	PK				
5250	PK (dBμV/m)	49.59 (PK)	T : '/	27 ID // // //				
	EIRP (dBm)	-45.61	Limit	-27dBm/MHz				
Polarity	Horizontal							
Test Figure	•			•				

Test Figure

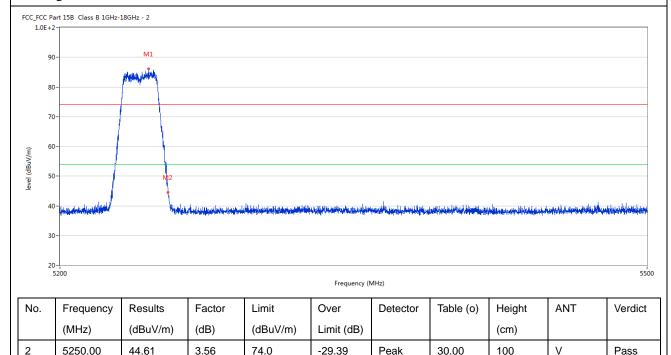
Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m]=49.59 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=49.59-95.2=-45.61dBm$

Pass


Report No.: IC1910105-04

Date: 2019-11-19

Restricted band Measurement								
EUT	Biometrical acc	cess control terminals	Test Mode:	Channel 48 (5240MHz)-11a				
	VisionLa	bs LUNA ACE						
Mode	Keeping	g Transmitting	Input Voltage	120V∼				
Temperature	24	deg. C,	Humidity	56% RH				
Test Result:		Pass	Detector	PK				
5250	PK (dBμV/m)	44.61 (PK)	T in it	27 ID/MII				
	EIRP (dBm) -50.		Limit	-27dBm/MHz				
Polarity	,	/ertical						
Test Figure	•		•					

Test Figure

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

Peak

30.00

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

5250.00

For Example, if $E[dB\mu V/m]=44.61 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=44.61-95.2=-50.59dBm$

3.56

Date: 2019-11-19

Restricted band Measurement							
EUT	Biometrical acc	cess control terminals	Test Mode:	Channel 36			
	VisionLa	bs LUNA ACE		(5180MHz)-11n/HT20			
Mode	Keeping	g Transmitting	Input Voltage	120V~			
Temperature	24	deg. C,	Humidity	56% RH			
Test Result:		Pass	Detector	PK			
5150	PK (dBµV/m)	46.55 (PK)	T 114	27 10/MII			
	EIRP (dBm)	-48.65	Limit	-27dBm/MHz			
Polarity	Но	orizontal	-1	-			

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m] = 46.55 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=46.55-95.2=-48.65dBm$

2. RBW=1MHz, VBW=3MHz

Restricted band Measurement							
EUT	Biometrical acc	cess control terminals	Test Mode:	Channel 36			
	VisionLa	bs LUNA ACE		(5180MHz)-11n/HT20			
Mode	Keeping	g Transmitting	Input Voltage	120V~			
Temperature	24 deg. C,		Humidity	56% RH			
Test Result:		Pass	Detector	PK			
5150	PK (dBμV/m) 40.37 (PK)		T 10014	27 10/MII			
	EIRP (dBm) -54.83		Limit	-27dBm/MHz			
Polarity	Vertical			1			

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m] = 40.37 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 40.37 - 95.2 = -54.83dBm$

Date: 2019-11-19

Restricted band Measurement							
EUT	Biometrical acc	cess control terminals	Test Mode:	Channel 48 (5240MHz)-			
	VisionLa	bs LUNA ACE		11n/HT20			
Mode	Keeping	g Transmitting	Input Voltage	120V~			
Temperature	24 deg. C,		Humidity	56% RH			
Test Result:		Pass	Detector	PK			
5250	PK (dBµV/m)	48.72 (PK)	T in it	27 10/MII			
	EIRP (dBm) -46.48		Limit	-27dBm/MHz			
Polarity	Horizontal						

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m] = 48.72 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=48.72-95.2=-46.48dBm$

2. RBW=1MHz, VBW=3MHz

Restricted band Measurement							
EUT	Biometrical acc	cess control terminals	Test Mode:	Channel 48 (5240MHz)-			
	VisionLa	bs LUNA ACE		11n/HT20			
Mode	Keeping	g Transmitting	Input Voltage	120V~			
Temperature	24 deg. C,		Humidity	56% RH			
Test Result:		Pass	Detector	PK			
5250	PK (dBμV/m) 43.69 (PK)		T in it	27 10/MII			
	EIRP (dBm) -51.51		Limit	-27dBm/MHz			
Polarity	Vertical						

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m] = 43.69dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=43.69-95.2=-51.51 dBm$

Date: 2019-11-19

Restricted band Measurement							
EUT	Biometrical acc	cess control terminals	Test Mode:	Channel 38			
	VisionLa	bs LUNA ACE		(5190MHz)-11n/HT40			
Mode	Keeping	g Transmitting	Input Voltage	120V~			
Temperature	24 deg. C,		Humidity	56% RH			
Test Result:		Pass	Detector	PK			
5150	PK (dBμV/m) 46.06 (PK)		T 10014	27 ID /MII			
	EIRP (dBm) -49.14		Limit	-27dBm/MHz			
Polarity	Horizontal						

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m] = 46.06 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=46.06-95.2=-49.14 dBm$

2. RBW=1MHz, VBW=3MHz

Restricted band Measurement							
EUT	Biometrical acc	cess control terminals	Test Mode:	Channel 38			
	VisionLa	bs LUNA ACE		(5190MHz)-11n/HT40			
Mode	Keeping	g Transmitting	Input Voltage	120V~			
Temperature	24 deg. C,		Humidity	56% RH			
Test Result:		Pass	Detector	PK			
5150	PK (dBμV/m) 40.52 (PK)		T 10014	27 ID /MII			
	EIRP (dBm) -54.68		Limit	-27dBm/MHz			
Polarity	Vertical			1			

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m] = 40.52 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 40.52 - 95.2 = -54.68dBm$

Date: 2019-11-19

Restricted band Measurement								
EUT	Biometrical acc	cess control terminals	Test Mode:	Channel 46 (5230MHz)-				
	VisionLa	bs LUNA ACE		11n/HT40				
Mode	Keeping	g Transmitting	Input Voltage	120V~				
Temperature	24 deg. C,		Humidity	56% RH				
Test Result:		Pass	Detector	PK				
5250	PK (dBμV/m)	PK (dBμV/m) 47.17(PK)		27.15 (2.01)				
	EIRP (dBm) -48.03		Limit	-27dBm/MHz				
Polarity	Horizontal							

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m]=47.17 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=47.17-95.2=-48.03 dBm$

2. RBW=1MHz, VBW=3MHz

Restricted band Measurement							
EUT	Biometrical acc	cess control terminals	Test Mode:	Channel 46 (5230MHz)-			
	VisionLa	bs LUNA ACE		11n/HT40			
Mode	Keeping	g Transmitting	Input Voltage	120V~			
Temperature	24 deg. C,		Humidity	56% RH			
Test Result:		Pass	Detector	PK			
5250	PK (dBμV/m) 39.27 (PK)		T in it	27 ID /MII			
	EIRP (dBm) -55.93		Limit	-27dBm/MHz			
Polarity	Vertical			1			

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m] = 39.27 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 39.27 - 95.2 = -55.93dBm$

Date: 2019-11-19

Restricted band Measurement							
EUT	Biometrical acc	cess control terminals	Test Mode:	Channel 42			
	VisionLa	bs LUNA ACE		(5210MHz)-11ac/VHT80			
Mode	Keeping	g Transmitting	Input Voltage	120V~			
Temperature	24 deg. C,		Humidity	56% RH			
Test Result:		Pass	Detector	PK			
5150	PK (dBμV/m) 46.25 (PK)		T 114	27 10/MII			
	EIRP (dBm) -48.95		Limit	-27dBm/MHz			
Polarity	Horizontal						

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m] = 46.25 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=46.25-95.2=-48.95 dBm$

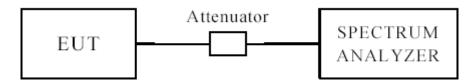
2. RBW=1MHz, VBW=3MHz

Restricted band Measurement							
EUT	Biometrical acc	cess control terminals	Test Mode:	Channel 42 (5210MHz)-			
	VisionLa	bs LUNA ACE		11ac/VHT80			
Mode	Keeping	g Transmitting	Input Voltage	120V~			
Temperature	24 deg. C,		Humidity	56% RH			
Test Result:		Pass	Detector	PK			
5150	PK (dBμV/m) 40.23 (PK)		T in it	27 10/MII			
	EIRP (dBm) -54.97		Limit	-27dBm/MHz			
Polarity	Vertical			1			

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m] = 40.23 dB\mu V/m$,


 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 40.23 - 95.2 = -54.97 dBm$

Date: 2019-11-19

7.0 Emission Bandwidth

7.1 Test Setup

7.3 Test Procedure for Emission Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set VBW> RBW
- 3 Detector = Peak
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

7.4 Test Procedure for Minimum Bandwidth for the Band 5725-5850MHz

- 1. Set RBW = 100 kHz.
- 2. Set $VBW \ge 3 \times RBW$.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.5 Test Procedure for 99% Bandwidth

- 1. Set center frequency to the nominal EUT channel center frequency
- 2. Set span = 1.5 times to 5.0 times OBW
- 3. Set RBW= 1% TO 5% of the OBW
- 4. Set $VBW \ge 3 \times RBW$
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Other, peak detection and max mode (until trace stabilizes) shall be used.
- 6. Use the 99% power bandwidth function of the instrument

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 32 of 98

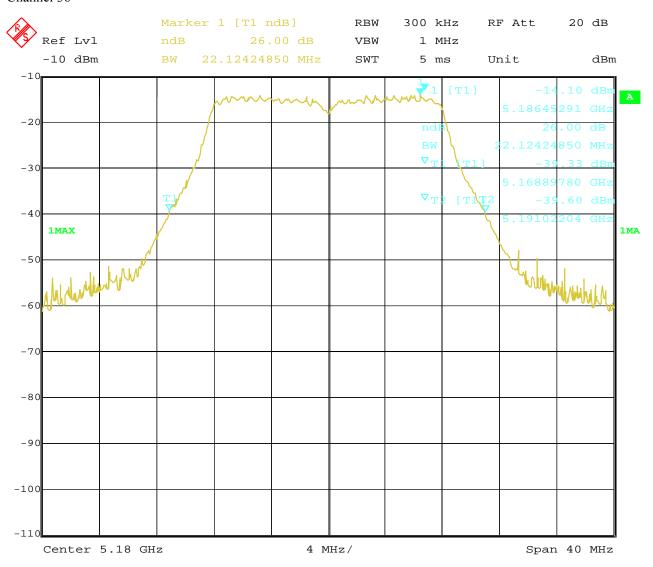
Report No.: IC1910105-04

Date: 2019-11-19

7.6 Test Result

EUT		Biometric terminals V	al access co		Model		ACE-0001	
Mode		8	302.11a		Input Vol	tage		120V~
Temperati	ure	24	4 deg. C,		Humidity			56% RH
Channel		el Frequency (MHz)	Data Transfer Rate (Mbps)		Bandwidth (MHz)		num Limit MHz)	Pass/ Fail
26dB Bar	ndwidth							
36		5180	6	22	22.12			Pass
40		5200	6	22.04				Pass
48		5240	6	21.72				Pass
99% Ban	dwidth							
36		5180	6	17	.15			Pass
40		5200	6	17	17.15			Pass
48		5240	6	17.15				Pass

Note: Ant1 and Ant 2 were tested and only the worst cased was recorded in the test report. Ant 1 was the worst case.

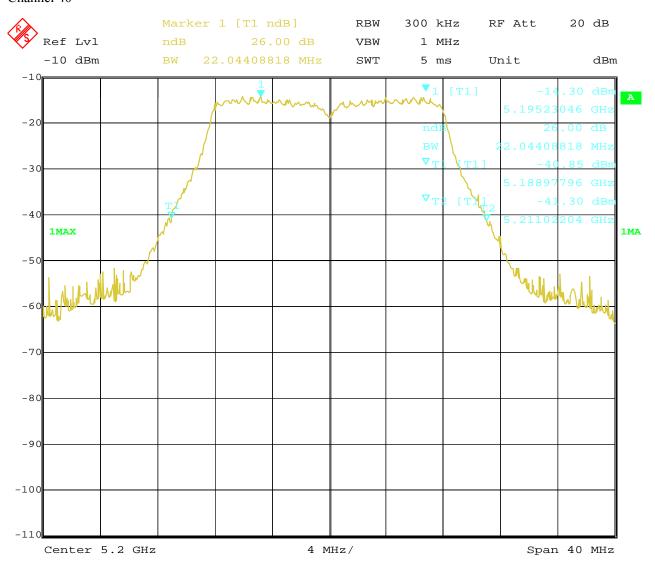

Date: 2019-11-19

Test Figure:

26dB Bandwidth

Channel 36

12.NOV.2019 Date: 12:54:14

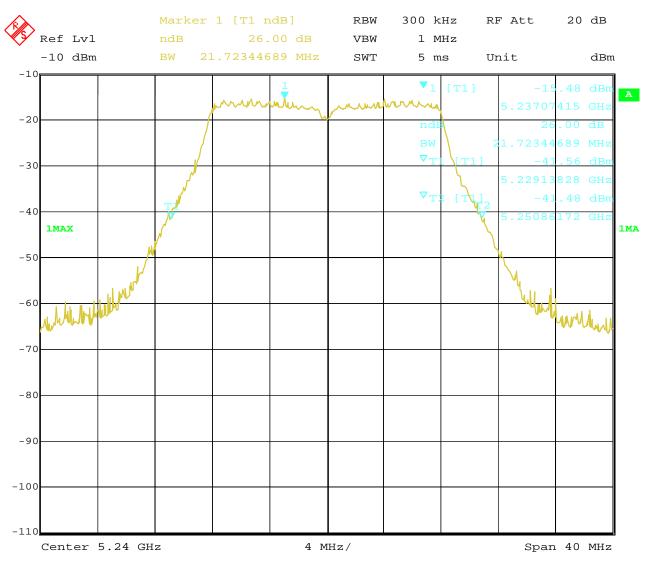

Page 34 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 40

12.NOV.2019 12:58:47 Date:

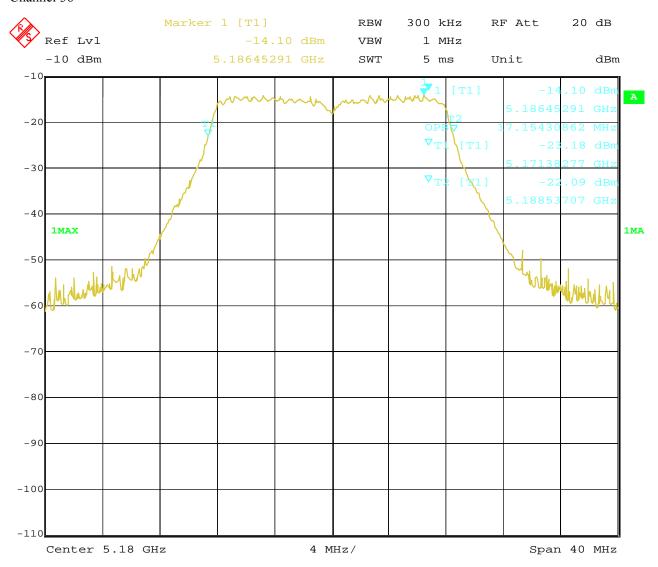

Page 35 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 48

12.NOV.2019 12:59:55 Date:

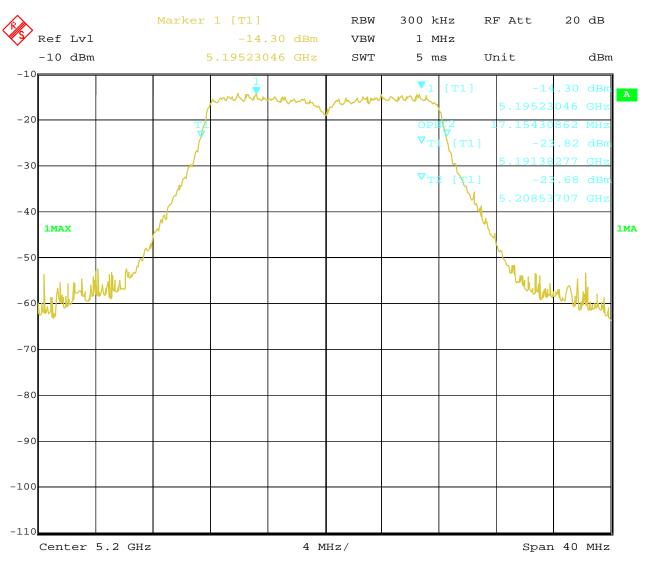

Date: 2019-11-19

Test Figure:

99% Bandwidth

Channel 36

Date: 12.NOV.2019 12:54:41

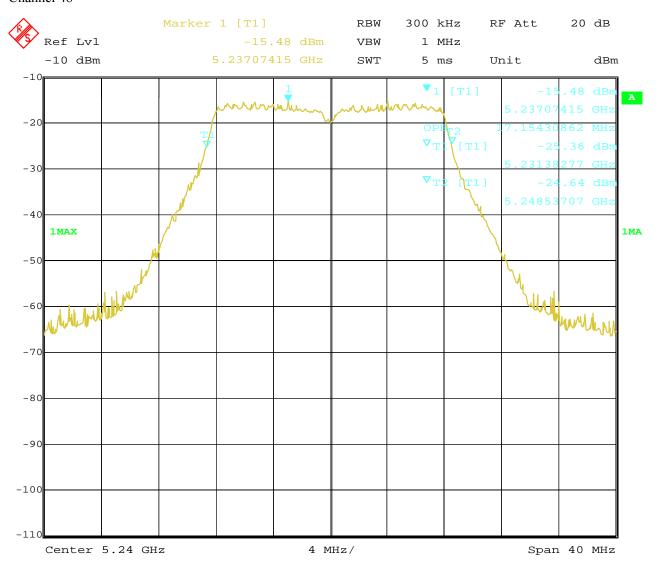

Page 37 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 40

12.NOV.2019 12:58:32 Date:


Page 38 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 48

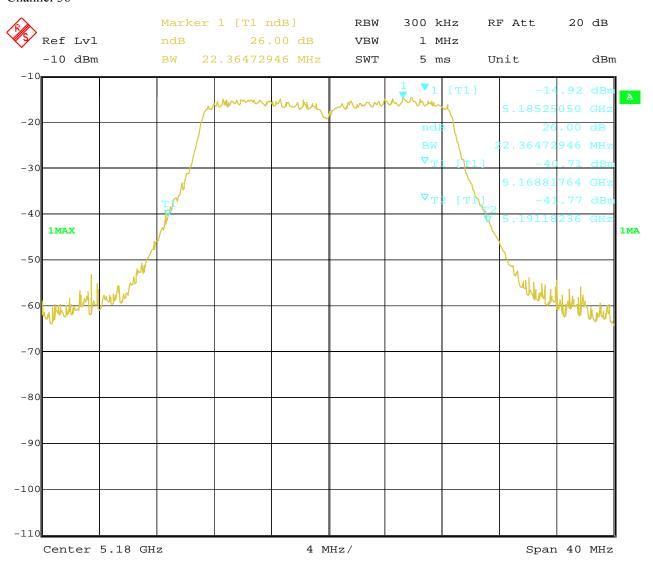
12.NOV.2019 13:00:09 Date:

Page 39 of 98 Report No.: IC1910105-04

Date: 2019-11-19

EUT Mode		terminals V	ACE .11n HT20		Model Input Voltage			ACE-0001 120V~	
Temperati	ure	24	4 deg. C,		Humidity			56% RH	
Channel		el Frequency (MHz)	Data Transfer Rate (Mbps)	Bandwidth (MHz)		Minimum Limit (MHz)		Pass/ Fail	
26dB Bar	ndwidth								
36	5180		mcs0	22.36				Pass	
40		5200	mcs0	22	.44			Pass	
48		5240	mcs0	22	22.44			Pass	
99% Ban	dwidth								
36	36 5180 mcs0		mcs0	17	.96			Pass	
40		5200 mcs0 1		18	3.04			Pass	
48	5240 mcs0			18	.12			Pass	

Note: Ant1 and Ant 2 were tested and only the worst cased was recorded in the test report. Ant 1 was the worst case.

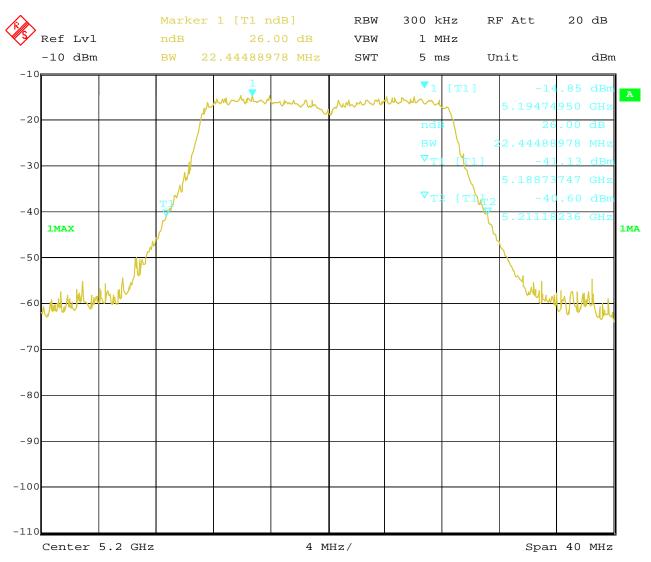

Date: 2019-11-19

Test Configure

26dB Bandwidth

Channel 36

Date: 12.NOV.2019 13:11:39

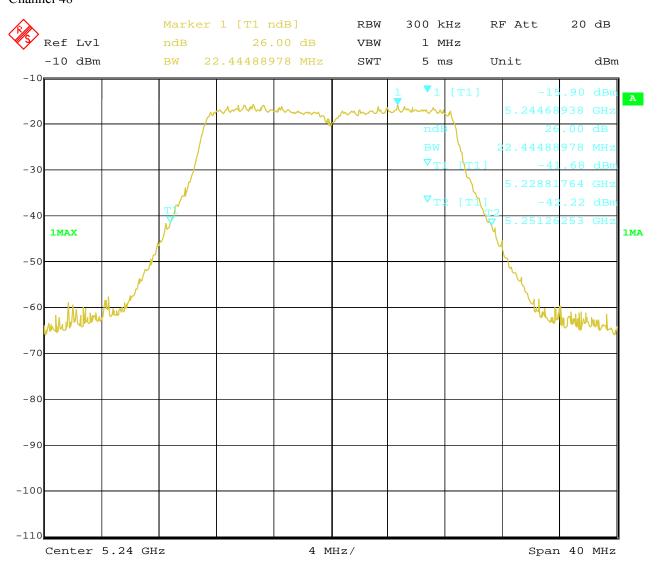

Page 41 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 40

12.NOV.2019 13:09:19 Date:


Page 42 of 98

Report No.: IC1910105-04

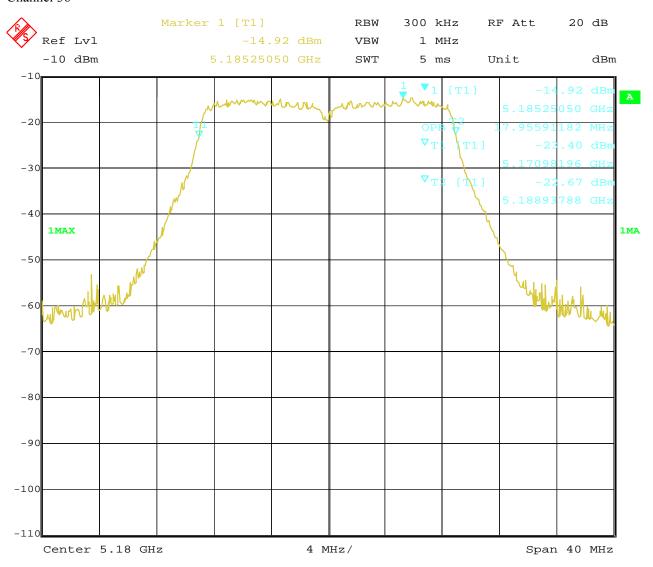
Date: 2019-11-19

Channel 48

12.NOV.2019 13:07:56 Date:

Page 43 of 98

Report No.: IC1910105-04

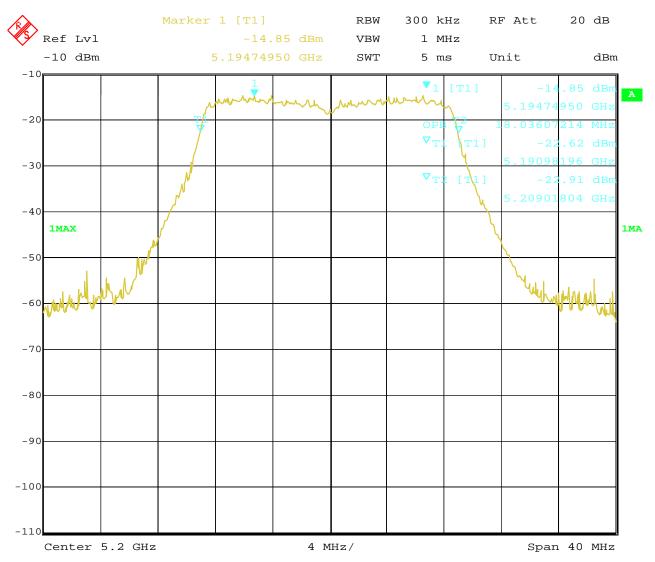

Date: 2019-11-19

Test Configure

99% Bandwidth

Channel 36

Date: 12.NOV.2019 13:11:11

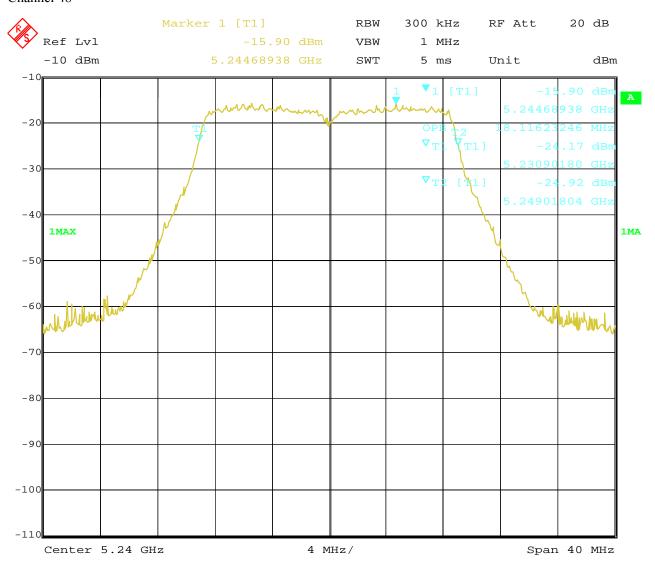

Page 44 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 40

12.NOV.2019 13:09:33 Date:


Page 45 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 48

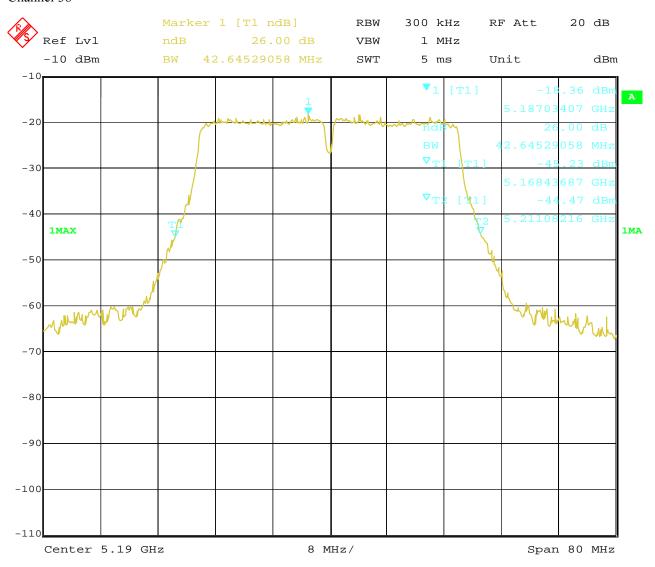
12.NOV.2019 13:07:37 Date:

Page 46 of 98 Report No.: IC1910105-04

Date: 2019-11-19

EUT		Biometric terminals V	al access co		Model		,	ACE-0001
Mode		802	.11n HT40		Input Voltage			120V~
Temperati	ure	24	Humidity			56% RH		
Channel		Channel Frequency (MHz)		Bandwidth (MHz)		Minimum Limit (MHz)		Pass/ Fail
26dB Bandwidth								
38		5190	mcs0	42.65				Pass
46		5230	mcs0	43	3.77			Pass
99% Ban	dwidth							
38		5190	mcs0 36		.39			Pass
46		5230	mcs0	36	.39			Pass

Note: Ant1 and Ant 2 were tested and only the worst cased was recorded in the test report. Ant 1 was the worst case.

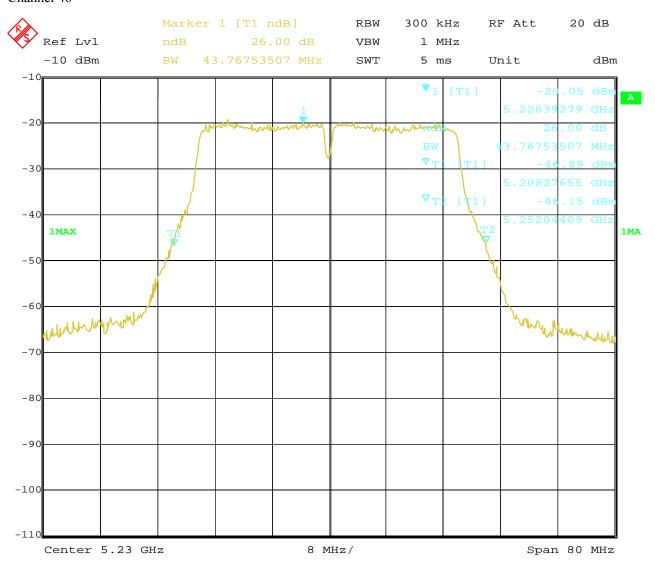

Date: 2019-11-19

Test Configure

26dB Bandwidth

Channel 38

Date: 12.NOV.2019 14:54:53


Page 48 of 98

Report No.: IC1910105-04

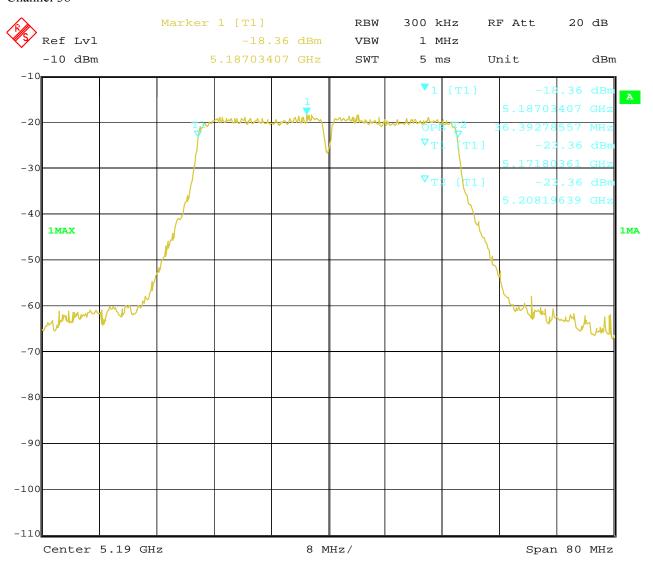
Date: 2019-11-19

Channel 46

12.NOV.2019 14:59:24 Date:

Page 49 of 98

Report No.: IC1910105-04

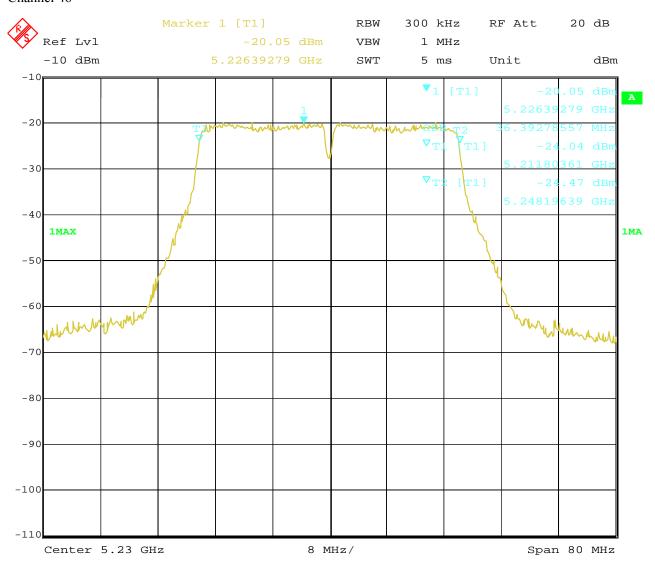

Date: 2019-11-19

Test Configure

99% Bandwidth

Channel 38

Date: 12.NOV.2019 14:56:06


Page 50 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 46

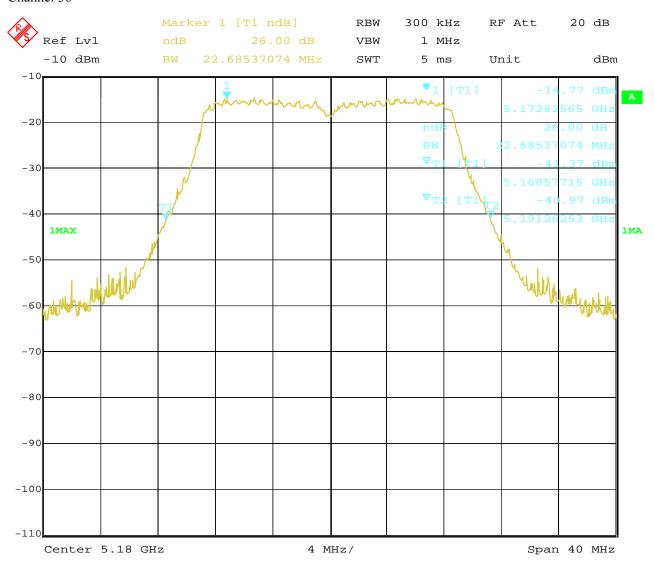
12.NOV.2019 14:59:12 Date:

Page 51 of 98 Report No.: IC1910105-04

Date: 2019-11-19

EUT		Biometric terminals V	al access co		Model			ACE-0001
Mode		802.1	1ac VHT20	0	Input Voltage			120V~
Temperate	ure	24	4 deg. C,		Humidity	,		56% RH
Channel		el Frequency (MHz)	Data Transfer Rate (Mbps)	Bandwidth (MHz)		Minimum Limit (MHz)		Pass/ Fail
26dB Bar	ndwidth							
36	5180		mcs0	22.69				Pass
40		5200	mcs0	22	.53			Pass
48		5240	mcs0	22	2.44			Pass
99% Ban	dwidth							
36	5180 mcs0		18	.12			Pass	
40		5200	mcs0	18	.04			Pass
48		5240 mcs0 1		18	.12			Pass

Note: Ant1 and Ant 2 were tested and only the worst cased was recorded in the test report. Ant 1 was the worst case.

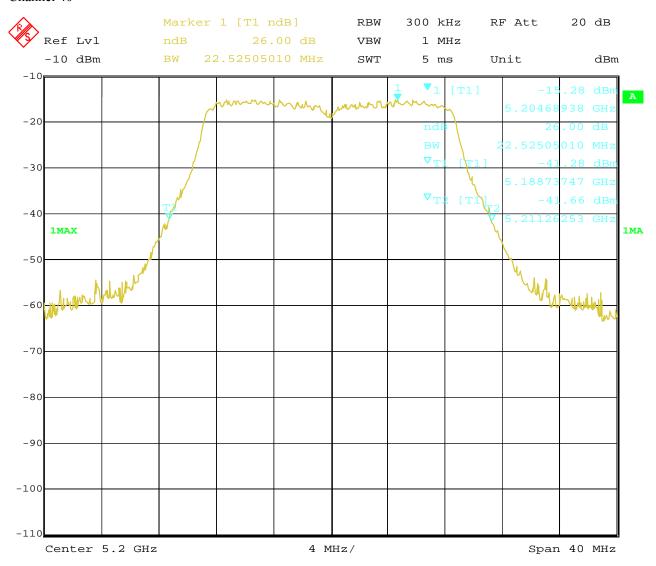

Date: 2019-11-19

Test Configure

26dB Bandwidth

Channel 36

Date: 12.NOV.2019 13:14:49

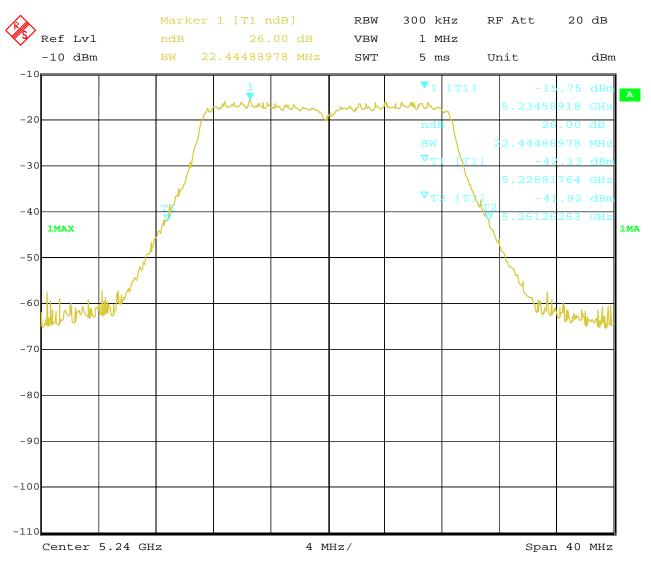

Page 53 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 40

12.NOV.2019 13:19:52 Date:

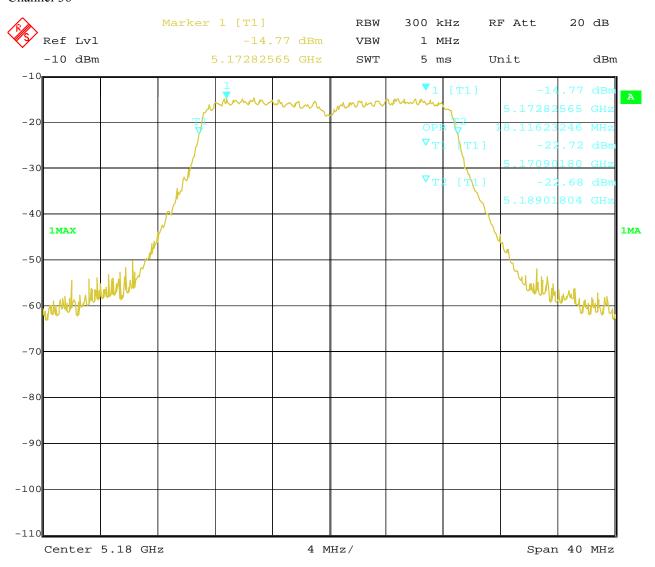

Page 54 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 48

12.NOV.2019 13:23:46 Date:

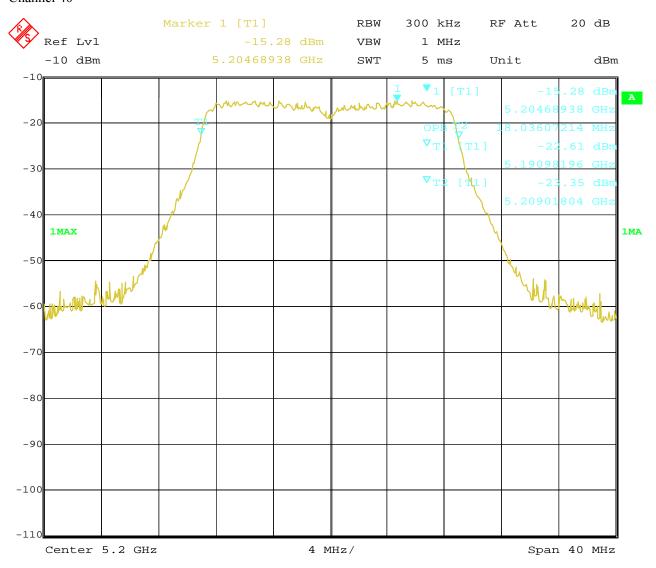

Date: 2019-11-19

Test Configure

99% Bandwidth

Channel 36

Date: 12.NOV.2019 13:15:19

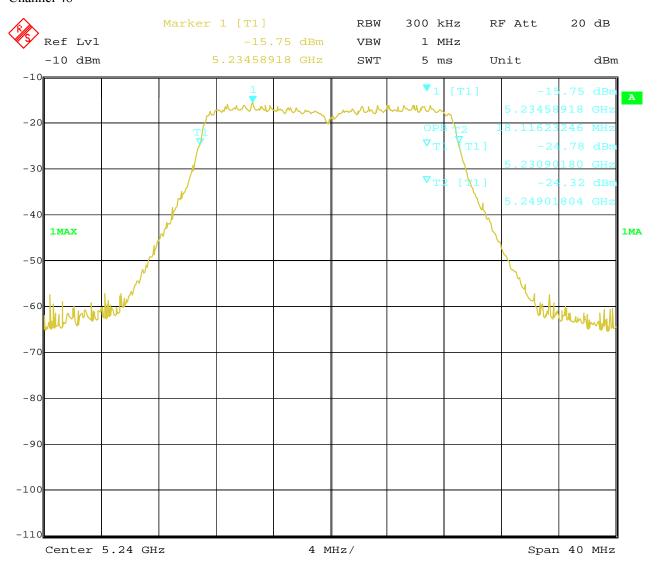

Page 56 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 40

12.NOV.2019 13:19:10 Date:


Page 57 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 48

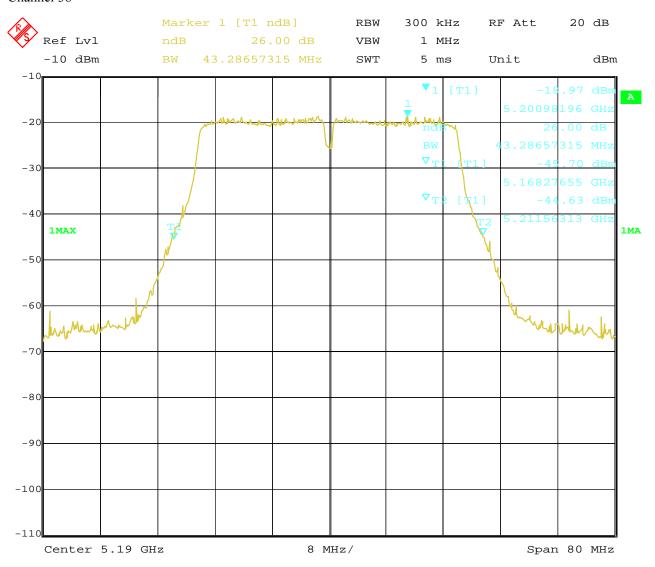
12.NOV.2019 13:24:04 Date:

Page 58 of 98 Report No.: IC1910105-04

Date: 2019-11-19

EUT		Biometric terminals V	al access co		Model		,	ACE-0001
Mode		802.1	1ac VHT40)	Input Voltage			120V~
Temperati	ure	24 deg. C,			Humidity			56% RH
Channel	Channel Frequency (MHz)		Data Transfer Rate (Mbps)	Bandwidth (MHz)			num Limit MHz)	Pass/ Fail
26dB Bandwidth								
38		5190	mcs0	43.29				Pass
46		5230	mcs0	42	2.97			Pass
99% Ban	dwidth							
38		5190	mcs0	36	.39			Pass
46		5230	mcs0	36	.39			Pass

Note: Ant1 and Ant 2 were tested and only the worst cased was recorded in the test report. Ant 1 was the worst case.

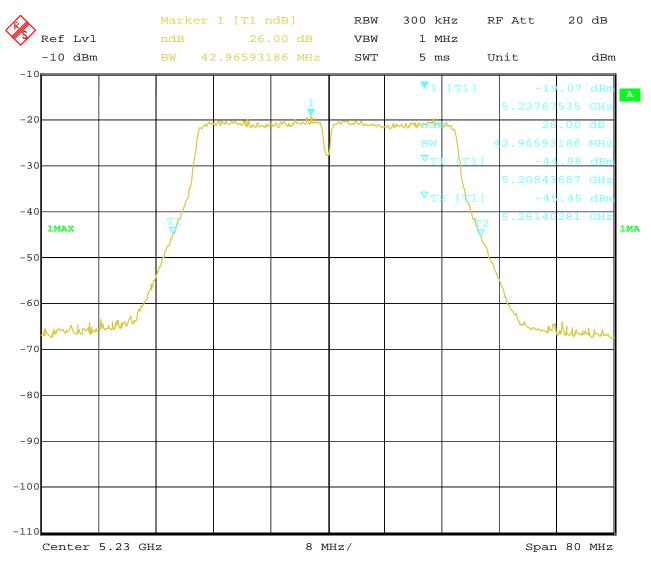

Date: 2019-11-19

Test Configure

26dB Bandwidth

Channel 38

Date: 12.NOV.2019 15:04:57

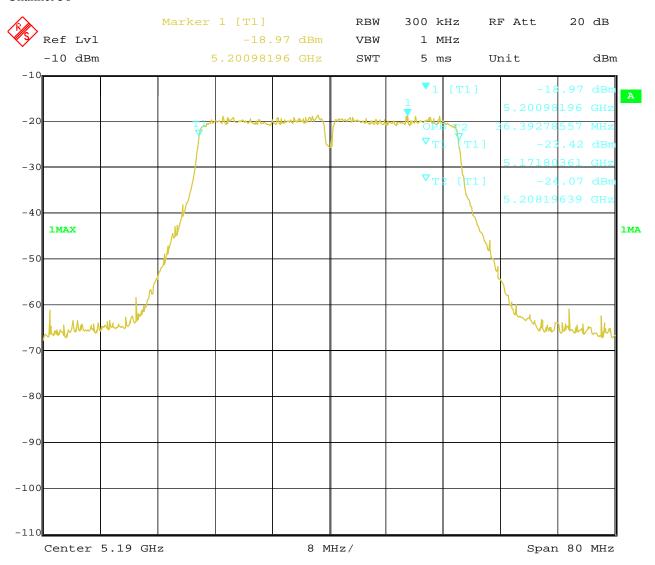

Page 60 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 46

12.NOV.2019 15:02:06 Date:

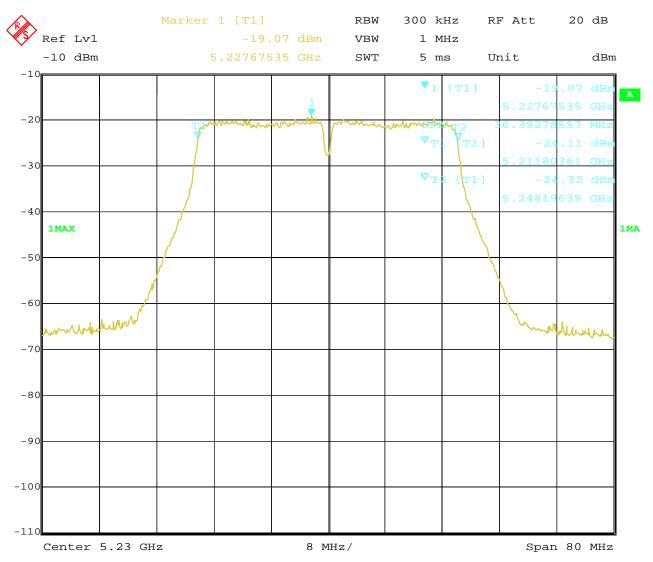

Date: 2019-11-19

Test Configure

99% Bandwidth

Channel 38

Date: 12.NOV.2019 15:04:38


Page 62 of 98

Report No.: IC1910105-04

Date: 2019-11-19

Channel 46

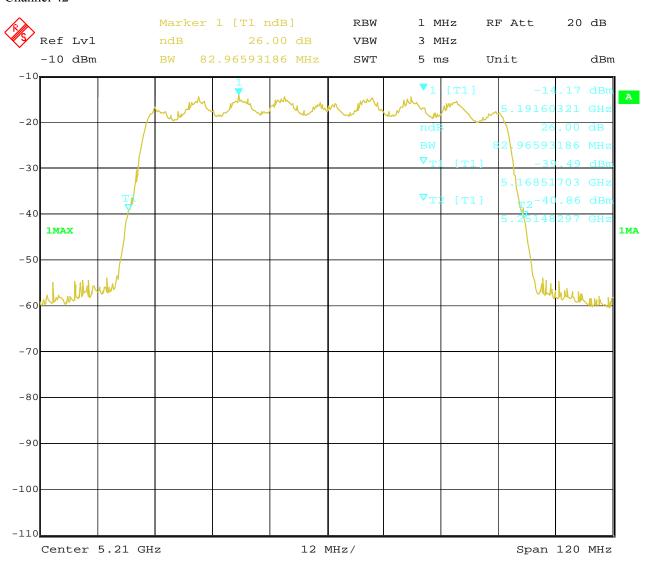
12.NOV.2019 15:02:21 Date:

Page 63 of 98 Report No.: IC1910105-04

Date: 2019-11-19

EUT		Biometric terminals V	al access co		Model			ACE-0001
Mode		802.1	1ac VHT80	0	Input Voltage			120V~
Temperat	ure	24	4 deg. C,		Humidity			56% RH
l Channel I		el Frequency (MHz)	Data Transfer Rate (Mbps)	Bandwidth (MHz)		Minimum Limit (MHz)		Pass/ Fail
26dB Bar	ndwidth							
42		5210	23.9	82	.97			Pass
99% Ban	dwidth							
42	5210 23.9				.75			Pass

Note: Ant1 and Ant 2 were tested and only the worst cased was recorded in the test report. Ant 1 was the worst case.

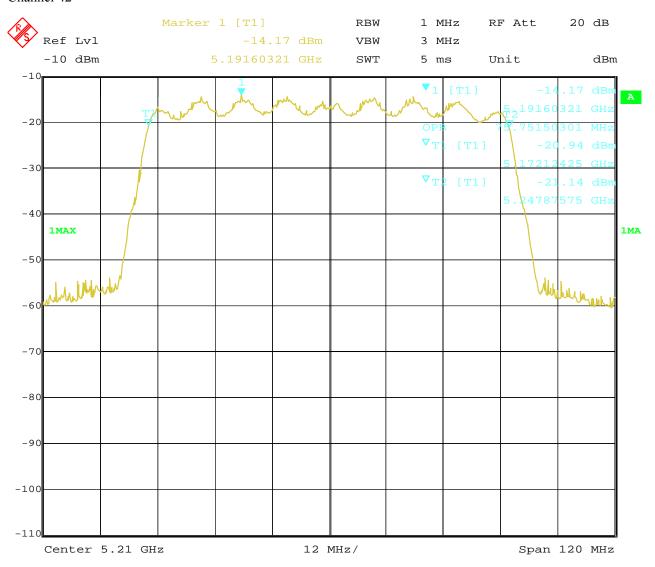

Date: 2019-11-19

Test Configure

26dB Bandwidth

Channel 42

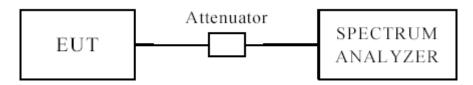
Date: 12.NOV.2019 15:31:24


Date: 2019-11-19

Test Configure

99% Bandwidth

Channel 42


Date: 12.NOV.2019 15:31:55

Date: 2019-11-19

8.0 Peak Transmit Power Measurement

8.1 Test Setup

8.2 Limits of Peak Transmit Power Measurement

Operation Band	EUT Category	Limit
U-NII-2A		For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or
	√	1.76 + 10 log ₁₀ B*, dBm, whichever is less For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log ₁₀ B*, dBm, whichever power is less

Note: 1. Where B is the 99% emission bandwidth in MHz.

2. EIRP was measured, EIRP=AV Power +Antenna Gain

U-NII-2A	 250mW (24 dBm) or 11 dBm+10 log B*
U-NII-2C	 250mW (24 dBm) or 11 dBm+10 log B*
U-NII-3	 1 Watt (30 dBm)

Note: 1. Where B is the 26dB emission bandwidth in MHz.

2. The average power was measured

8.3 Test Procedure

The average power output was measured with a Spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate centre frequency.

Note: the average power was measured

Report No.: IC1910105-04 Page 67 of 98

Date: 2019-11-19

8.4Test Results

EU	T		metrical ac		-	N	Iodel		ACE-0001		
		ACE									
Mode 802.11a				1a		Input	Voltage		120V~		
Temper	Temperature 24 deg. C,			Hu	midity	56% RH					
Channel	Freque	nency Ant 1 Power		Power	ower Ant		Power	Total Power	Limit	Pass/ Fail	
	(MH	z)	dBm	mW	dI	Bm	mW	(dBm)	(dBm)		
36	5180	0	3.10	2.04	3.	.04	1.60	5.61	22.38	Pass	
40	5200 2.82 1		1.91	2.	.71	1.87	5.77	22.38	Pass		
48	524	5240 1.52 1.42		1.	.46	1.40	4.50	22.38	Pass		

Note: 1. At finial test to get the worst-case emission at 6Mbps for CH36, CH40, CH48, CH149, CH153 and CH161

2. The result basic equation calculation as follow: Average Power Output = AV Power Reading + Cable loss + Attenuator

- 3. The worse case was recorded
- 4. Total power = Ant 1 + Ant 2

Report No.: IC1910105-04 Page 68 of 98

Date: 2019-11-19

EU	Т	_	metrical ac			N	Iodel	ACE-0001			
		CIIII	AC		VA.						
Mode 802.11n HT20				HT20		Input	Voltage		120V~		
Temper	Temperature 24 deg. C,					Hu	midity	56% RH			
Channel	Freque	ency Ant 1 Power		Α	Ant 2 Power		Total Power	Limit	Pass/ Fail		
	(MH	z)	dBm	mW	dI	Вm	mW	(dBm)	(dBm)		
36	5180	0	2.08	1.61	2.	.02	1.59	5.05	22.38	Pass	
40	5200	200 2.15 1.64 2		2.	.06	1.61	5.12	22.38	Pass		
48	5240 1.12 1.29		1.	.04	1.27	4.08	22.38	Pass			

Note: 1. At finial test to get the worst-case emission at mcs0 (6.5Mbps) for CH36, CH40, CH48, CH149, CH153 and CH161

2. The result basic equation calculation as follow:

Average Power Output = AV Power Reading + Cable loss + Attenuator

- 3. The worse case was recorded
- 4. Total power = Ant 1 + Ant 2

Page 69 of 98 Report No.: IC1910105-04

Date: 2019-11-19

EU	T	Bio	metrical ac	cess contro	ol	M	lodel	A	ACE-0001		
		term	inals Visio	nLabs LUN	ΙA						
	ACE										
Mod	Mode 802			HT40	I	Input	Voltage		120V~		
Temper	Temperature		24 deg	;. C,		Humidity			56% RH		
Channel	Freque	ncy	Ant 1	Power		nt 2 I	Power	Total Power	Limit	Pass/ Fail	
	(MH	z)	dBm	mW	dBı	m	mW	(dBm)	(dBm)		
38	5190	90 1.62		1.45	5 1.50		1.41	4.56	23.01	Pass	
46	5230	5230 -0.02		1.00	-0.0	03	0.99	2.99	23.01	Pass	

Note: 1. At finial test to get the worst-case emission at mcs0 (13.5Mbps) for CH38, CH46, CH151 and CH159

- 2. The result basic equation calculation as follow: Average Power Output = AV Power Reading + Cable loss + Attenuator
- 3. The worse case was recorded
- 4. Total power = Ant 1 + Ant 2

Report No.: IC1910105-04 Page 70 of 98

Date: 2019-11-19

EU	Т		metrical ac			Model		A	ACE-0001			
	ACE											
Mod	Mode 802.11ac VHT20]	Input	Voltage		120V~			
Temperature 24 deg. C, Humid				midity	56% RH							
Channel	Freque	ency Ant 1 Power		A	Ant 2 Power		Total Power	Limit	Pass/ Fail			
	(MH	z)	dBm	mW	dB	m	mW	(dBm)	(dBm)			
36	5180	0	2.20	1.66	2.1	11	1.63	5.17	22.58	Pass		
40	5200		1.69	1.48	3 1.6		1.62		1.45	4.67	22.58	Pass
48	5240		1.21	1.32	1.1	13	1.30	4.18	22.58	Pass		

Note: 1. At finial test to get the worst-case emission at mcs0 (6.5Mbps) for CH36, CH40, CH48, CH149, CH153 and CH161

2. The result basic equation calculation as follow:

Average Power Output = AV Power Reading + Cable loss + Attenuator

- 3. The worse case was recorded
- 4. Total power = Ant 1 + Ant 2

Date: 2019-11-19

EU	T	Bio	metrical ac	cess contro	ol	M	Iodel	A	ACE-0001		
		term	inals Visio	nLabs LUN	ΙA						
			AC	Е							
Mod	Mode 802.11ac VHT40				I	Input	Voltage	120V~			
Temper	Temperature 24 deg. C, Humidity			midity	56% RH						
Channel	Freque	ncy	Ant 1	Power	Aı	Ant 2 Power		Total Power	Limit	Pass/ Fail	
	(MH	z)	dBm	mW	dBı	m	mW	(dBm)	(dBm)		
38	5190	0	1.02	1.26	0.9	95	1.24	3.98	23.01	Pass	
46	5230	30 0.91 1.23		0.8	36	1.22	3.89	23.01	Pass		

Note: 1. At finial test to get the worst-case emission at mcs0 (13.5Mbps) for CH38, CH46, CH151, and CH159

- 2. The result basic equation calculation as follow:

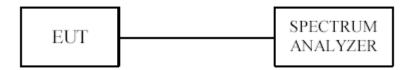
 Average Power Output = AV Power Reading + Cable loss + Attenuator
- 3. The worse case was recorded
- 4. Total power = Ant 1 + Ant 2

EUT		Biometrical access control			ol I	Model	ACE-0001		
		terminals VisionLabs LUNA			JA				
		ACE							
Mode		802.11ac VHT80			Inpu	ıt Voltage	120V~		
Temperature		24 deg. C,			Н	umidity	56% RH		
Channel	Frequency		Ant 1 Power		Ant 2	Power	Total Power	Limit	Pass/ Fail
	(MHz)		dBm	mW	dBm	mW	(dBm)	(dBm)	
42	5210	0	0.82	1.21	0.73	1.18	3.78	23.01	Pass

Note: 1. At finial test to get the worst-case emission at 23.9Mbps for CH42 and CH155

- 2. The result basic equation calculation as follow:
 - Average Power Output = AV Power Reading + Cable loss + Attenuator
- 3. The worse case was recorded
- 4. Total power = Ant 1 + Ant 2

Page 72 of 98


Report No.: IC1910105-04

Date: 2019-11-19

9. Power Spectral Density Measurement

9.1 Test Setup

9.2 Limits of Power Spectral Density Measurement

Operation Band	Limit		
U-NII-1	10dBm/MHz		
U-NII-2A	11dBm/MHz		
U-NII-2C	11dBm/MHz		
U-NII-3	30dBm/500kHz		

9.3 Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer
- 2. Set the RBW = 1MHz.
- 3. Set the VBW = 3MHz.
- 4. Set the span to encompass the entire emissions bandwidth (EBW) of the signal
- 5. Detector = RMS
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.

Report No.: IC1910105-04 Page 73 of 98

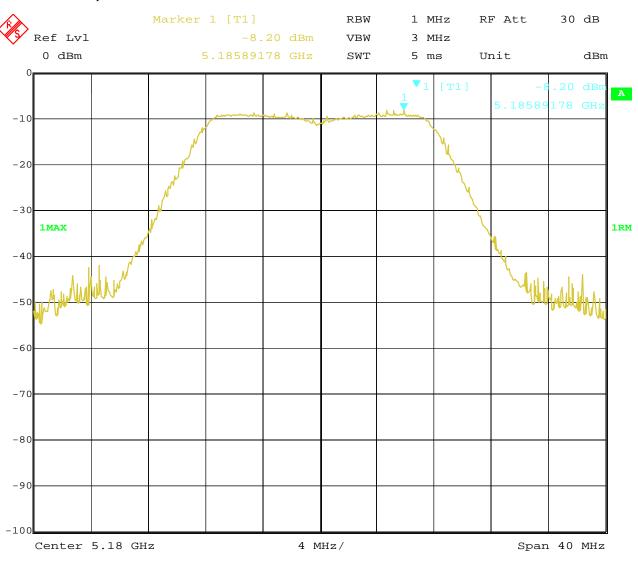
Date: 2019-11-19

9.4Test Result

EUT		Biometrical access control		N	Iodel	ACE-0001		
		termina	ls VisionLabs LUN	4				
			ACE					
Mode	Mode 802.11a 6Mb		02.11a 6Mbps	Input	Voltage	120V~		
Temperat	Temperature		24 deg. C,	Hu	midity	56% RH		
Channel	Frequency		An1	Factor	Total Sp	ectral Density	Limit	Pass/ Fail
	(MHz)		Spectral Density			(dBm)	(dBm)	
36	36 5180		-8.20	3.01		-5.19	10	Pass
40	5	5200	-8.20	3.01		-5.19	10	Pass
48	18 5240		-9.91	3.01		-6.90	10	Pass

^{2.} Factor=10log2=3.01

^{3.} Ant1 and Ant 2 were tested and Ant 1 was the worst case

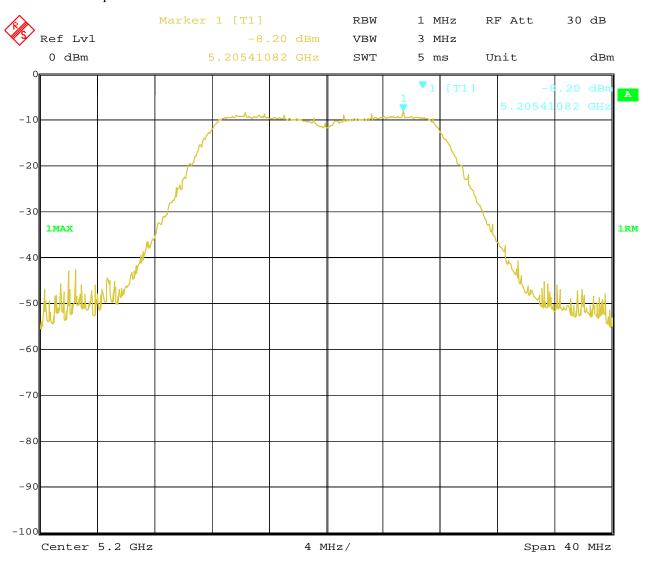

Page 74 of 98

Report No.: IC1910105-04 Date: 2019-11-19

9.5 Plots of Power Spectral Density Measurement

1.802.11a at 6Mbps of CH36

Date: 12.NOV.2019 16:09:06

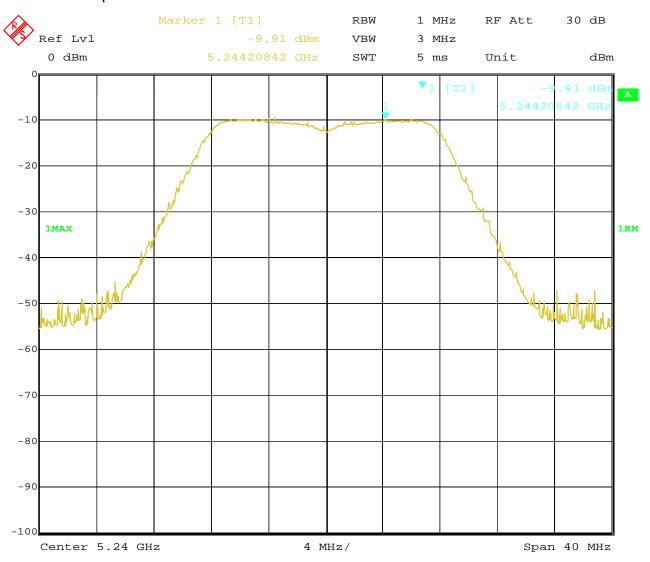

Page 75 of 98

Report No.: IC1910105-04

Date: 2019-11-19

2.802.11a at 6Mbps of CH40

12.NOV.2019 16:10:22 Date:


Page 76 of 98

Report No.: IC1910105-04

Date: 2019-11-19

3.802.11a at 6Mbps of CH48

12.NOV.2019 16:11:34 Date:

Page 77 of 98 Report No.: IC1910105-04

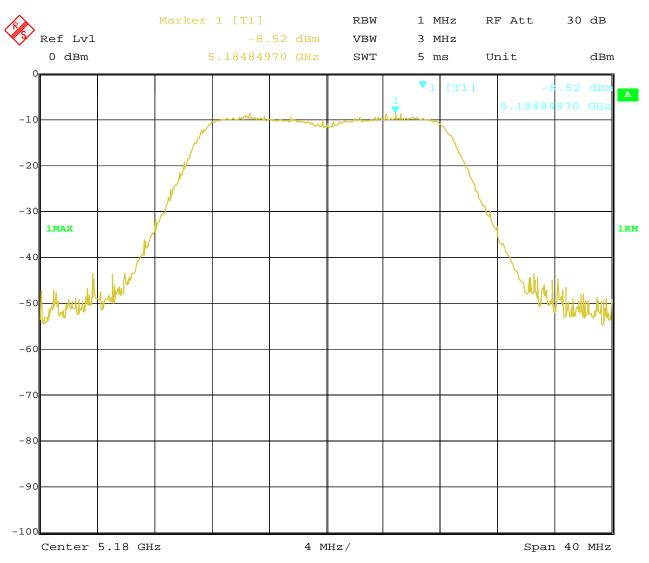
Date: 2019-11-19

EUT		Biometrical access control		Me	odel	ACE-0001		
		termina	ls VisionLabs LUN	4				
			ACE					
Mode	Mode 802.11n HT20		.11n HT20 mcs0	Input	Input Voltage		120V~	
Temperat	Temperature		24 deg. C,	Hun	nidity	56% RH		
Channel	Frequency		An1	Factor	Total Sp	ectral Density	Limit	Pass/ Fail
	(MHz)		Spectral Density			(dBm)	(dBm)	
36	36 5180		-8.52	3.01	-5.51		10	Pass
40	5	5200	-8.82	3.01 -5.81		-5.81	10	Pass
48	5240		-9.95	3.01		-5.94	10	Pass

^{2.} Factor=10log2=3.01

^{3.} Ant1 and Ant 2 were tested and Ant 1 was the worst case

Page 78 of 98

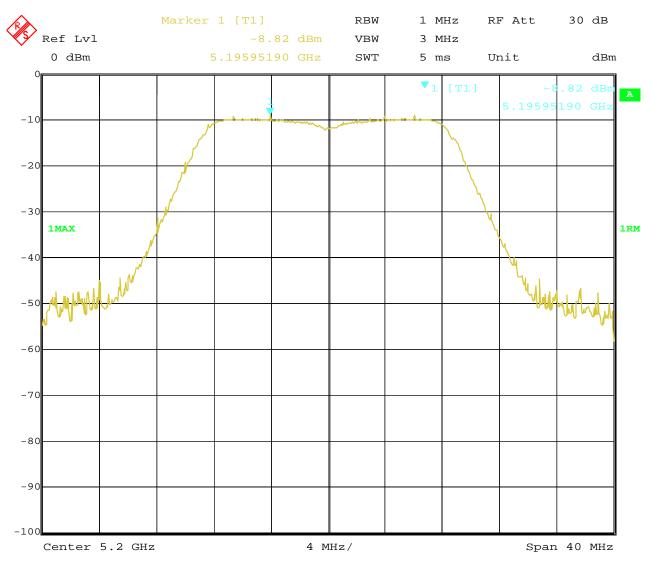

Report No.: IC1910105-04

Date: 2019-11-19

Test Plots

1.802.11n at mcs0 of CH36

Date: 12.NOV.2019 16:26:26

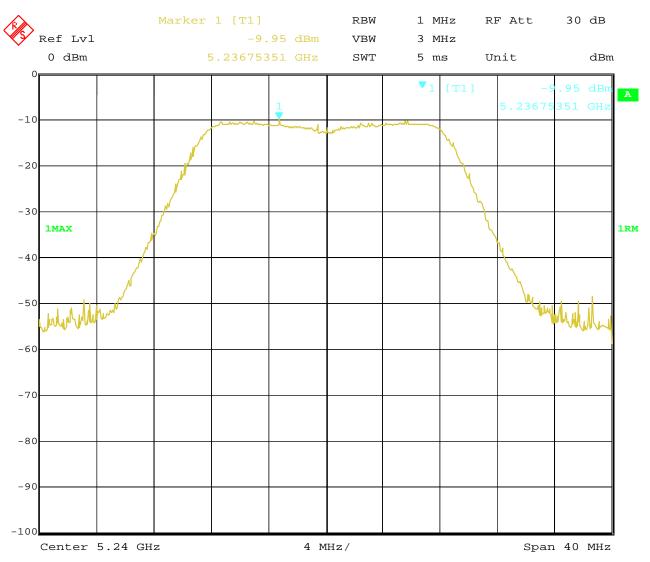

Page 79 of 98

Report No.: IC1910105-04

Date: 2019-11-19

2.802.11n at mcs0 of CH40

12.NOV.2019 16:24:44 Date:


Page 80 of 98

Report No.: IC1910105-04

Date: 2019-11-19

3.802.11n at mcs0 of CH48

12.NOV.2019 16:23:39 Date:

Report No.: IC1910105-04 Page 81 of 98

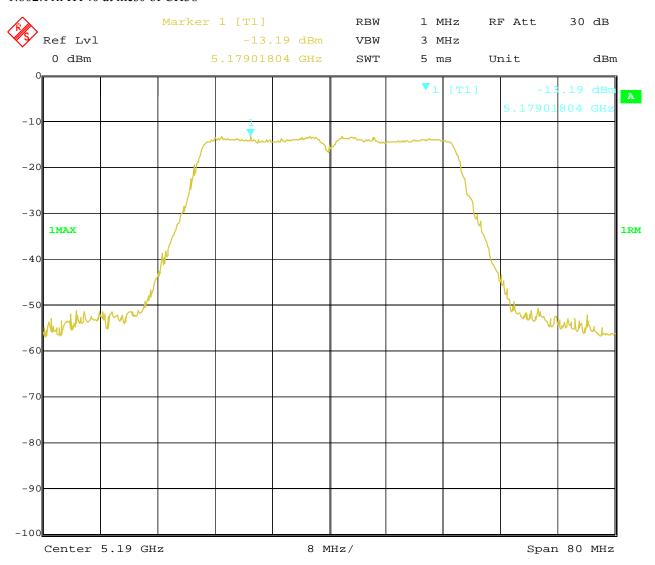
Date: 2019-11-19

EUT		Biometrical access contr		Mod	Model		ACE-0001	
		terminals '	VisionLabs LUNA					
			ACE					
Mode	Mode 802.1		n HT40 mcs0	Input Vo	t Voltage		120V∼	
Temperat	Temperature 24 deg. C, Humidity			56% RH				
Channel	Fre	equency	An1 Spectral	Factor	Total Spectral Density		Limit	Pass/ Fail
	((MHz)	Density		(dBm)		(dBm)	
38		5190	-13.19	3.01		-10.18	10	Pass
46		5230	-13.63	3.01 -10.62		-10.62	10	Pass

^{2.} Factor=10log2=3.01

^{3.} Ant1 and Ant 2 were tested and Ant 1 was the worst case

Page 82 of 98


Report No.: IC1910105-04

Date: 2019-11-19

Test Plots

1.802.11n HT40 at mcs0 of CH38

Date: 12.NOV.2019 16:27:18

Page 83 of 98

Report No.: IC1910105-04

Date: 2019-11-19

2.802.11n HT40 at mcs0 of CH46

12.NOV.2019 16:29:48 Date:

Report No.: IC1910105-04 Page 84 of 98

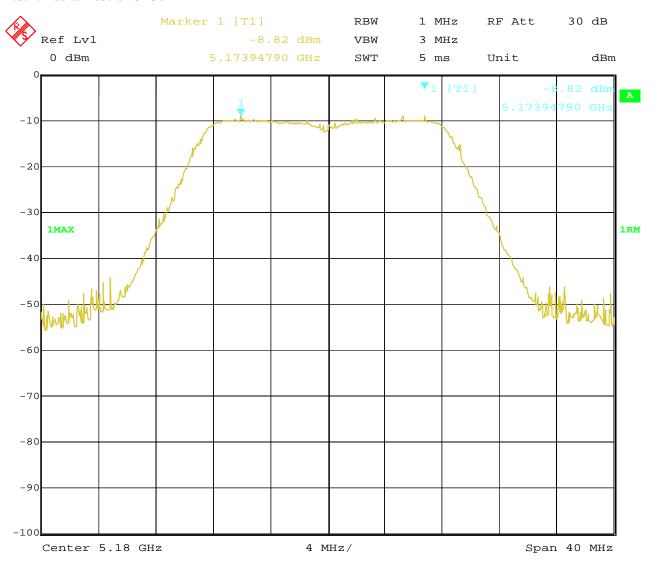
Date: 2019-11-19

EUT		Biome	trical access control	Me	odel		ACE-0001	
		termina	ls VisionLabs LUN	4				
			ACE					
Mode	Mode 80		2.11ac VHT20	Input	Input Voltage		120V~	
Temperat	Temperature		24 deg. C,	Hun	nidity	56% RH		
Channel	Frequency		An1	Factor	Total Sp	pectral Density	Limit	Pass/ Fail
	(MHz)		Spectral Density			(dBm)	(dBm)	
36	5180		-8.82	3.01	-5.81		10	Pass
40	5200		-8.96	3.01		-5.95	10	Pass
48	5240		-10.39	3.01		-7.38	10	Pass

^{2.} Factor=10log2=3.01

^{3.} Ant1 and Ant 2 were tested and Ant 1 was the worst case

Page 85 of 98

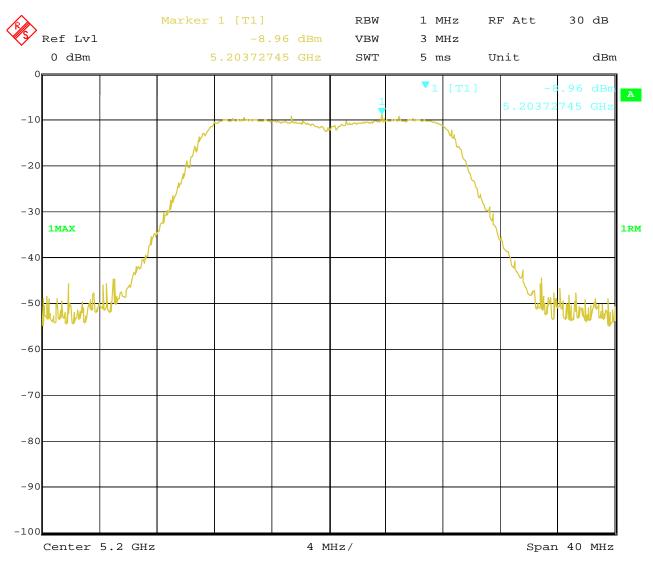

Report No.: IC1910105-04

Date: 2019-11-19

Test Plots

1.802.11ac at mcs0 of CH36

Date: 12.NOV.2019 16:50:26

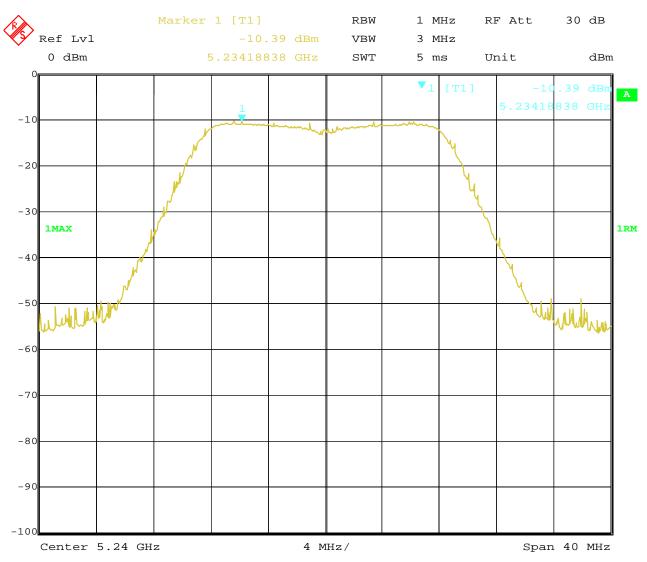

Page 86 of 98

Report No.: IC1910105-04

Date: 2019-11-19

2.802.11ac at mcs0 of CH40

12.NOV.2019 16:51:22 Date:


Page 87 of 98

Report No.: IC1910105-04

Date: 2019-11-19

3.802.11ac at mcs0 of CH48

12.NOV.2019 16:52:32 Date:

Report No.: IC1910105-04 Page 88 of 98

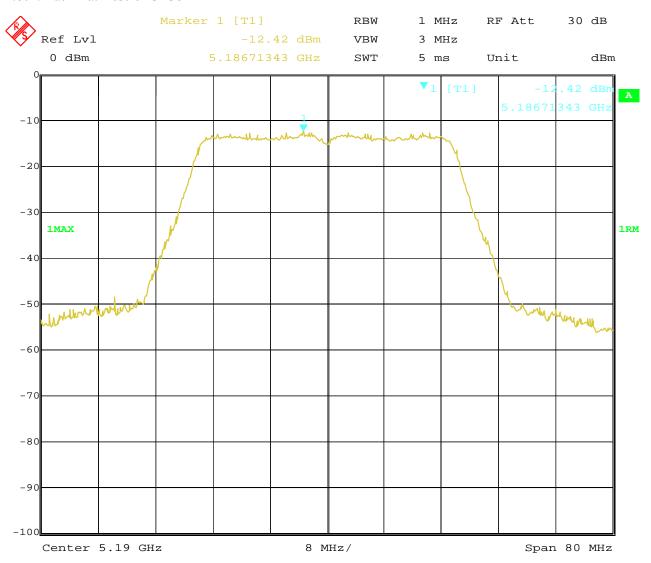
Date: 2019-11-19

EUT			cal access control	Model			ACE-0001	
	terminals		VisionLabs LUNA ACE					
Mode	Mode 802.11ac VHT			Input Vo	oltage			
Temperat	Temperature 24 deg. C, Humidity			56% RH				
Channel	Fr	equency	An1 Spectral	Factor	Total Spectral Density		Limit	Pass/ Fail
	((MHz)	Density		(dBm)		(dBm)	
38		5190	-12.42	3.01		-12.41	10	Pass
46		5230	-13.70	3.01		-10.69	10	Pass

^{2.} Factor=10log2=3.01

^{3.} Ant1 and Ant 2 were tested and Ant 1 was the worst case

Page 89 of 98

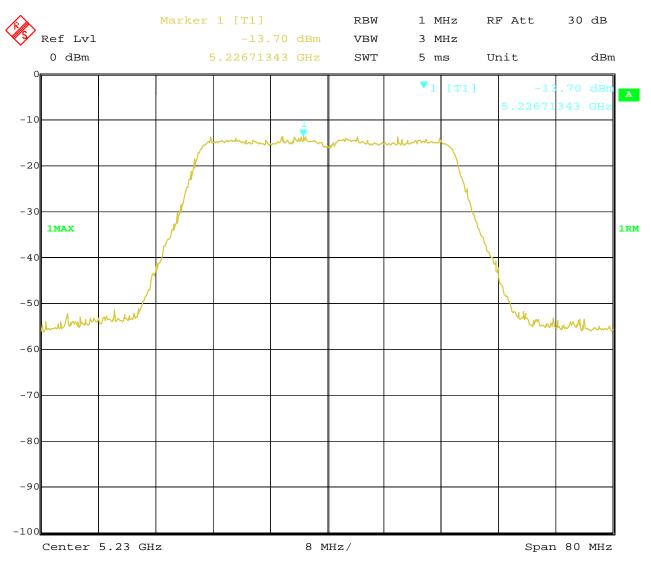

Report No.: IC1910105-04

Date: 2019-11-19

Test Plots

1.802.11ac at mcs0 of CH38

Date: 12.NOV.2019 16:39:27


Page 90 of 98

Report No.: IC1910105-04

Date: 2019-11-19

2.802.11ac at mcs0 of CH46

12.NOV.2019 16:44:00 Date:

Page 91 of 98 Report No.: IC1910105-04

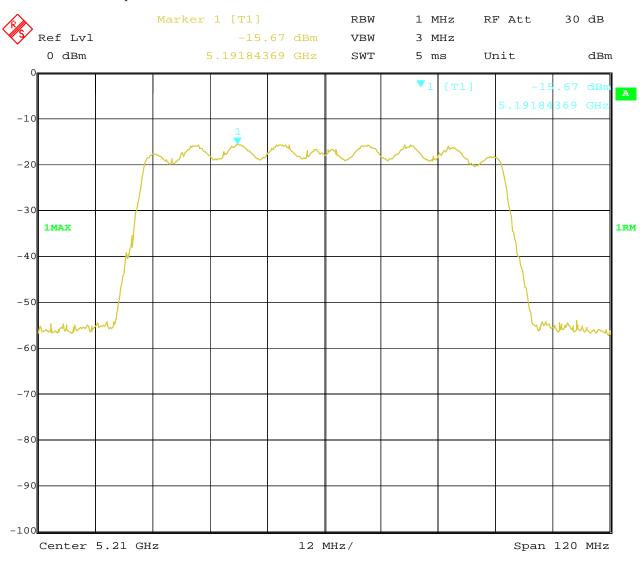
Date: 2019-11-19

EUT		Biometrical access control		Me	odel		ACE-0001	
	terminal		s VisionLabs LUNA					
	ACE		ACE					
Mode	Mode 802.11ac V		c VHT80 23.9Mbps	Input Voltage		120V~		
Temperat	Temperature		24 deg. C,	Hun	nidity		56% RH	
Channel	Fre	quency	Ant 1 Spectral	Factor	Total Sp	ectral Density	Limit	Pass/ Fail
	(1	(MHz) Density (dBm)				(dBm)	(dBm)	
42	4	5210	-15.67	3.01		-12.66	10	Pass

^{2.} Factor=10log2=3.01

^{3.} Ant1 and Ant 2 were tested and Ant 1 was the worst case

Page 92 of 98


Report No.: IC1910105-04

Date: 2019-11-19

Test Plots

1.802.11ac at 23.9Mbps of CH42

Date: 12.NOV.2019 16:34:36

Date: 2019-11-19

Page 93 of 98

10.0 Frequency Stability

10.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within \pm 0.02% of the operating frequency over a temperature variation of \pm 30 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees

10.2 Test Procedure

- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. Turn the EUT on and couple its output to a spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- 6. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

Date: 2019-11-19

11.3 Test Result

Channel 36 (5180MHz)

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
138V	5179.9826
120V	5179.9837
102V	5179.9839
Max. Deviation (MHz)	0.0174
Max. Deviation (ppm)	3.4

Rated working voltage: 120V~

Temperature vs. Frequency Stability

Temperature (°C)	Measurement Frequency (MHz)
-30	5179.9816
-20	5179.9823
-10	5179.9836
0	5179.9840
10	5179.9821
20	5179.9819
30	5179.9789
40	5179.9822
50	5179.9798
Max. Deviation (MHz)	0.0211
Max. Deviation (ppm)	4.1

Date: 2019-11-19

Page 95 of 98

11.0 Antenna Requirement

11.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

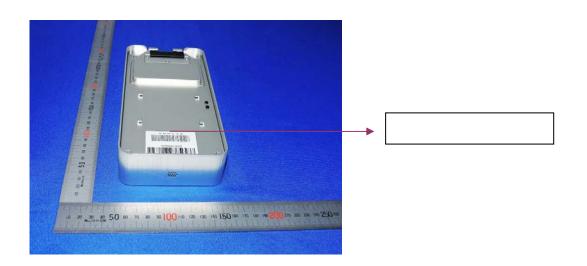
And according to FCC 47 CFR Section 15.247 (b), if transmitter antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the mount in dB that the directional gain of the antenna exceeds 6 dBi.

11.2 Antenna Connected construction

Two Integral antenna used. The maximum Gain of each antenna is 3.0 dBi for 5G band.

Report No.: IC1910105-04 Page 96 of 98

Date: 2019-11-19


12.0 FCC Label

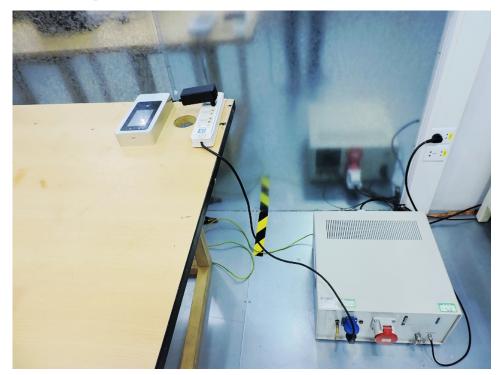
FCC ID: 2AU6Z-ACE-0001HID

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

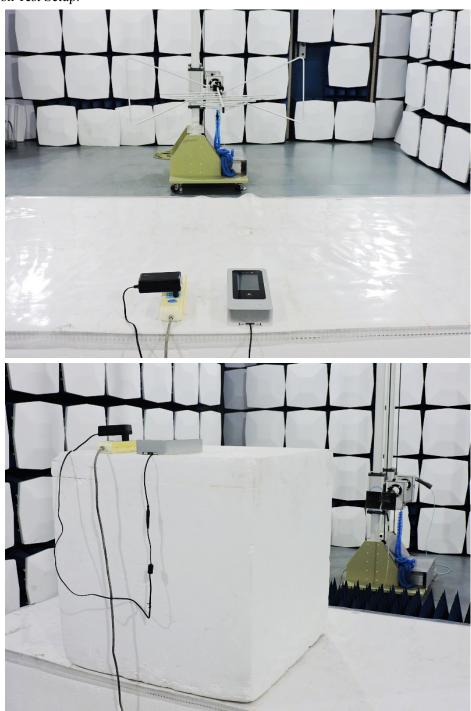
Mark Location:

Page 97 of 98


Report No.: IC1910105-04

Date: 2019-11-19

13.0 Photo of testing


Conducted Emission Test Setup:

Date: 2019-11-19

Radiated Emission Test Setup:

Photos of EUT

Please see test report IC1910105-01

End of the report

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the propert. discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.