Report Number: 68.760.19.07	Report Number: 68.760.19.0789.02							
		FCC - TEST RE	PORT					
Report Number	:	68.760.19.0789.02	Date of Issue:	April 27, 2021				
M. 1.1		The second second						
Model	<u> </u>	Theragun Prime						
Product Type	<u>:</u>	Hand held Massager	land held Massager					
Applicant	:	Theragun, Inc.						
Address	:	6100 Wilshire Blvd. Suite 200), Los Angeles C	A 90048-5107, USA				
Manufacturer	:	Theragun, Inc.						
Address	:	6100 Wilshire Blvd. Suite 200), Los Angeles C	A 90048-5107, USA				
Test Result	:	■ Positive □ Neg	gative					
Total pages including Appendices	:	37						

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	
2	Details about the Test Laboratory	3
3	Description of the Equipment under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems test configuration	9
9	Technical Requirement	10
9.	1 Conducted Emission	10
9.	2 Conducted Peak output power	13
9.	3 6dB and 99% bandwidth	15
9.	4 Power spectral density	18
9.	5 Spurious RF conducted emissions	20
9.	6 Band edge	24
9.		
10	Test Equipment List	36
11	System Measurement Uncertainty	37

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China
FCC Registration Number:	514049
ISED#:	10320A
CAB identifier:	CN0077
Telephone: Fax:	86 755 8828 6998 86 755 8828 5299

3 Description of the Equipment under Test

Product/PMN:	Hand held Massager
Model no./HVIN:	Theragun Prime
FCC ID:	2AU6TPRIME-02
Rated Input:	100-240VAC, 50/60Hz, 0.8A (for adapter) 15VDC, 1.5A (for Hand held Massager)
RF Transmission Frequency:	2402MHz-2480MHz
No. of Operated Channel:	40
Modulation:	GFSK
Antenna Type:	PCB Antenna
Antenna Type: Antenna Gain:	

4 Summary of Test Standards

Test Standards				
FCC Part 15 Subpart C PART 15 - RADIO FREQUENCY DEVICES				
10-1-2019 Edition	Subpart C - Intentional Radiators			

All the test methods were according to KDB558074 D01 DTS Meas Guidance v05r02 and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements							
FCC Part 15 Subpart C							
Test Condition		Pages	Test Site	Test Result Pass Fail N/A			
§15.207	Conducted emission AC power port	10	Site 2			N/A	
§15.247 (b) (1)	Conducted peak output power	13	Site 2	\boxtimes			
§15.247(a)(1)	20dB bandwidth					\boxtimes	
§15.247(a)(1)	Carrier frequency separation					\boxtimes	
§15.247(a)(1)(iii)	Number of hopping frequencies					\boxtimes	
§15.247(a)(1)(iii)	Dwell Time					\boxtimes	
§15.247(a)(2)	6dB and 99% Occupied Bandwidth	16	Site 2	\boxtimes			
§15.247(e)	Power spectral density	19	Site 2	\boxtimes			
§15.247(d)	Spurious RF conducted emissions	22	Site 2	\boxtimes			
§15.247(d)	Band edge	30	Site 2	\boxtimes			
§15.247(d) & §15.209	Spurious radiated emissions for transmitter	33	Site 2	\boxtimes			
§15.203	Antenna requirement	See r	note 1	\boxtimes			

Remark: N/A=Not Applicable.

Note 1: The EUT uses a PCB antenna, which gain is 3dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2AU6TPRIME-02 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- I Not Performed

The Equipment under Test

- - **Fulfills** the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:April 08, 2021Testing Start Date:April 08, 2021

Testing End Date:

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

EMC Project Manager

Prepared by:

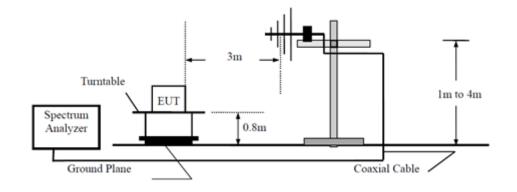
April 16, 2021

Myron Yu EMC Project Engineer

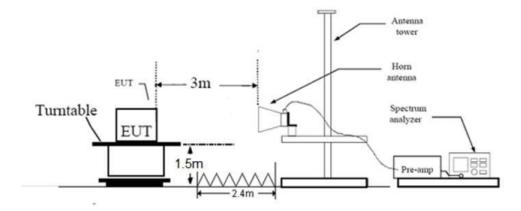
Tested by:

ourse Lin

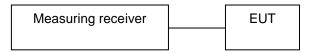
Louise Liu EMC Test Engineer

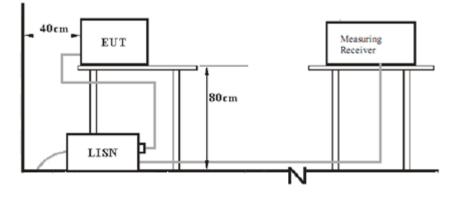

EMC_SZ_FR_23.02 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 7 of 37


7 Test Setups

7.1 Radiated test setups


Below 1GHz


Above 1GHz

7.2 Conducted RF test setups

7.3 AC Power Line Conducted Emission test setups

EMC_SZ_FR_23.02 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 8 of 37

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
AC ADAPTER	EDAC Power Electronics (Dongguan) Co., Ltd.	EA1023SAR	

Test software information:

Test Software Version	RF Test_V1.8	
Modulation	Setting TX Power	Packet Type
GFSK	0dBm	DH1

The system was configured to channel 0, 19, and 39 for the test.

9 Technical Requirement

9.1 Conducted Emission

Test Method

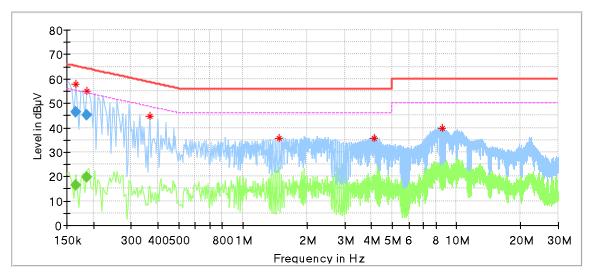
- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limits

Frequency	QP Limit	AV Limit
MHz	dBµV	dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Remarks for test data:

Level=Reading Level + Correction Factor


Correction Factor=Cable Loss + LISN Factor

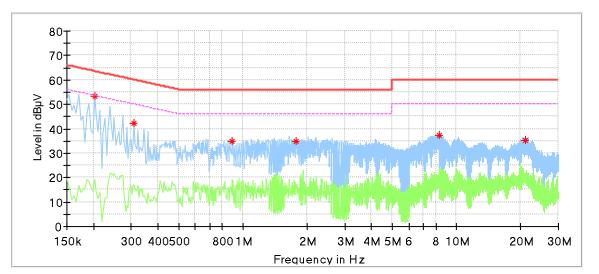
(The Reading Level is recorded by software which is not shown in the sheet)

Conducted Emission

Product Type	:	Hand held Massager
M/N	:	Theragun Prime
Operating Condition	:	Charging
Test Specification	:	Power Line, Live
Comment	:	AC 120V/60Hz

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.165500	58.00		65.16	7.16	L1	9.64
0.185500	54.90		64.21	9.31	L1	9.64
0.366000	44.76		58.59	13.83	L1	9.64
1.478000	35.50		56.00	20.50	L1	9.67
4.102000	35.77		56.00	20.23	L1	9.74
8.542000	39.72		60.00	20.28	L1	9.86


Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.165500		16.25	55.18	38.94	L1	9.64
0.165500	46.53		65.18	18.66	L1	9.64
0.185500		19.64	54.24	34.59	L1	9.64
0.185500	45.27		64.24	18.97	L1	9.64

Conducted Emission

Product Type	:	Hand held Massager
M/N	:	Theragun Prime
Operating Condition	:	Charging
Test Specification	:	Power Line, Neutral
Comment	:	AC 120V/60Hz

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.202000	53.53		63.53	10.00	Ν	9.63
0.310000	42.07		59.97	17.90	Ν	9.63
0.890000	34.68		56.00	21.32	Ν	9.65
1.766000	34.80		56.00	21.20	Ν	9.67
8.278000	37.20		60.00	22.80	Ν	9.85
20.966000	35.45		60.00	24.55	Ν	10.06

9.2 Conducted Peak output power

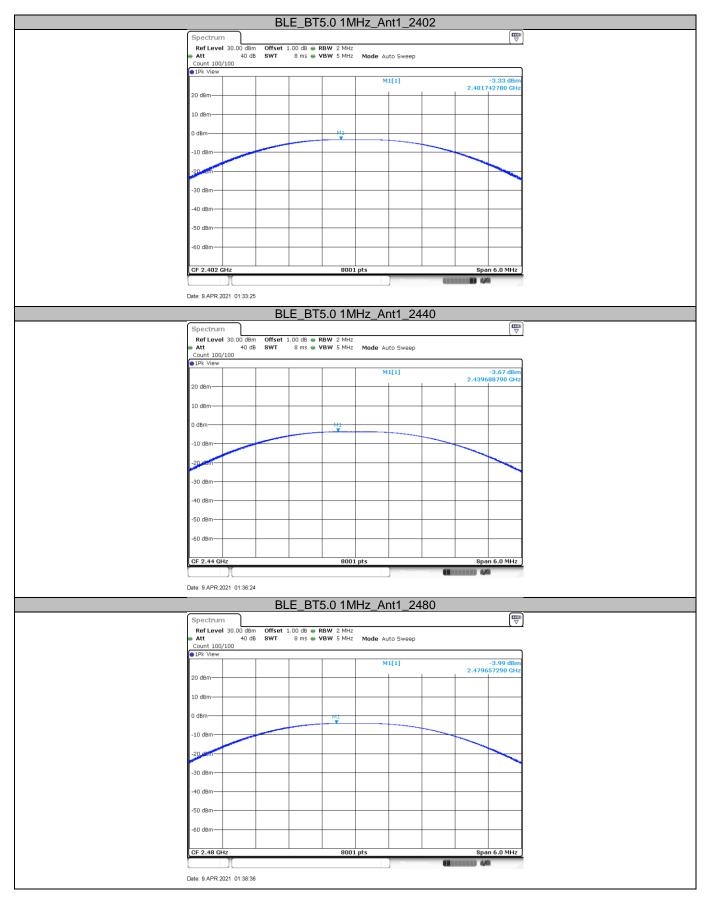
Test Method

- 1. The EUT was placed on 0.8m height table, the RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Setting the highest output power level of the EUT
- Use the following spectrum analyzer settings: RBW≥DTS bandwidth, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold, allow trace to fully stabilize.
- 4. Record the peak power value.

Test Setup

Limits

According to §15.247 (b) (3), conducted AV output power limit as below:


Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test result as below table:

For BLE

Frequency	Conducted peak Output Power	Result
MHz	dBm	
Top channel 2402MHz	-3.33	Pass
Middle channel 2440MHz	-3.67	Pass
Bottom channel 2480MHz	-3.99	Pass

Test Graphs

EMC_SZ_FR_23.02 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 14 of 37

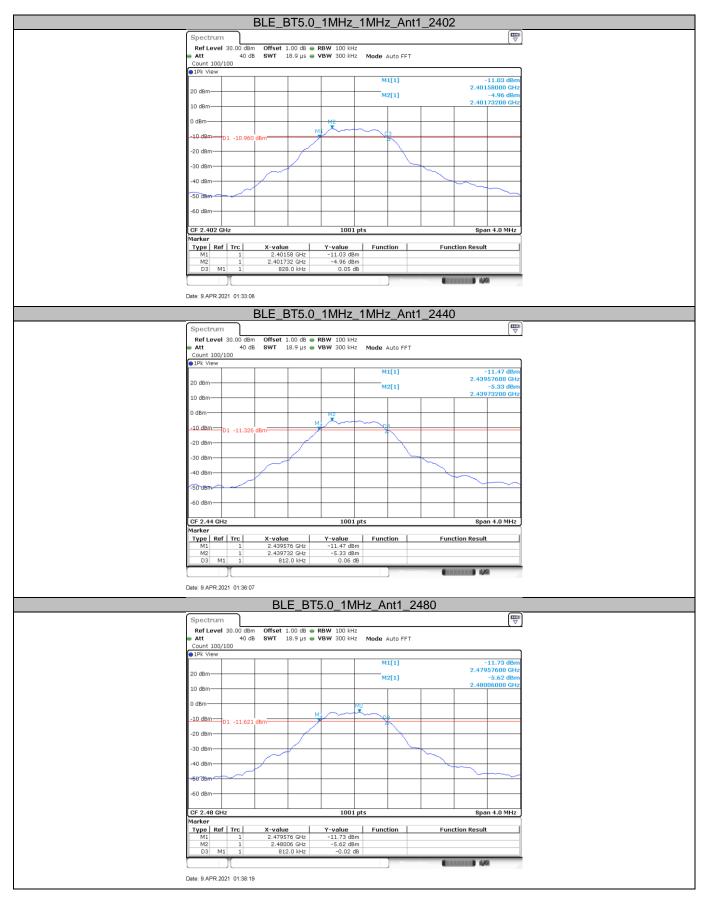
9.3 6dB and 99% bandwidth

Test Method

- 1. Connect EUT test port to spectrum analyzer.
- Use the following spectrum analyzer settings: Set RBW ≥ 1% of the 99% bandwidth, VBW ≥ RBW.
 Sweep = auto, Detector function = peak, Trace = max hold
- 3. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.
- 4. Allow the trace to stabilize, record the X dB Bandwidth value.

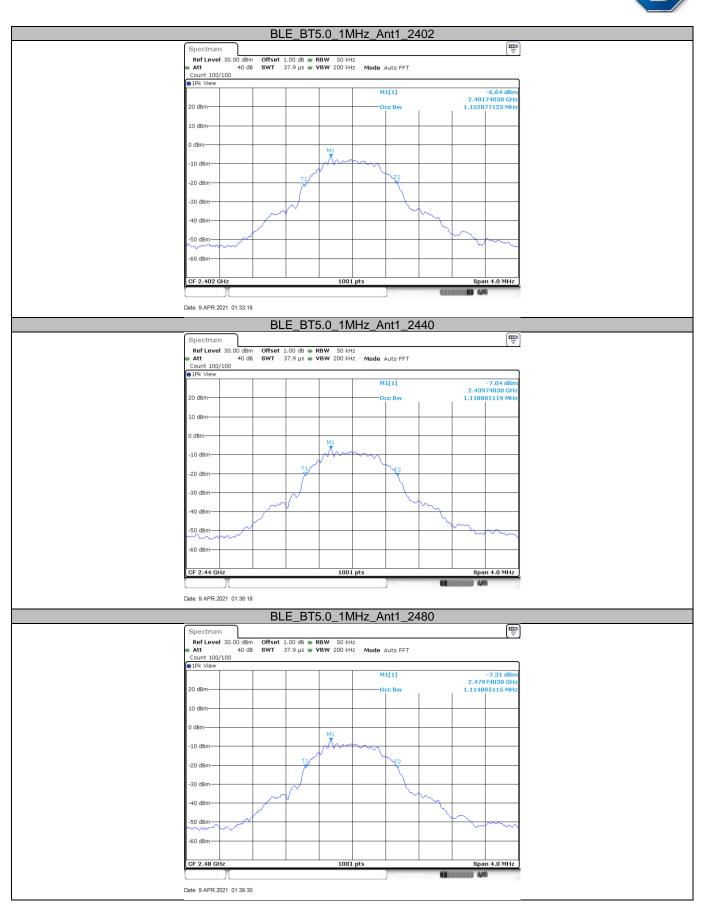
Limits

Limit [kHz]


≥500

Test results

Test Mode	Channel (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (KHz)	Verdict
BLE	2402	0.828	1.123	≥500	PASS
BLE	2440	0.812	1.119	≥500	PASS
BLE	2480	0.812	1.115	≥500	PASS



Test Graphs

EMC_SZ_FR_23.02 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 16 of 37

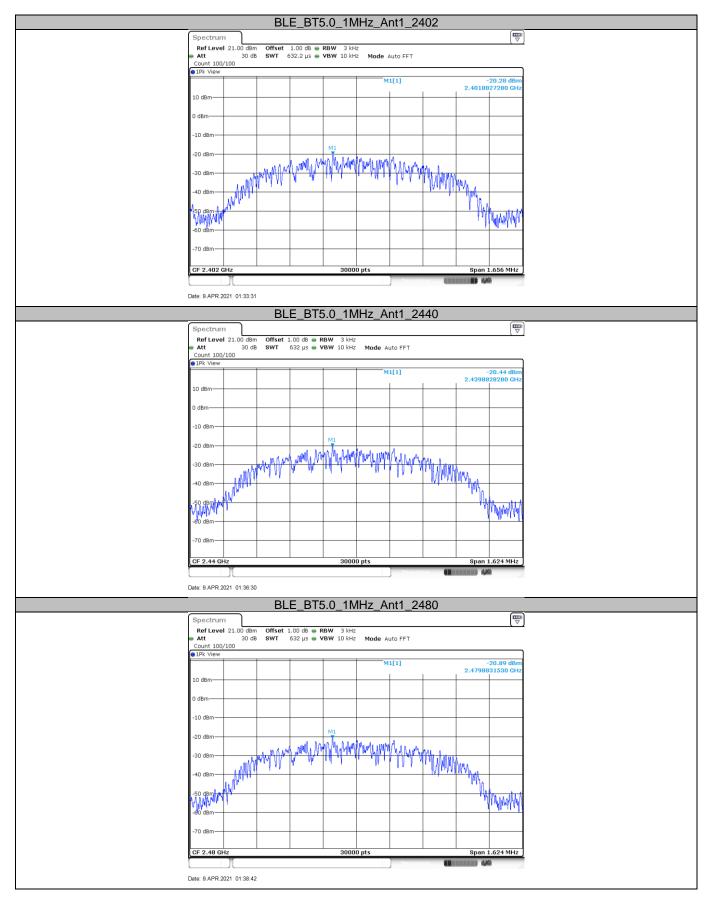
EMC_SZ_FR_23.02 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.4 Power spectral density

Test Method

- 1. Connect EUT test port to spectrum analyzer.
- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 3. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 4. Repeat above procedures until other frequencies measured were completed.

Limits


Limit [dBm/3KHz]

≤8

Test results

Test Mode	Channel (MHz)	Result (dBm/3KHz)	Limit(dBm/3KHz)	Verdict
BLE	2402	-20.28	8	PASS
BLE	2440	-20.44	8	PASS
BLE	2480	-20.89	8	PASS

Test Graphs

EMC_SZ_FR_23.02 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

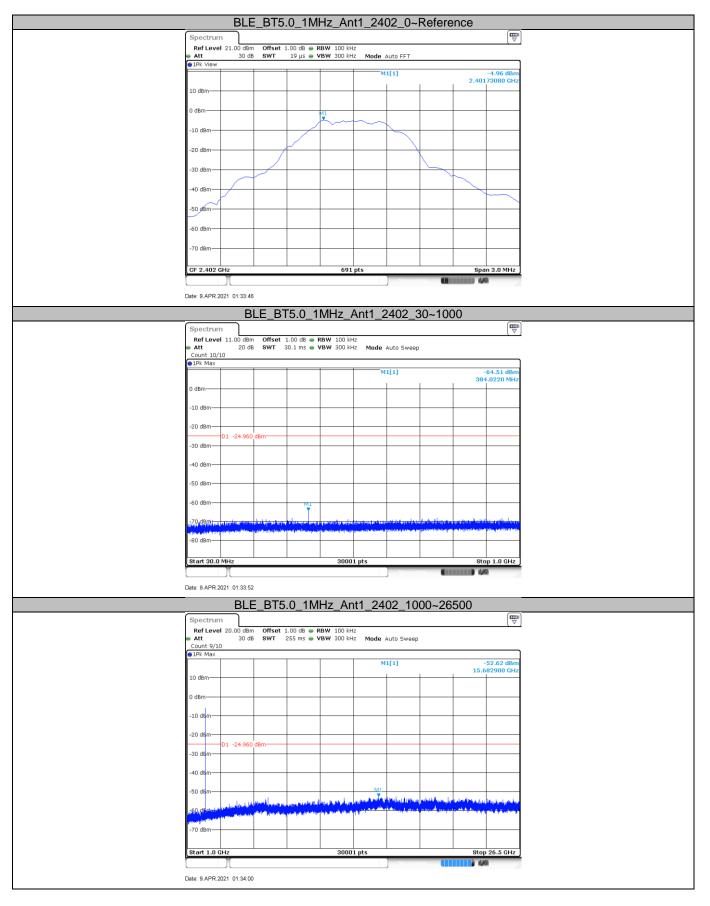
Page 19 of 37

9.5 Spurious RF conducted emissions

Test Method

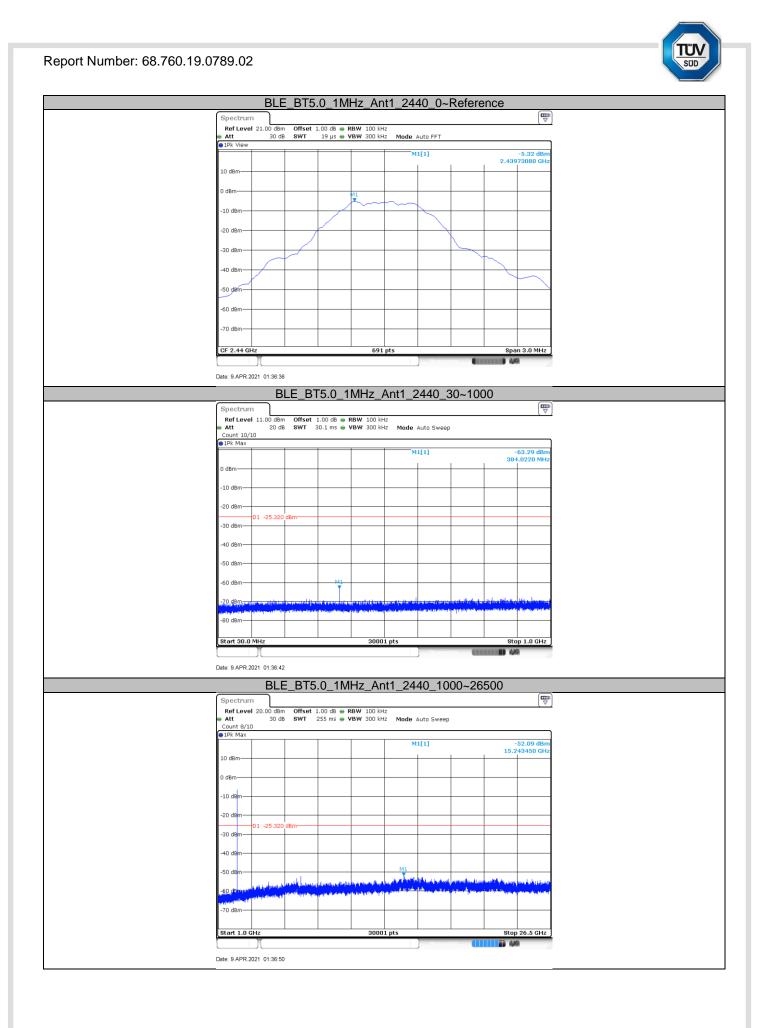
- 1. Connect EUT test port to spectrum analyzer.
- 2. Establish a reference level by using the following procedure:
- a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 3. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 4. Repeat above procedures until other frequencies measured were completed.

Limit

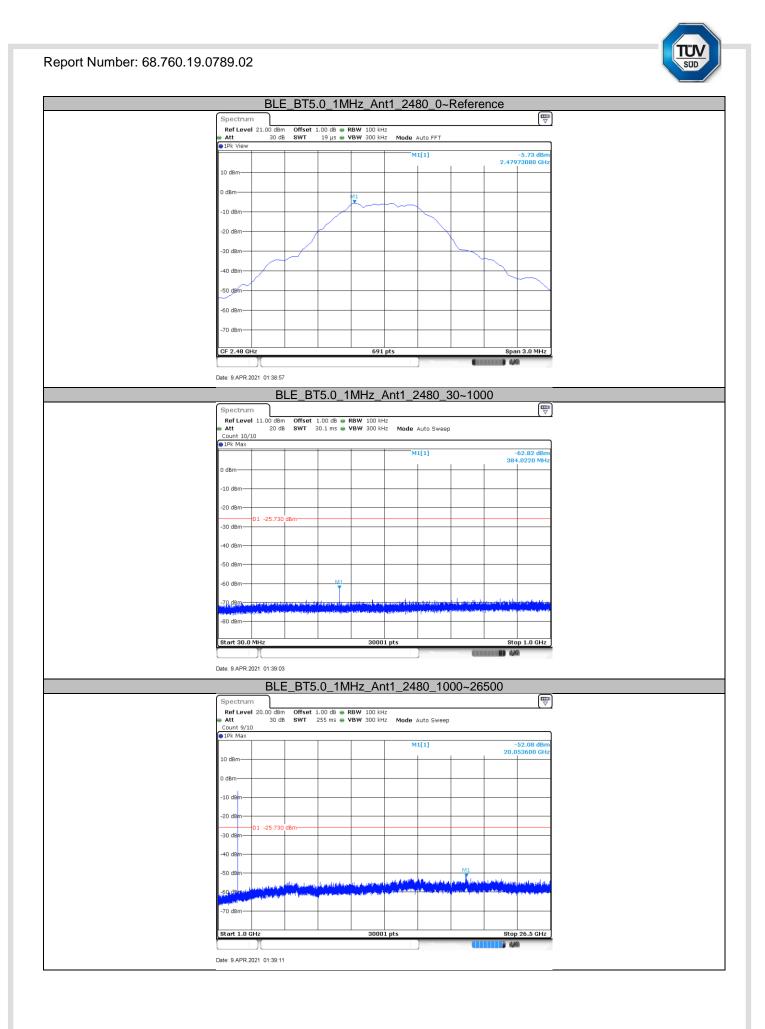

Frequency Range MHz	Limit (dBc)
30-25000	-20

Test Result

TestMode	Antenna	Channel (MHz)	FreqRange (MHz)	RefLevel (dBm)	Result (dBm)	Limit (dBm)	Verdict
			Reference	-4.96	-4.96		PASS
	2402	30~1000		-64.51	<=-24.96	PASS	
			1000~26500		-52.62	<=-24.96	PASS
	Ant1	2440	Reference	-5.32	-5.32		PASS
BLE_BT5.0_1MHz			30~1000		-63.29	<=-25.32	PASS
			1000~26500		-52.09	<=-25.32	PASS
			Reference	-5.73	-5.73		PASS
		2480	30~1000		-64.22	<=-25.73	PASS
			1000~26500		-52.08	<=-25.73	PASS



Test Graphs


EMC_SZ_FR_23.02 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 21 of 37

EMC_SZ_FR_23.02 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 22 of 37

EMC_SZ_FR_23.02 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.6 Band edge

Test Method

- 1. Connect EUT test port to spectrum analyzer.
- 2. Set spectrum analyzer setting as below:

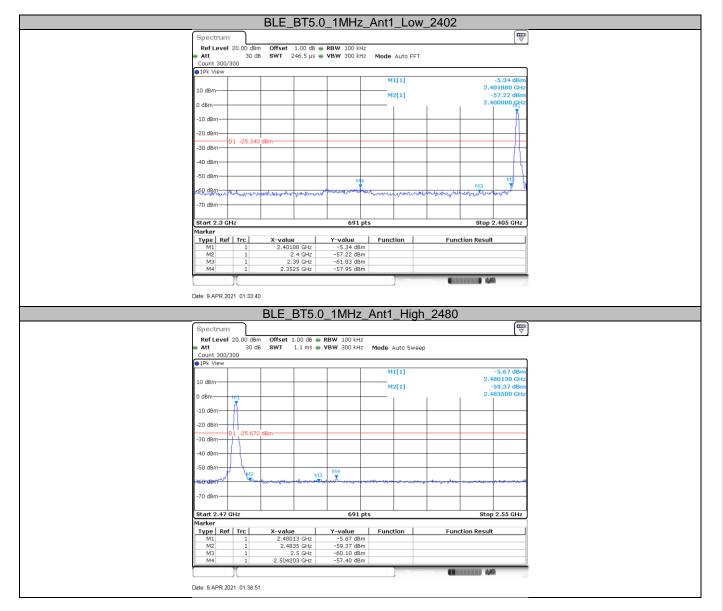
Set RBW \geq 1% of the span, VBW \geq RBW.

Set Sweep = auto. Set Detector function = peak. Allow the trace to stabilize.

Set Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.

3. Repeat above procedures until all frequencies measured were complete.

Limits


Frequency Range MHz	Limit (dBc)
30-25000	-20

Test results

Test Mode	Ch Name	Channel (MHz)	Result (dBm)	Limit (dBm)	Verdict
BLE	Low	2402	-57.95	<=-25.34	PASS
BLE	High	2480	-57.4	<=-25.67	PASS

Test Graphs

9.7 Spurious radiated emissions for transmitter

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious

RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious

RBW = 1MHz, VBW≥RBW for peak measurement ,Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

a) RBW = 1 MHz.

b) VBW $\ [3 \times RBW]$.

c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)

e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the

transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

1) If power averaging (rms) mode was used in the preceding step e), then the correction

factor is $[10 \log (1 / D)]$, where D is the duty cycle. For example, if the transmit duty

cycle was 50%, then 3 dB shall be added to the measured emission levels.

2) If linear voltage averaging mode was used in the preceding step e), then the correction

factor is $[20 \log (1 / D)]$, where D is the duty cycle. For example, if the transmit duty

cycle was 50%, then 6 dB shall be added to the measured emission levels.

3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limits

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

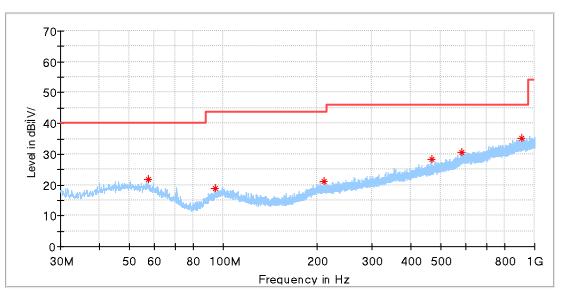
Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

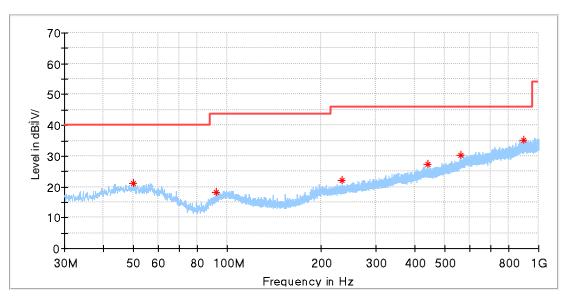
The worst case is listed in the report.

Remarks for test data:

- Data of measurement within frequency range18-26GHz are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so test data does not present in this report;
- (2) Level=Reading Level + Correction Factor


Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

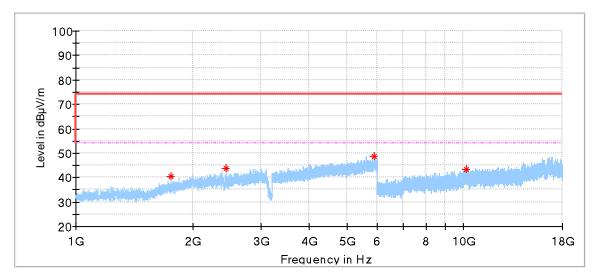
Spurious radiated emissions for transmitter


Transmitting spurious emission test result as below:

Product Type M/N		Hand held Massager Theragun Prime
Operating Condition Test Specification	:	BLE_BT5.0_1MHz _2402 MHz Horizontal
Comment		30 MHz to 1 GHz

Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dB¦ÌV/m)	(dB¦ÌV/m)	(dB)	(cm)		(deg)	(dB/m)
57.281250	21.93	40.00	18.07	100.0	V	311.0	17.25
93.898750	18.88	43.50	24.62	100.0	V	112.0	15.34
209.935000	21.04	43.50	22.46	200.0	V	314.0	16.60
466.985000	28.38	46.00	17.62	200.0	V	0.0	22.39
585.264375	30.67	46.00	15.33	200.0	V	0.0	25.19
911.608750	35.22	46.00	10.78	200.0	V	0.0	29.64

Product Type M/N Operating Condition Test Specification Comment Hand held Massager
Theragun Prime
BLE_BT5.0_1MHz _2402 MHz
Vertical
30 MHz to 1 GHz



Frequency (MHz)	MaxPeak (dB¦ÌV/m)	Limit (dB¦ÌV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
50.066875	21.09	40.00	18.91	200.0	V	0.0	17.94
92.140625	18.26	43.50	25.24	100.0	V	247.0	14.86
232.851250	22.17	46.00	23.83	100.0	V	0.0	16.98
441.643750	27.49	46.00	18.51	100.0	V	170.0	22.10
562.590625	30.19	46.00	15.81	100.0	V	34.0	24.42
897.180000	35.30	46.00	10.70	100.0	V	0.0	29.55

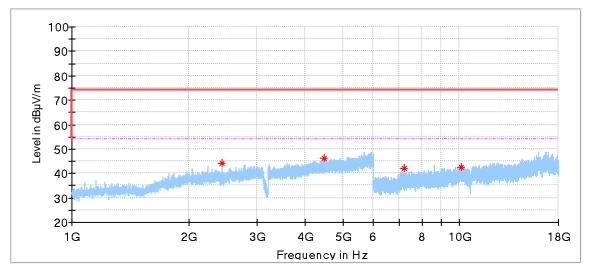
SUD

Product Type:M/N:Operating Condition:Test Specification:Comment:

Hand held Massager Theragun Prime BLE_BT5.0_1 MHz_2402 MHz Horizontal 1 GHz to 18 GHz

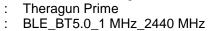
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1764.000000	40.56	74.00	33.44	150.0	Н	166.0	-6.24
2441.500000	43.73	74.00	30.27	150.0	Н	119.0	-3.06
5867.500000	48.90	74.00	25.10	150.0	Н	351.0	5.45
10141.000000	43.43	74.00	30.57	150.0	Н	127.0	9.10

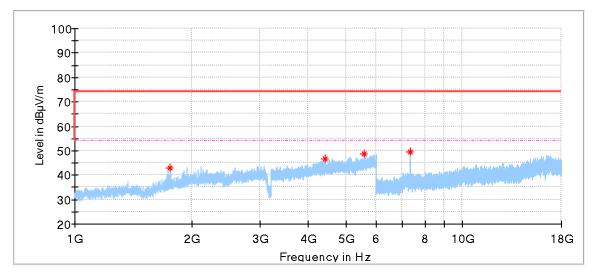
2


2

1

1


2

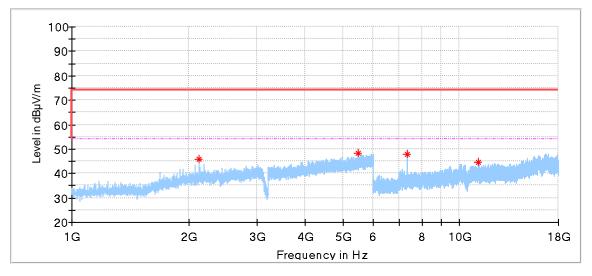

Product Type M/N Operating Condition Test Specification Comment Hand held Massager Theragun Prime BLE_BT5.0_1 MHz_2402 MHz Vertical 1 GHz to 18 GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2442.500000	44.08	74.00	29.92	150.0	V	218.0	-3.06
4474.500000	46.28	74.00	27.72	150.0	V	227.0	1.89
7206.500000	42.05	74.00	31.95	150.0	V	0.0	5.12
10104.500000	42.75	74.00	31.25	150.0	V	170.0	9.19

Product Type Hand held Massager ÷ M/N 2 **Operating Condition** 1 **Test Specification** : Horizontal Comment 1 GHz to 18 GHz 1

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1764.500000	43.10	74.00	30.90	150.0	Н	158.0	-6.24
4412.500000	46.68	74.00	27.32	150.0	Н	322.0	1.78
5575.000000	48.59	74.00	25.41	150.0	Н	212.0	4.45
7320.500000	49.60	74.00	24.40	150.0	Н	126.0	5.29

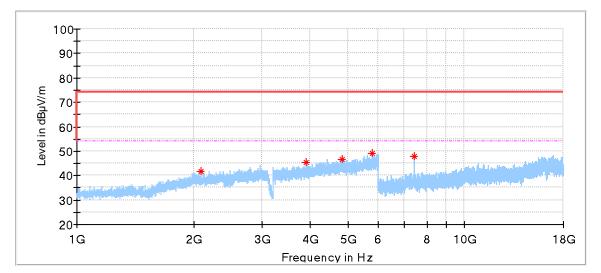
2


2

1

1

2


Product Type M/N Operating Condition Test Specification Comment Hand held Massager Theragun Prime BLE_BT5.0_1 MHz _2440 MHz Vertical 1 GHz to 18 GHz

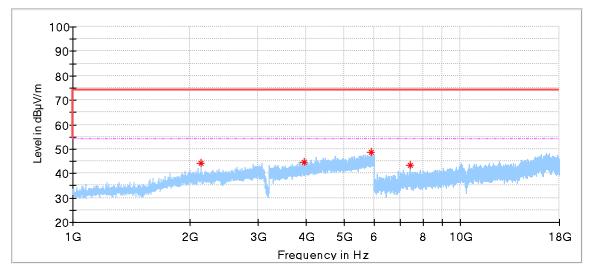
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2134.000000	45.73	74.00	28.27	150.0	V	173.0	-4.06
5494.000000	48.13	74.00	25.87	150.0	V	328.0	4.47
7320.000000	48.07	74.00	25.93	150.0	V	325.0	5.29
11205.000000	44.56	74.00	29.44	150.0	V	140.0	8.47

SUD

Product Type:Hand held MassagerM/N:Theragun PrimeOperating Condition:BLE_BT5.0_1 MHz _2480 MHzTest Specification:HorizontalComment:1 GHz to 18 GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2088.000000	41.85	74.00	32.15	150.0	Н	82.0	-4.25
3905.500000	45.25	74.00	28.75	150.0	Н	283.0	0.17
4822.000000	46.56	74.00	27.44	150.0	Н	176.0	2.80
5764.500000	49.00	74.00	25.00	150.0	Н	306.0	5.16
7440.000000	47.87	74.00	26.13	150.0	Н	149.0	5.49

2


2

1

1

2

Product Type M/N Operating Condition Test Specification Comment Hand held Massager Theragun Prime BLE_BT5.0_1 MHz _2480 MHz Vertical 1 GHz to 18 GHz

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2145.000000	44.03	74.00	29.97	150.0	V	159.0	-4.04
3942.500000	44.78	74.00	29.22	150.0	V	0.0	0.30
5884.000000	48.61	74.00	25.39	150.0	V	284.0	5.50
7439.500000	43.19	74.00	30.81	150.0	V	271.0	5.49

10 Test Equipment List

Test Site 1:

Conducted Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-14-001	101782	1	2021-6-29
LISN	Rohde & Schwarz	ENV432	68-4-87-16-001	101318	1	2021-6-12
Attenuator	Shanghai Huaxiang	TS2-26-3	68-4-81-16-003	080928189	1	2021-6-21
Test software	Rohde & Schwarz	EMC32	68-4-90-14-003-A10	Version9.15.00	N/A	N/A
Shielding Room	TDK	CSR #1	68-4-90-19-004		1	2022-11-07

TS8997 Test System

100337 1030									
DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE			
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14-004	101030	1	2021-6-21			
RF Switch Module	Rohde & Schwarz	OSP120/OSP- B157	68-4-93-14-003	101226/1008 51	1	2021-6-21			
Power Splitter	Weinschel	1580	68-4-85-14-001	SC319	1	2021-7-16			
10dB Attenuator	Weinschel	4M-10	68-4-81-14-003	43152	1	2021-6-21			
10dB Attenuator	R&S	DNF	68-4-81-14-004	DNF-001	1	2021-6-21			
10dB Attenuator	R&S	DNF	68-4-81-14-005	DNF-002	1	2021-6-21			
10dB Attenuator	R&S	DNF	68-4-81-14-006	DNF-003	1	2021-6-21			
10dB Attenuator	R&S	DNF	68-4-81-14-007	DNF-004	1	2021-6-21			
Test software	Tonscend	System for BT/WIFI	68-4-74-14-006-A13	Version 2.6.77.0518	N/A	N/A			
Shielding Room	TDK	TS8997	68-4-90-19-003		1	2022-12-6			

Spurious Radiated Emissions Test DESCRIPTION MANUFACTURER EQUIPMENT ID SERIAL NO. CAL. DUE MODEL NO. CAL INTERVAL DATE (YEAR) Signal Rohde & Schwarz 101031 2021-6-22 FSV40 68-4-74-14-003 1 Analyzer Trilog Super Broadband Schwarzbeck VULB 9163 68-4-80-14-003 708 1 2021-7-3 Test Antenna 102295 1 Horn Antenna Rohde & Schwarz HF907 68-4-80-14-004 2021-8-5 Wideband QWH-SL-18-40-Q-PAR 12827 1 68-4-80-14-008 2021-8-5 Horn Antenna K-SG 68-4-29-14-001 Pre-amplifier Rohde & Schwarz 102230 2021-6-21 **SCU 18** 1 Pre-amplifier Rohde & Schwarz SCU 40A 68-4-29-14-002 100432 1 2021-7-30 **Fully Anechoic** TDK 8X4X4 68-4-90-14-002 3 2022-12-6 ---Chamber Version N/A Rohde & Schwarz EMC32 68-4-90-14-002-A10 N/A Test software 9.15.00

EMC_SZ_FR_23.02 FCC Release 2017-06-20

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

Site 1:

System Measurement Uncertainty	
Test Items	Extended Uncertainty
Uncertainty for Conducted Emission 150kHz-30MHz	3.21dB
Uncertainty for Radiated Spurious Emission 30MHz-1000MHz	Horizontal: 4.35dB;
	Vertical: 4.44dB
Uncertainty for Radiated Spurious Emission 1000MHz-18000MHz	Horizontal: 4.30dB;
	Vertical: 4.29dB
Uncertainty for Radiated Spurious Emission 18000MHz-40000MHz	Horizontal: 4.51dB;
	Vertical: 4.50dB
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.16dB
	Frequency test involved:
	0.6×10-7 or 1%