









# **TEST REPORT**

BNetzA-CAB-02/21-102

Test report no.: 1-1524/20-01-05-A

### **Testing laboratory**

#### **CTC advanced GmbH**

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: +49 681 5 98 - 0 Fax: +49 681 5 98 - 9075

Internet: <a href="https://www.ctcadvanced.com">https://www.ctcadvanced.com</a>

e-mail: <u>mail@ctcadvanced.com</u>

### **Accredited Testing Laboratory:**

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

### **Applicant**

#### **VOGO**

101 place Pierre Duhem – Immeuble Les Centuries II

3400 Montpellier / FRANCE
Phone: +33 6 43 78 76 85
Contact: Pascal Saguin
e-mail: p.saguin@vogo.fr

### Manufacturer

#### **VOGO**

Parc Technologique des Fontaines – Activillage 3A 38190 Bernin / FRANCE

#### Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

**Test Item** 

Kind of test item: DIGITAL AUDIO TRANSCEIVER

Model name: Vokkero ELITE 915 Wireless Interface - V08161C

FCC ID: 2AU6N-V08161C IC: 25704-V08161C

Frequency: DTS band 902 – 928 MHz
Technology tested: Proprietary DTS/FHSS
Antenna: External antenna

Power supply: 100 V to 240 V AC mains

Temperature range: -20°C to +55°C



This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

### Test report authorized:

Christoph Schneider Lab Manager

Radio Communications

### **Test performed:**

p.o.

Tobias Wittenmeier Testing Manager Radio Communications



## 1 Table of contents

| 1  | Table of | contents                                                             | 2  |
|----|----------|----------------------------------------------------------------------|----|
| 2  | General  | information                                                          | Δ  |
| _  |          |                                                                      |    |
|    |          | lotes and disclaimer                                                 |    |
|    |          | pplication detailsest laboratories sub-contracted                    |    |
|    | _        |                                                                      |    |
| 3  | Test sta | ndard/s, references and accreditations                               | 5  |
| 4  | Reportii | ng statements of conformity – decision rule                          | 6  |
| 5  | Test en  | vironment                                                            | 7  |
| 6  | Test ite | m                                                                    | 7  |
|    | 6.1 G    | eneral description                                                   | 7  |
|    | 6.2 A    | dditional informationdditional information                           | 7  |
| 7  | Descrip  | tion of the test setup                                               | 8  |
|    | -        | hielded semi anechoic chamber                                        |    |
|    |          | chielded fully anechoic chamber                                      |    |
|    |          | conducted measurements                                               |    |
|    |          | C conducted                                                          |    |
| 8  | Seguen   | ce of testing                                                        | 14 |
|    | -        | sequence of testing radiated spurious 9 kHz to 30 MHz                |    |
|    |          | equence of testing radiated spurious 30 MHz to 1 GHz                 |    |
|    |          | equence of testing radiated spurious 1 GHz to 18 GHz                 |    |
| ^  |          | ement uncertainty                                                    |    |
| 9  |          | •                                                                    |    |
| 10 | Sumn     | nary of measurement results                                          |    |
|    | 10.1     | Part 1: FHSS                                                         | 18 |
|    | 10.2     | Part 2: DTS                                                          | 19 |
| 11 | RF m     | easurements                                                          | 20 |
|    | 11.1     | Additional comments                                                  | 20 |
| 12 | Meas     | urement results Part 1 FHSS                                          | 22 |
|    | 12.1     | Antenna gain                                                         | 22 |
|    | 12.2     | Carrier Frequency Separation                                         | 23 |
|    | 12.3     | Number of Hopping Channels                                           | 25 |
|    | 12.4     | Average Time of Occupancy (dwell time)                               | 27 |
|    | 12.5     | Spectrum bandwidth of a FHSS system                                  | 29 |
|    | 12.6     | Maximum Output Power                                                 |    |
|    | 12.7     | Detailed spurious emissions @ the band edge – conducted and radiated |    |
|    | 12.8     | Spurious Emissions Conducted                                         |    |
|    | 12.9     | Spurious Emissions Radiated < 30 MHz                                 |    |
|    | 12.10    | Spurious Emissions Radiated > 30 MHz                                 |    |
|    | 12.10.1  | Spurious emissions radiated 30 MHz to 1 GHz                          |    |
|    | 12.10.2  | Spurious emissions radiated above 1 GHz                              |    |
|    | 12.11    | Spurious emissions conducted below 30 MHz (AC conducted)             | 57 |



| 13 | Meas   | surement results Part 2 DTS                                          | 60 |
|----|--------|----------------------------------------------------------------------|----|
|    | 13.1   | Maximum output power                                                 | 60 |
|    | 13.2   | Power spectral density                                               | 63 |
|    | 13.3   | Spectrum bandwidth - 6 dB bandwidth and 99% bandwidth                | 66 |
|    | 13.4   | Detailed spurious emissions @ the band edge - conducted and radiated | 70 |
|    | 13.5   | Spurious Emissions Conducted                                         | 73 |
|    | 13.6   | Spurious Emissions Radiated < 30 MHz                                 | 76 |
|    | 13.7   | Spurious Emissions Radiated > 30 MHz                                 | 78 |
|    | 13.7.1 | Spurious emissions radiated 30 MHz to 1 GHz                          | 78 |
|    | 13.7.2 | Spurious emissions radiated above 1 GHz                              | 82 |
| 14 | Gloss  | eary                                                                 | 85 |
| 15 | Docu   | ment history                                                         | 86 |
| 16 | Accre  | editation Certificate - D-PL-12076-01-04                             | 86 |
| 17 | Δccre  | editation Certificate – D-PI -12076-01-05                            | 87 |



### 2 General information

### 2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-1524/20-01-05 and dated 2021-01-15.

### 2.2 Application details

Date of receipt of order: 2020-11-17
Date of receipt of test item: 2020-11-30
Start of test:\* 2020-12-12
End of test:\* 2021-01-15

Person(s) present during the test: -/-

### 2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 4 of 87

<sup>\*</sup>Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.



# 3 Test standard/s, references and accreditations

| Test standard                       | Date                                                                                   | Date Description                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| FCC - Title 47 CFR Part 15          |                                                                                        | FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices                                                                                                                                                                                |  |  |  |  |  |
| RSS - 247 Issue 2                   | February<br>2017                                                                       | Digital Transmission Systems (DTSs), Frequency Hopping<br>Systems (FHSs) and Licence - Exempt Local Area Network (LE-<br>LAN) Devices                                                                                                                                          |  |  |  |  |  |
| Guidance                            | Version                                                                                | Description                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| ANSI C63.4-2014<br>ANSI C63.10-2013 | -/-                                                                                    | American National Standard for Methods of Measurement of<br>Radio-Noise Emissions from Low-Voltage Electrical and<br>Electronic Equipment in the Range of 9 kHz to 40 GHz<br>American National Standard of Procedures for Compliance<br>Testing of Unlicensed Wireless Devices |  |  |  |  |  |
| Accreditation                       | Description                                                                            | n                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| D-PL-12076-01-04                    |                                                                                        | unication and EMC Canada dakks.de/as/ast/d/D-PL-12076-01-04e.pdf  Deutsche Akkreditierungsstelle D-PL-12076-01-04                                                                                                                                                              |  |  |  |  |  |
| D-PL-12076-01-05                    | Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf |                                                                                                                                                                                                                                                                                |  |  |  |  |  |


© CTC advanced GmbH Page 5 of 87



## 4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."



© CTC advanced GmbH Page 6 of 87



### 5 Test environment

| Temperature               | : | T <sub>nom</sub><br>T <sub>max</sub><br>T <sub>min</sub> | +22 °C during room temperature tests  No tests under extreme environmental conditions required.  No tests under extreme environmental conditions required. |
|---------------------------|---|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relative humidity content | • | i min                                                    | 55 %                                                                                                                                                       |
| Barometric pressure       | : |                                                          | 1021 hpa                                                                                                                                                   |
| •                         |   | $V_{nom}$                                                | 115 V AC mains                                                                                                                                             |
| Power supply              | : | $V_{max}$                                                | No tests under extreme environmental conditions required.                                                                                                  |
|                           |   | $V_{min}$                                                | No tests under extreme environmental conditions required.                                                                                                  |

## 6 Test item

## 6.1 General description

| Kind of test item : DIGITAL AUDIO TRANSCEIVER  Model name : Vokkero ELITE 915 Wireless Interface – VO8161C  HMN : n/a  PMN : Vokkero ELITE 915 Wireless Interface  HVIN : VO8161C  FVIN : V01-07.00-07.00  S/N serial number : Rad. I1951000190 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HMN : n/a  PMN : Vokkero ELITE 915 Wireless Interface  HVIN : V08161C  FVIN : V01-07.00-07.00  S/N serial number : Rad. I1951000190                                                                                                             |
| PMN : Vokkero ELITE 915 Wireless Interface  HVIN : V08161C  FVIN : V01-07.00-07.00  S/N serial number : Rad. I1951000190                                                                                                                        |
| HVIN         :         V08161C           FVIN         :         V01-07.00-07.00           S/N serial number         :         Rad.                                                                                                              |
| FVIN         :         V01-07.00-07.00           S/N serial number         :         Rad.                                                                                                                                                       |
| S/N serial number : Rad. I1951000190 Cond. I1951000198  Hardware status : Batch 00978  Software status : production  Firmware status : production  DTS band 915.4 MHz to 927.4 MHz                                                              |
| S/N serial number : Cond. I1951000198  Hardware status : Batch 00978  Software status : production  Firmware status : production  DTS band 915.4 MHz to 927.4 MHz                                                                               |
| Hardware status : Batch 00978  Software status : production  Firmware status : production  DTS band 915.4 MHz to 927.4 MHz                                                                                                                      |
| Firmware status : production  DTS band 915.4 MHz to 927.4 MHz                                                                                                                                                                                   |
| Erequency band . DTS band 915.4 MHz to 927.4 MHz                                                                                                                                                                                                |
| Frequency hand :                                                                                                                                                                                                                                |
| FHSS band 915.42 MHz to 927.42 MHz                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                 |
| Type of radio transmission: DTS                                                                                                                                                                                                                 |
| Use of frequency spectrum : FHSS                                                                                                                                                                                                                |
| Type of modulation : GFSK                                                                                                                                                                                                                       |
| Number of channels : DTS: 15                                                                                                                                                                                                                    |
| FHSS: 25/26                                                                                                                                                                                                                                     |
| Antenna : External antenna                                                                                                                                                                                                                      |
| Power supply : 100 V to 240 V AC mains                                                                                                                                                                                                          |
| Temperature range : -20°C to +55°C                                                                                                                                                                                                              |

## 6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-1524/20-01-05\_AnnexA

1-1524/20-01-05\_AnnexB 1-1524/20-01-05\_AnnexD

© CTC advanced GmbH Page 7 of 87



## 7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

#### **Agenda:** Kind of Calibration


| k     | calibration / calibrated                   | EK  | limited calibration                              |
|-------|--------------------------------------------|-----|--------------------------------------------------|
| ne    | not required (k, ev, izw, zw not required) | zw  | cyclical maintenance (external cyclical          |
|       |                                            |     | maintenance)                                     |
| ev    | periodic self verification                 | izw | internal cyclical maintenance                    |
| Ve    | long-term stability recognized             | g   | blocked for accredited testing                   |
| vlkl! | Attention: extended calibration interval   |     |                                                  |
| NK!   | Attention: not calibrated                  | *)  | next calibration ordered / currently in progress |

© CTC advanced GmbH Page 8 of 87



### 7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.



Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

FS = UR + CL + AF

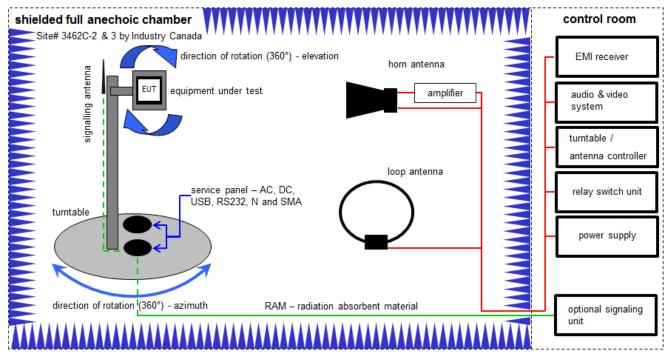
(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS \left[ dB\mu V/m \right] = 12.35 \left[ dB\mu V/m \right] + 1.90 \left[ dB \right] + 16.80 \left[ dB/m \right] = 31.05 \left[ dB\mu V/m \right] (35.69 \ \mu V/m)$ 

© CTC advanced GmbH Page 9 of 87




## **Equipment table:**

| No. | Lab /<br>Item | Equipment                                          | Туре         | Manufacturer                     | Serial No. | INV. No.  | Kind of<br>Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|----------------------------------------------------|--------------|----------------------------------|------------|-----------|------------------------|---------------------|---------------------|
| 1   | Α             | Switch-Unit                                        | 3488A        | HP                               | 2719A14505 | 300000368 | ev                     | -/-                 | -/-                 |
| 2   | Α             | Semi anechoic<br>chamber                           | 3000023      | MWB AG                           | 64672      | 300000551 | ne                     | -/-                 | -/-                 |
| 3   | Α             | Antenna Tower                                      | Model 2175   | ETS-Lindgren                     | 64762      | 300003745 | izw                    | -/-                 | -/-                 |
| 4   | Α             | Positioning<br>Controller                          | Model 2090   | ETS-Lindgren                     | 64672      | 300003746 | izw                    | -/-                 | -/-                 |
| 5   | Α             | Turntable Interface-<br>Box                        | Model 105637 | ETS-Lindgren                     | 44583      | 300003747 | izw                    | -/-                 | -/-                 |
| 6   | А             | TRILOG Broadband<br>Test-Antenna 30<br>MHz - 3 GHz | VULB9163     | Schwarzbeck Mess -<br>Elektronik | 295        | 300003787 | vlKI!                  | 19.02.2019          | 18.02.2021          |
| 7   | Α             | Turntable                                          | 2089-4.0     | EMCO                             |            | 300004394 | ne                     | -/-                 | -/-                 |
| 8   | Α             | PC                                                 | TecLine      | F+W                              | 2210       | 300004388 | ne                     | -/-                 | -/-                 |
| 9   | Α             | EMI Test Receiver                                  | ESR3         | Rohde & Schwarz                  | 102587     | 300005771 | k                      | 10.12.2020          | 09.06.2022          |

© CTC advanced GmbH Page 10 of 87



# 7.2 Shielded fully anechoic chamber



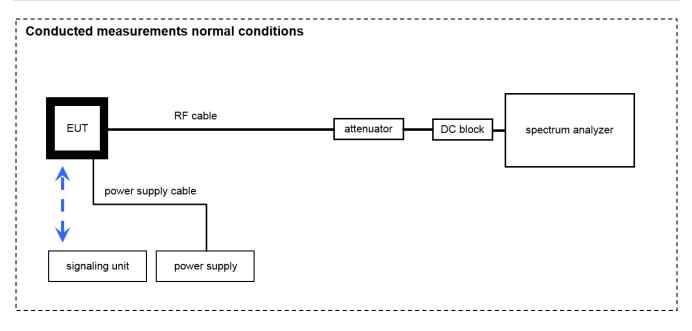
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

#### Example calculation:

FS  $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \( \mu V/m \))$ 


### **Equipment table:**

| No. | Lab /<br>Item | Equipment                                 | Туре                                        | Manufacturer            | Serial No.         | INV. No.  | Kind of<br>Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|-------------------------------------------|---------------------------------------------|-------------------------|--------------------|-----------|------------------------|---------------------|---------------------|
| 1   | А             | Active Loop<br>Antenna 9 kHz to<br>30 MHz | 6502                                        | EMCO                    | 2210               | 300001015 | vlKI!                  | 13.06.2019          | 12.06.2021          |
| 2   | В             | Highpass Filter                           | WHK1.1/15G-10SS                             | Wainwright              | 37                 | 400000148 | ne                     | -/-                 | -/-                 |
| 3   | В             | Broadband Amplifier<br>0.5-18 GHz         | CBLU5184540                                 | CERNEX                  | 22050              | 300004482 | ev                     | -/-                 | -/-                 |
| 4   | A,B           | 4U RF Switch<br>Platform                  | L4491A                                      | Agilent<br>Technologies | MY50000032         | 300004510 | ne                     | -/-                 | -/-                 |
| 5   | A,B           | Computer                                  | Intel Core i3<br>3220/3,3 GHz,<br>Prozessor |                         | 2V2403033A54<br>21 | 300004591 | ne                     | -/-                 | -/-                 |
| 6   | A,B           | NEXIO EMV-<br>Software                    | BAT EMC V3.20.0.13                          | EMCO                    |                    | 300004682 | ne                     | -/-                 | -/-                 |
| 7   | A,B           | Anechoic chamber                          |                                             | TDK                     |                    | 300003726 | ne                     | -/-                 | -/-                 |
| 8   | A,B           | EMI Test Receiver<br>9kHz-26,5GHz         | ESR26                                       | R&S                     | 101376             | 300005063 | k                      | 09.12.2020          | 08.12.2021          |

© CTC advanced GmbH Page 11 of 87



### 7.3 Conducted measurements

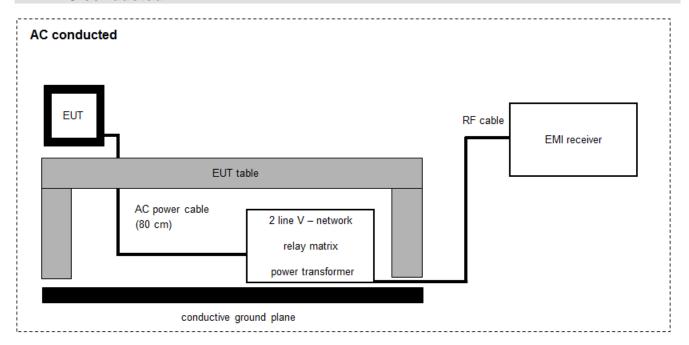


OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

### Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)


### **Equipment table:**

| No. | Lab /<br>Item | Equipment                                         | Туре             | Manufacturer   | Serial No. | INV. No.  | Kind of<br>Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|---------------------------------------------------|------------------|----------------|------------|-----------|------------------------|---------------------|---------------------|
| 1   | Α             | Signal- and<br>Spectrum Analyzer<br>2 Hz - 26 GHz | FSW26            | R&S            | 101455     | 300004528 | k                      | 11.12.2020          | 10.12.2021          |
| 2   | А             | RF-Cable SRD021<br>No. 1                          | Enviroflex 316 D | Huber & Suhner |            | 400001311 | ev                     | -/-                 | -/-                 |

© CTC advanced GmbH Page 12 of 87



### 7.4 AC conducted



FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

### Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 37.62 \text{ [dB}\mu\text{V/m]} + 9.90 \text{ [dB]} + 0.23 \text{ [dB]} = 47.75 \text{ [dB}\mu\text{V/m]} (244.06 \mu\text{V/m})$ 

### **Equipment table:**

| No. | Lab /<br>Item | Equipment                                                | Туре     | Manufacturer | Serial No.         | INV. No.  | Kind of<br>Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|----------------------------------------------------------|----------|--------------|--------------------|-----------|------------------------|------------------|---------------------|
| 1   | Α             | Two-line V-Network<br>(LISN) 9 kHz to 30<br>MHz          | ESH3-Z5  | R&S          | 892475/017         | 300002209 | vIKI!                  | 11.12.2019       | 10.12.2021          |
| 2   | Α             | RF-Filter-section                                        | 85420E   | HP           | 3427A00162         | 300002214 | NK!                    | -/-              | -/-                 |
| 3   | Α             | EMI Test Receiver                                        | ESCI 3   | R&S          | 100083             | 300003312 | k                      | 09.12.2020       | 08.12.2021          |
| 4   | Α             | Analyzer-Reference-<br>System (Harmonics<br>and Flicker) | ARS 16/1 | SPS          | A3509 07/0<br>0205 | 300003314 | vIKI!                  | 17.01.2020       | 16.01.2022          |
| 5   | Α             | Hochpass 150 kHz                                         | EZ-25    | R&S          | 100010             | 300003798 | ev                     | -/-              | -/-                 |
| 6   | Α             | PC                                                       | TecLine  | F+W          |                    | 300003532 | ne                     | -/-              | -/-                 |

© CTC advanced GmbH Page 13 of 87



### 8 Sequence of testing

### 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

### **Premeasurement\***

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

#### Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
   (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 14 of 87

<sup>\*)</sup>Note: The sequence will be repeated three times with different EUT orientations.



### 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

#### Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
  angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
  premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 87



### 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

#### Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 16 of 87



# 9 Measurement uncertainty

| Measurement uncertainty                               |                                          |  |  |  |  |
|-------------------------------------------------------|------------------------------------------|--|--|--|--|
| Test case                                             | Uncertainty                              |  |  |  |  |
| Antenna gain                                          | ± 3 dB                                   |  |  |  |  |
| Carrier frequency separation                          | ± 21.5 kHz                               |  |  |  |  |
| Number of hopping channels                            | -/-                                      |  |  |  |  |
| Spectrum bandwidth                                    | ± 21.5 kHz absolute; ± 15.0 kHz relative |  |  |  |  |
| Maximum output power                                  | ± 1 dB                                   |  |  |  |  |
| Detailed conducted spurious emissions @ the band edge | ± 1 dB                                   |  |  |  |  |
| Band edge compliance radiated                         | ± 3 dB                                   |  |  |  |  |
| Spurious emissions conducted                          | ± 3 dB                                   |  |  |  |  |
| Spurious emissions radiated below 30 MHz              | ± 3 dB                                   |  |  |  |  |
| Spurious emissions radiated 30 MHz to 1 GHz           | ± 3 dB                                   |  |  |  |  |
| Spurious emissions radiated 1 GHz to 12.75 GHz        | ± 3.7 dB                                 |  |  |  |  |
| Spurious emissions radiated above 12.75 GHz           | ± 4.5 dB                                 |  |  |  |  |

© CTC advanced GmbH Page 17 of 87



## 10 Summary of measurement results

| $\boxtimes$ | No deviations from the technical specifications were ascertained                                                      |
|-------------|-----------------------------------------------------------------------------------------------------------------------|
|             | There were deviations from the technical specifications ascertained                                                   |
|             | This test report is only a partial test report. The content and verdict of the performed test cases are listed below. |

## 10.1 Part 1: FHSS

| TC Identifier                                         | Description                                                      |                                              |                       |                 | V    | erdict      |            | Date |     | Remark                |
|-------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------|-----------------------|-----------------|------|-------------|------------|------|-----|-----------------------|
| RF-Testing                                            | ח                                                                | CFR Part 15                                  | . 2                   |                 | P    | assed       | 2021-01-21 |      | -21 | -/-                   |
| Test specification clause                             | Test case                                                        | SS - 247, Issue<br>Temperature<br>conditions | Power source voltages | Mod             | e    | С           | NC         | NA   | NP  | Remark                |
| §15.247(b)(4)<br>RSS - 247 / 5.4 (d)                  | Antenna gain                                                     | Nominal                                      | Nominal               | TX sin<br>chanr |      | $\boxtimes$ |            |      |     | -/-                   |
| §15.247(a)(1)<br>RSS - 247 / 5.1 (b)                  | Carrier frequency separation                                     | Nominal                                      | Nominal               | TX hop          | ping | ×           |            |      |     | -/-                   |
| §15.247(a)(1)<br>RSS - 247 / 5.1 (d)                  | Number of hopping channels                                       | Nominal                                      | Nominal               | TX hop          | ping | ×           |            |      |     | -/-                   |
| §15.247(a)(1) (iii)<br>RSS - 247 / 5.1 (d)            | Time of occupancy (dwell time)                                   | Nominal                                      | Nominal               | TX hop          | ping | ×           |            |      |     | -/-                   |
| §15.247(a)(1)<br>RSS - 247 / 5.1 (a)                  | Spectrum<br>bandwidth of a<br>FHSS system<br>bandwidth           | Nominal                                      | Nominal               | TX sin<br>chanr | _    | ×           |            |      |     | -/-                   |
| §15.247(b)(1)<br>RSS - 247 / 5.4 (a)                  | Maximum output power                                             | Nominal                                      | Nominal               | TX sin<br>chanr | -    | X           |            |      |     | -/-                   |
| §15.247(d)<br>RSS - 247 / 5.5                         | Detailed spurious<br>emissions @ the<br>band edge -<br>conducted | Nominal                                      | Nominal               | TX hop          | ping | ×           |            |      |     | -/-                   |
| §15.205<br>RSS - 247 /<br>5.5 RSS - Gen               | Band edge<br>compliance<br>radiated                              | Nominal                                      | Nominal               | -/-             |      | $\boxtimes$ |            |      |     | -/-                   |
| §15.247(d)<br>RSS - 247 / 5.5                         | Spurious<br>emissions<br>conducted                               | Nominal                                      | Nominal               | TX sin<br>chanr | _    | $\boxtimes$ |            |      |     | -/-                   |
| §15.209(a)<br>RSS - Gen                               | Spurious<br>emissions<br>radiated<br>below 30 MHz                | Nominal                                      | Nominal               | TX sin<br>chanr | _    | ×           |            |      |     | -/-                   |
| §15.247(d)<br>RSS - 247 / 5.5<br>§15.109<br>RSS - Gen | Spurious<br>emissions<br>radiated<br>30 MHz to 1 GHz             | Nominal                                      | Nominal               | TX sin<br>chanr | _    | ×           |            |      |     | -/-                   |
| §15.247(d)<br>RSS - 247 / 5.5<br>§15.109<br>RSS - Gen | Spurious<br>emissions<br>radiated<br>above 1 GHz                 | Nominal                                      | Nominal               | TX sin<br>chanr |      | $\boxtimes$ |            |      |     | -/-                   |
| §15.107(a)<br>§15.207                                 | Conducted<br>emissions<br>below 30 MHz<br>(AC conducted)         | Nominal                                      | Nominal               | TX sin<br>chanr |      | ×           |            |      |     | Valid for both modes. |

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 18 of 87



## 10.2 Part 2: DTS

| Test specification clause                             | Test case                                        | Temperature conditions | Power<br>source<br>voltages | Mode                 | С           | NC | NA | NP | Remark |
|-------------------------------------------------------|--------------------------------------------------|------------------------|-----------------------------|----------------------|-------------|----|----|----|--------|
| §15.247(b)(4)<br>RSS - 247 / 5.4 (d)                  | Antenna gain                                     | Nominal                | Nominal                     | TX single<br>channel | ×           |    |    |    | -/-    |
| §15.247(e)<br>RSS - 247 /<br>5.2 (b)                  | Power<br>spectral<br>density                     | Nominal                | Nominal                     | TX single<br>channel | ×           |    |    |    | -/-    |
| §15.247(a)(2)<br>RSS Gen<br>clause 4.6.1              | Spectrum<br>bandwidth<br>6dB<br>bandwidth        | Nominal                | Nominal                     | TX single<br>channel | ×           |    |    |    | -/-    |
| §15.247(b)(3)<br>RSS - 247 / 5.4 (d)                  | Maximum output power                             | Nominal                | Nominal                     | TX single<br>channel | $\boxtimes$ |    |    |    | -/-    |
| §15.205<br>RSS - 247 / 5.5<br>RSS - Gen               | Band edge<br>compliance<br>conducted             | Nominal                | Nominal                     | TX single channel    | ×           |    |    |    | -/-    |
| §15.205<br>RSS - 247 / 5.5<br>RSS - Gen               | Band edge<br>compliance<br>radiated              | Nominal                | Nominal                     | -/-                  | ×           |    |    |    | -/-    |
| §§15.247(d)<br>RSS - 247 / 5.5                        | TX spurious<br>emissions<br>conducted            | Nominal                | Nominal                     | TX single<br>channel | ×           |    |    |    | -/-    |
| §15.247(d)<br>RSS - 247 / 5.5<br>§15.109<br>RSS - Gen | TX spurious<br>emissions<br>radiated             | Nominal                | Nominal                     | TX single<br>channel | ×           |    |    |    | -/-    |
| §15.209(a)<br>RSS-Gen                                 | TX spurious<br>emissions<br>radiated<br>< 30 MHz | Nominal                | Nominal                     | TX single<br>channel | ×           |    |    |    | -/-    |

© CTC advanced GmbH Page 19 of 87



### 11 RF measurements

### 11.1 Additional comments

Reference documents: VOKKERO ELITE 915 TERMINAL VO8364AA - OPERATIONAL AND PRODUCT

DESCRIPTION.pdf

Special test descriptions: As the frequencies and bandwidths of DTS and FHSS modes are very similar,

the radiated spurious emissions tests were completely performed on the FHSS mode, as the FHSS mode has a higher output power and represents the worst case. For DTS mode only radiated emissions tests on one channel were

performed.

The device supports two slightly different hopping tables. The only difference between hopping table 1 and 2 are the lowest channel and the total number of hopping channels (26 for H1 and 25 for H2). Therefore conducted FHSS tests

were performed on 4 channels.

Configuration descriptions: FHSS: 26 channels or 25 channels with a nominal bandwidth of 210 kHz and

375 kHz channel spacing.

lowest channel 915.42 MHz (lowest channel for hopping table 1)

lowest channel 915.795 MHz (lowest channel for hopping table 1)

middle channel 921.42 MHz highest channel 927.42 MHz

these channels were tested in part 1 of this test report.

DTS: 15 channels with 500 kHz nominal bandwidth and 800 kHz channel

Spacing.

lowest channel 915.4 MHz, middle channel 921.8 MHz, highest channel 927.4 MHz;

these channels were tested in part 2 of this test report.

Test mode: Special software is used.

EUT is transmitting pseudo random data by itself

© CTC advanced GmbH Page 20 of 87



## Hopping tables overview:

|     | H1      | H2      |
|-----|---------|---------|
| Min | 915.795 | 915.42  |
| Max | 927.42  | 927.42  |
| 1   | 927.045 | 925.17  |
| 2   | 916.545 | 926.67  |
| 3   | 918.42  | 919.545 |
| 4   | 922.17  | 923.67  |
| 5   | 923.295 | 922.92  |
| 6   | 925.17  | 915.42  |
| 7   | 921.42  | 921.42  |
| 8   | 915.795 | 924.795 |
| 9   | 925.545 | 916.545 |
| 10  | 918.795 | 915.795 |
| 11  | 926.67  | 921.045 |
| 12  | 921.795 | 919.17  |
| 13  | 916.17  | 918.045 |
| 14  | 918.045 | 922.17  |
| 15  | 922.545 | 916.92  |
| 16  | 925.92  | 917.67  |
| 17  | 920.295 | 927.42  |
| 18  | 917.67  | 916.17  |
| 19  | 920.67  | 918.795 |
| 20  | 927.42  | 923.295 |
| 21  | 924.42  | 924.045 |
| 22  | 923.67  | 918.42  |
| 23  | 916.92  | 927.045 |
| 24  | 924.045 | 921.795 |
| 25  | 926.295 | 924.42  |
| 26  | 917.295 |         |

© CTC advanced GmbH Page 21 of 87



### 12 Measurement results Part 1 FHSS

### 12.1 Antenna gain

### **Description:**

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

### **Measurement:**

| Measurement parameters  |                                  |  |
|-------------------------|----------------------------------|--|
| Detector                | Peak                             |  |
| Sweep time              | Auto                             |  |
| Resolution bandwidth    | 1 MHz                            |  |
| Video bandwidth         | 3 MHz                            |  |
| Span                    | 5 MHz                            |  |
| Trace mode              | Max hold                         |  |
| Toot cotup              | See sub clause 7.2 B (radiated)  |  |
| Test setup              | See sub clause 7.3 A (conducted) |  |
| Measurement uncertainty | See sub clause 9                 |  |

#### **Limits:**

| FCC          | IC |  |
|--------------|----|--|
| Antenna gain |    |  |

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### Results:

|                         | 915.420 MHz | 915.795 MHz | 921.420 MHz | 927.42MHz |
|-------------------------|-------------|-------------|-------------|-----------|
| Conducted power / dBm   | 20.26       | 20.21       | 20.02       | 19.77     |
| EIRP / dBm              | 23.45       | 23.45       | 22.75       | 22.70     |
| Gain / dBi (Calculated) | 3.19        | 3.24        | 2.73        | 2.93      |

© CTC advanced GmbH Page 22 of 87



# 12.2 Carrier Frequency Separation

## **Description:**

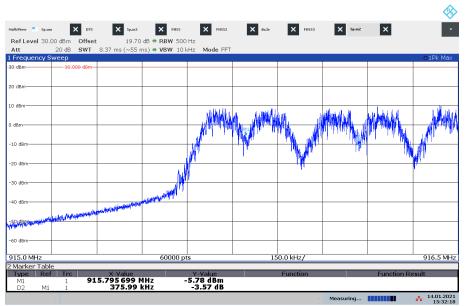
Measurement of the carrier frequency separation of a hopping system. EUT in hopping mode.

### **Measurement:**

| Measurement parameters  |                      |  |
|-------------------------|----------------------|--|
| Detector                | Peak                 |  |
| Sweep time              | Auto                 |  |
| Resolution bandwidth    | See plots            |  |
| Video bandwidth         | See plots            |  |
| Span                    | See plots            |  |
| Trace mode              | Max hold             |  |
| Test setup              | See sub clause 7.3 A |  |
| Measurement uncertainty | See sub clause 9     |  |

### **Limits:**

| FCC                                                                                                                   | IC                                 |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
| Carrier frequency separation                                                                                          |                                    |  |
| Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater. The two-thirds of the |                                    |  |
| 20 dB bandwidth for IC is only valid f                                                                                | or the ISM band 2400 – 2483.5 MHz. |  |


Result: The channel separation is 375.99kHz.

© CTC advanced GmbH Page 23 of 87



### Plots:

## Plot 1: Frequency separation



15:32:18 14.01.2021

© CTC advanced GmbH Page 24 of 87



# 12.3 Number of Hopping Channels

## **Description:**

Measurement of the total number of used hopping channels. EUT in hopping mode.

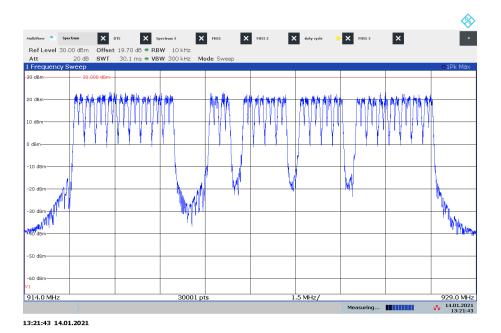
### **Measurement:**

| Measurement parameters  |                      |  |
|-------------------------|----------------------|--|
| Detector                | Peak                 |  |
| Sweep time              | Auto                 |  |
| Resolution bandwidth    | See plots            |  |
| Video bandwidth         | See plots            |  |
| Span                    | See plots            |  |
| Trace mode              | Max hold             |  |
| Test setup              | See sub clause 7.3 A |  |
| Measurement uncertainty | See sub clause 9     |  |

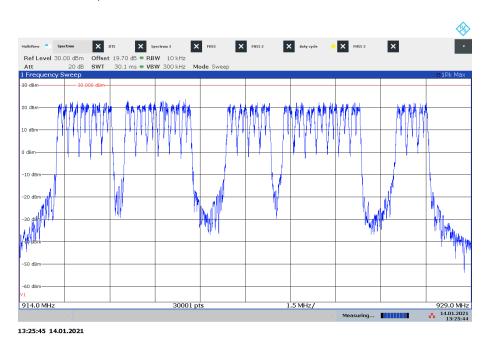
### **Limits:**

| FCC                        | IC                                                                                                                                                                   |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Number of hopping channels |                                                                                                                                                                      |  |  |
|                            | At least 25 non overlapping hopping channels. If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels. |  |  |

Result: The EUT uses H1: 26 channels


H2: 25 channels.

© CTC advanced GmbH Page 25 of 87




### Plots:

### Plot 1: Number of channels H1, 26 channels



### Plot 1: Number of channels H2, 25 channels



© CTC advanced GmbH Page 26 of 87



### 12.4 Average Time of Occupancy (dwell time)

#### **Measurement:**

The measurement is performed in zero span mode to show that none of the 25 used channels is allocated more than 0.4 seconds within a 10 seconds interval (25 channels times 0.4s).

### **Limits:**

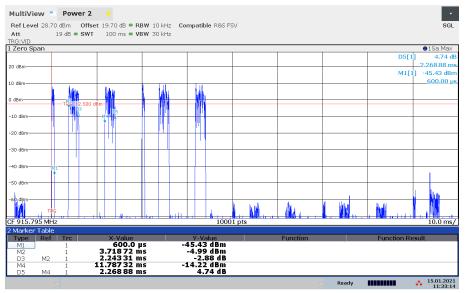
| FCC                       | IC |  |  |
|---------------------------|----|--|--|
| Average time of occupancy |    |  |  |

For frequency hopping systems operating in the 902-928 MHz band: If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 10 second period.

Result: The time slot length is 10.2 ms

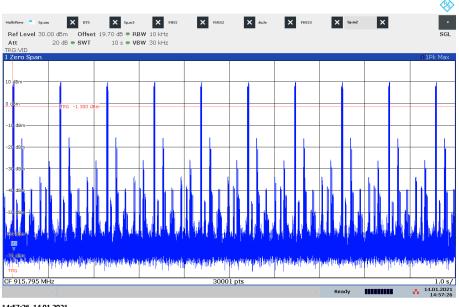
Number of hops / channel @ 10s = 10

Within 10 s period, the average time of occupancy is 102 ms


→ The average time of occupancy = 102 ms

© CTC advanced GmbH Page 27 of 87




### Plots:

Plot 1: Time slot length = 10.2ms



11:33:15 15.01.2021

Plot 2: hops / channel @ 10s = 10



14:57:26 14.01.2021

© CTC advanced GmbH Page 28 of 87



# 12.5 Spectrum bandwidth of a FHSS system

### **Description:**

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

### **Measurement:**

| Measurement parameters  |                      |  |
|-------------------------|----------------------|--|
| Detector                | Peak                 |  |
| Sweep time              | Auto                 |  |
| Resolution bandwidth    | 5 kHz                |  |
| Video bandwidth         | 100 kHz              |  |
| Span                    | See plots            |  |
| Trace mode              | Max hold             |  |
| Test setup              | See sub clause 7.3 A |  |
| Measurement uncertainty | See sub clause 9     |  |

### **Limits:**

| FCC                                                                    |  |  |  |
|------------------------------------------------------------------------|--|--|--|
| Spectrum bandwidth of a FHSS system                                    |  |  |  |
| The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz. |  |  |  |

### Result:

| Test Conditions |           | 20dB Bandwidth / kHz |             |             |           |
|-----------------|-----------|----------------------|-------------|-------------|-----------|
|                 |           | 915.420 MHz          | 915.795 MHz | 921.420 MHz | 927.42MHz |
| $T_nom$         | $V_{nom}$ | 369.59               | 366.99      | 366.45      | 367.92    |

| Test Conditions  |           | 99% Bandwidth / kHz |             |             |           |
|------------------|-----------|---------------------|-------------|-------------|-----------|
|                  |           | 915.420 MHz         | 915.795 MHz | 921.420 MHz | 927.42MHz |
| T <sub>nom</sub> | $V_{nom}$ | 317.76              | 318.81      | 319.77      | 319.07    |

© CTC advanced GmbH Page 29 of 87



### Plots:

Plot 1: 915.420 MHz, 20 dB-BW



14:27:29 14.01.2021

Plot 2: 915.420 MHz, 99%OBW




14:30:33 14.01.2021

© CTC advanced GmbH Page 30 of 87

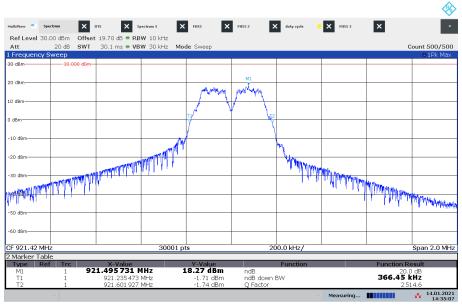


Plot 3: 915.795 MHz, 20 dB-BW



14:33:42 14.01.2021

Plot 4: 915.795 MHz, 99%OBW




14:31:42 14.01.2021

© CTC advanced GmbH Page 31 of 87



Plot 5: 921.420 MHz, 20 dB-BW



14:35:08 14.01.2021

Plot 6: 921.420 MHz, 99%OBW



14:36:33 14.01.2021

© CTC advanced GmbH Page 32 of 87



Plot 7: 927.42MHz, 20 dB-BW



14:39:42 14.01.2021

Plot 8: 927.42MHz, 99%OBW



14:37:53 14.01.2021

© CTC advanced GmbH Page 33 of 87



# 12.6 Maximum Output Power

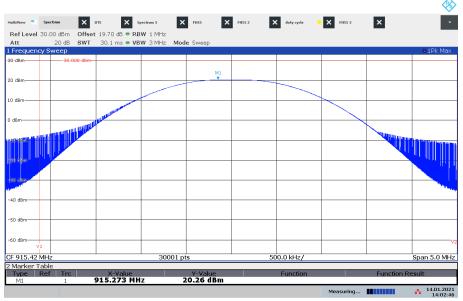
## **Measurement:**

| Measurement parameter    |                          |  |  |
|--------------------------|--------------------------|--|--|
| Detector:                | Peak                     |  |  |
| Sweep time:              | Auto                     |  |  |
| Resolution bandwidth:    | 1 MHz                    |  |  |
| Video bandwidth:         | 3 MHz                    |  |  |
| Span:                    | 5 MHz                    |  |  |
| Trace-Mode:              | Max Hold                 |  |  |
| Used equipment:          | See chapter 7.2 B, 7.3 A |  |  |
| Measurement uncertainty: | See chapter 9            |  |  |

## Limits:

| FCC                                                                                                                                                                                                                                                                                                          | IC |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| Maximum Output Power Conducted                                                                                                                                                                                                                                                                               |    |  |  |  |
| For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section. |    |  |  |  |
| Maximum e.i.r.p.                                                                                                                                                                                                                                                                                             |    |  |  |  |
| For FHSs operating in the band 902-928 MHz, maximum e.i.r.p. shall not exceed 4 W if the ho uses 50 or more hopping channels; the maximum e.i.r.p. shall not exceed 1 W if the hopset uses than 50 hopping channels.                                                                                         |    |  |  |  |

### Result:


| Test Cor         | ditions   | Maximum Output Power Conducted / dBm |       |       |           |
|------------------|-----------|--------------------------------------|-------|-------|-----------|
| 1601 001         | iditionio | 915.420 MHz 915.795 MHz 921.420 MHz  |       |       | 927.42MHz |
| T <sub>nom</sub> | $V_{nom}$ | 20.26                                | 20.21 | 20.02 | 19.77     |

© CTC advanced GmbH Page 34 of 87



### Plots:

### Plot 1: 915.420 MHz



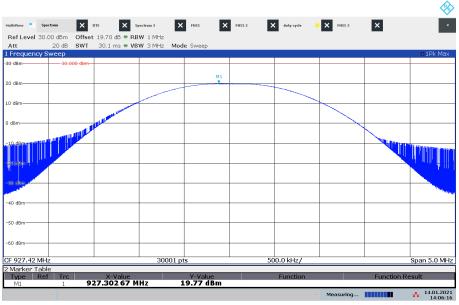
14:02:47 14.01.2021

### Plot 2: 915.795 MHz



14:00:02 14.01.2021

© CTC advanced GmbH Page 35 of 87




### Plot 3: 921.420



14:04:23 14.01.2021

### Plot 4: 927.420



14:06:16 14.01.2021

© CTC advanced GmbH Page 36 of 87



## 12.7 Detailed spurious emissions @ the band edge - conducted and radiated

### **Description:**

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel mode.

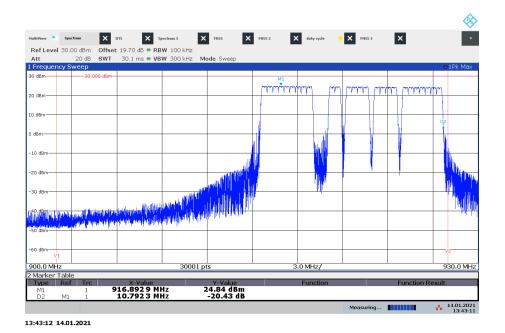
#### **Measurement:**

| Measurement parameters  |                                                      |  |
|-------------------------|------------------------------------------------------|--|
| Detector                | Peak                                                 |  |
| Sweep time              | Auto                                                 |  |
| Resolution bandwidth    | 100 kHz                                              |  |
| Video bandwidth         | 300 kHz                                              |  |
| Span                    | Lower Band Edge: 902 MHz<br>Upper Band Edge: 928 MHz |  |
| Trace mode              | Max hold                                             |  |
| Test setup              | See sub clause 7.3 A                                 |  |
| Measurement uncertainty | See sub clause 9                                     |  |

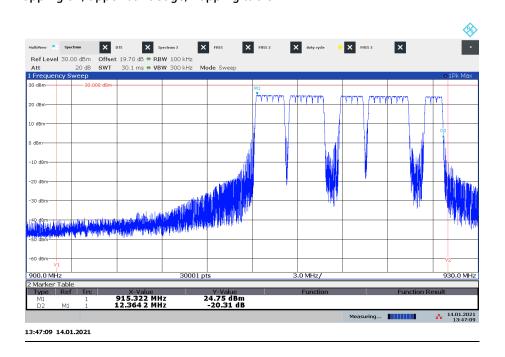
### **Limits:**

| FCC | IC |
|-----|----|
|     |    |

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.


### **Results conducted:**

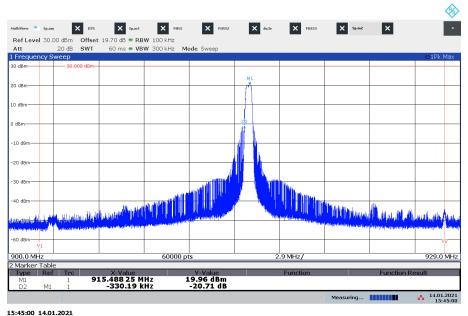
| Scenario                      | Spurious band edge conducted |                 |
|-------------------------------|------------------------------|-----------------|
| Modulation                    | lowest channel               | highest channel |
| Lower band edge – hopping on  | > 20 dB                      | > 20 dB         |
| Upper band edge – hopping on  | > 20 dB                      | > 20 dB         |
| Lower band edge – hopping off | > 20 dB                      | > 20 dB         |
| Upper band edge – hopping off | > 20 dB                      | > 20 dB         |


© CTC advanced GmbH Page 37 of 87



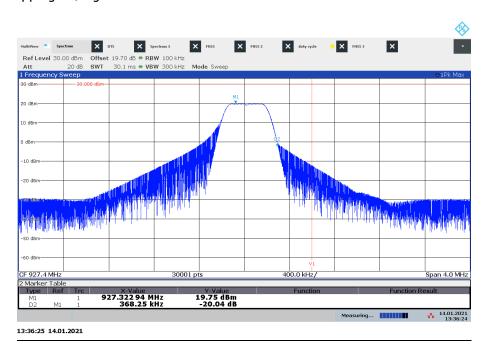
Plot 1: 20 dB - hopping on, upper bandedge, hopping table H1




Plot 2: 20 dB – hopping on, upper bandedge, hopping table H2



© CTC advanced GmbH Page 38 of 87




Plot 3: 20 dB - hopping off, lowest channel



15.45.00 14.01.202

Plot 4: 20 dB - hopping off, highest channel



© CTC advanced GmbH Page 39 of 87



## **Results radiated:**

No restricted band in the range  $\pm$  2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                        | MHz                   | MHz             | GHz              |
|----------------------------|-----------------------|-----------------|------------------|
| 0.090 - 0.110              | 16.42 - 16.423        | 399.9 - 410     | 4.5 - 5.15       |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525   | 608 - 614       | 5.35 - 5.46      |
| 2.1735 - 2.1905            | 16.80425 - 16.80475   | 960 - 1240      | 7.25 - 7.75      |
| 4.125 - 4.128              | 25.5 - 25.67          | 1300 - 1427     | 8.025 - 8.5      |
| 4.17725 - 4.17775          | 37.5 - 38.25          | 1435 - 1626.5   | 9.0 - 9.2        |
| 4.20725 - 4.20775          | 73 - 74.6             | 1645.5 - 1646.5 | 9.3 - 9.5        |
| 6.215 - 6.218              | 74.8 - 75.2           | 1660 - 1710     | 10.6 - 12.7      |
| 6.26775 - 6.26825          | 108 - 121.94          | 1718.8 - 1722.2 | 13.25 - 13.4     |
| 6.31175 - 6.31225          | 123 - 138             | 2200 - 2300     | 14.47 - 14.5     |
| 8.291 - 8.294              | 149.9 - 150.05        | 2310 - 2390     | 15.35 - 16.2     |
| 8.362 - 8.366              | 156.52475 - 156.52525 | 2483.5 - 2500   | 17.7 - 21.4      |
| 8.37625 - 8.38675          | 156.7 - 156.9         | 2690 - 2900     | 22.01 - 23.12    |
| 8.41425 - 8.41475          | 162.0125 - 167.17     | 3260 - 3267     | 23.6 - 24.0      |
| 12.29 - 12.293             | 167.72 - 173.2        | 3332 - 3339     | 31.2 - 31.8      |
| 12.51975 - 12.52025        | 240 - 285             | 3345.8 - 3358   | 36.43 - 36.5     |
| 12.57675 - 12.57725        | 322 - 335.4           | 3600 - 4400     | ( <sup>2</sup> ) |
| 13.36 - 13.41              |                       |                 |                  |

© CTC advanced GmbH Page 40 of 87



## 12.8 Spurious Emissions Conducted

### **Description:**

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

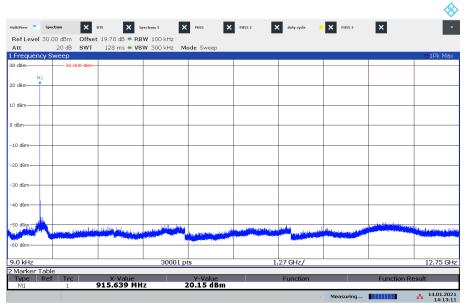
#### **Measurement:**

| Measurement parameter    |                                          |  |
|--------------------------|------------------------------------------|--|
| Detector:                | Peak                                     |  |
| Sweep time:              | Auto                                     |  |
| Video bandwidth:         | F < 1 GHz: 1 MHz<br>F > 1 GHz: 1 MHz     |  |
| Resolution bandwidth:    | F < 1 GHz: 100 kHz<br>F > 1 GHz: 100 kHz |  |
| Span:                    | 9 kHz to 12.75 GHz                       |  |
| Trace-Mode:              | Max Hold                                 |  |
| Used equipment:          | See chapter 7.3A                         |  |
| Measurement uncertainty: | See chapter 9                            |  |

#### **Limits:**

| FCC                             | IC |  |
|---------------------------------|----|--|
| TX spurious emissions conducted |    |  |

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required


### **Result:**

| Emission Limitation |  |                                   |                                   |                                                            |                     |
|---------------------|--|-----------------------------------|-----------------------------------|------------------------------------------------------------|---------------------|
| Frequency<br>/ MHz  |  | Amplitude<br>of emission<br>/ dBm | Limit max. allowed emission power | actual attenuation below<br>frequency of operation<br>/ dB | Results             |
| 915.420             |  | 20.2                              | 24 dBm                            |                                                            | Operating frequency |
|                     |  |                                   | -20 dBc                           | No emissions detected!                                     |                     |
| 915.795             |  | 20.1                              | 24 dBm                            |                                                            | Operating frequency |
|                     |  |                                   | -20 dBc                           | No emissions detected!                                     |                     |
| 921.420             |  | 19.8                              | 24 dBm                            |                                                            | Operating frequency |
|                     |  |                                   | -20 dBc                           | No emissions detected!                                     |                     |
| 927.420             |  | 19.5                              | 24 dBm                            |                                                            | Operating frequency |
|                     |  |                                   | -20 dBc                           | No emissions detected!                                     |                     |

© CTC advanced GmbH Page 41 of 87

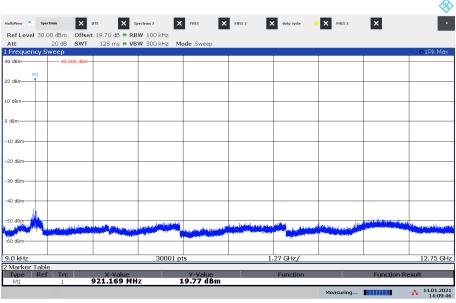


Plot 1: 915.420 MHz, 9 kHz - 12.75 GHz



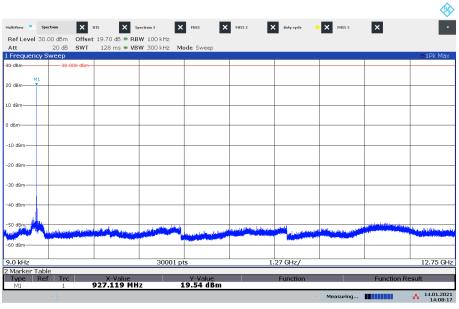
14:13:11 14.01.2021

Plot 2: 915.795 MHz, 9 kHz - 12.75 GHz




14:11:09 14.01.2021

© CTC advanced GmbH Page 42 of 87




Plot 3: 921.420 MHz, 9 kHz - 12.75 GHz



14:09:46 14.01.2021

Plot 4: 927.420 MHz, 9 kHz - 12.75 GHz



14:08:18 14.01.2021

© CTC advanced GmbH Page 43 of 87



## 12.9 Spurious Emissions Radiated < 30 MHz

## **Description:**

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

### **Measurement:**

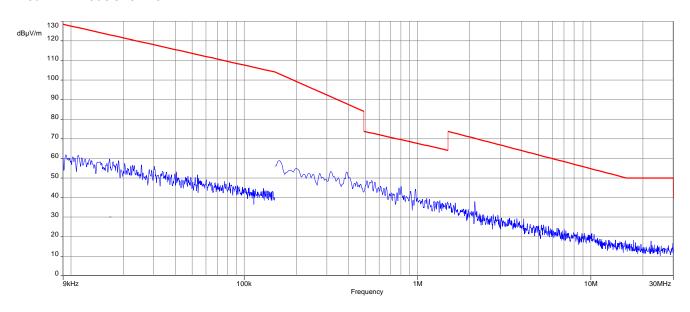
| Measurement parameter    |                      |  |
|--------------------------|----------------------|--|
| Detector:                | Peak / Quasi Peak    |  |
| Sweep time:              | Auto                 |  |
| Video bandwidth:         | F < 150 kHz: 200 Hz  |  |
| Video bandwidth.         | F > 150 kHz: 9 kHz   |  |
| Resolution bandwidth:    | F < 150 kHz: 1 kHz   |  |
| Resolution bandwidth:    | F > 150 kHz: 100 kHz |  |
| Span:                    | 9 kHz to 30 MHz      |  |
| Trace-Mode:              | Max Hold             |  |
| Used equipment:          | See chapter 7.2 A    |  |
| Measurement uncertainty: | See chapter 9        |  |

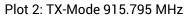
## **Limits:**

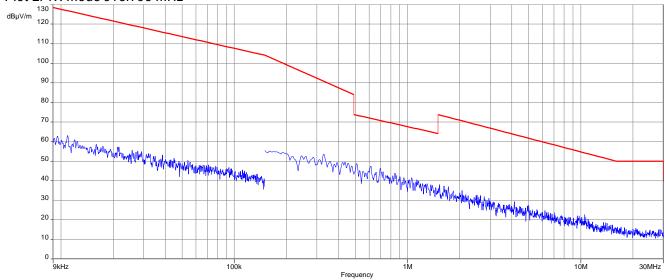
| FCC             |                     |                      | IC      |               |
|-----------------|---------------------|----------------------|---------|---------------|
|                 | TX spurious emissio | ns radiated < 30 MHz |         |               |
| Frequency / MHz | Field strengt       | h / (dBμV/m)         | Measure | ment distance |
| 0.009 - 0.490   | 2400/               | -(kHz)               |         | 300           |
| 0.490 - 1.705   | 24000/              | F(kHz)               |         | 30            |
| 1.705 – 30.0    | 3                   | 0                    |         | 30            |

© CTC advanced GmbH Page 44 of 87




## Result:

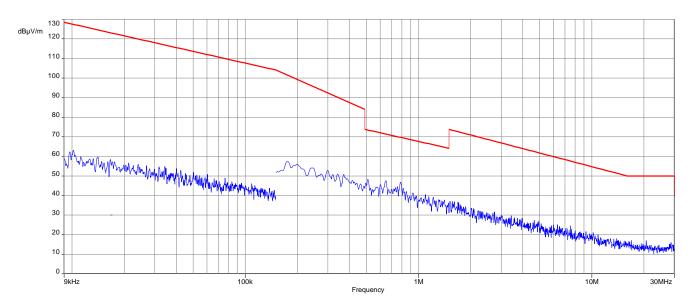

| Spurious emission level |                    |                    |       |
|-------------------------|--------------------|--------------------|-------|
| Channel Frequency       | Spurious Frequency | Detector           | Level |
| 915.420 MHz             |                    | No Peaks detected! |       |
|                         |                    |                    |       |
|                         |                    |                    |       |
| 915.795 MHz             | No Peaks detected! |                    |       |
|                         |                    |                    |       |
|                         |                    |                    |       |
| 921.420 MHz             | No Peaks detected! |                    |       |
|                         |                    |                    |       |
|                         |                    |                    |       |
| 927.42MHz               | No Peaks detected! |                    |       |
|                         |                    |                    |       |
|                         |                    |                    |       |


© CTC advanced GmbH Page 45 of 87



Plot 1: TX-Mode 915.420 MHz









© CTC advanced GmbH Page 46 of 87



Plot 3: TX-Mode 921.420 MHz



Plot 4: TX-Mode 927.42MHz



© CTC advanced GmbH Page 47 of 87



### 12.10 Spurious Emissions Radiated > 30 MHz

## 12.10.1 Spurious emissions radiated 30 MHz to 1 GHz

#### **Description:**

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

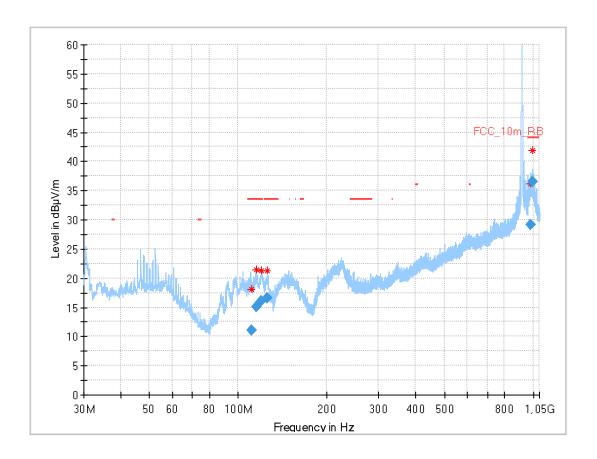
#### **Measurement:**

| Measurement parameters  |                          |  |
|-------------------------|--------------------------|--|
| Detector                | Peak / Quasi Peak        |  |
| Sweep time              | Auto                     |  |
| Resolution bandwidth    | 3 x VBW                  |  |
| Video bandwidth         | 120 kHz                  |  |
| Span                    | 30 MHz to 1 GHz          |  |
| Trace mode              | Max hold                 |  |
| Measured modulation     | FHSS single channel mode |  |
| Test setup              | See sub clause 7.1 A     |  |
| Measurement uncertainty | See sub clause 9         |  |

#### **Limits:**

| FCC                                                      | IC |
|----------------------------------------------------------|----|
| Band-edge Compliance of conducted and radiated emissions |    |

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

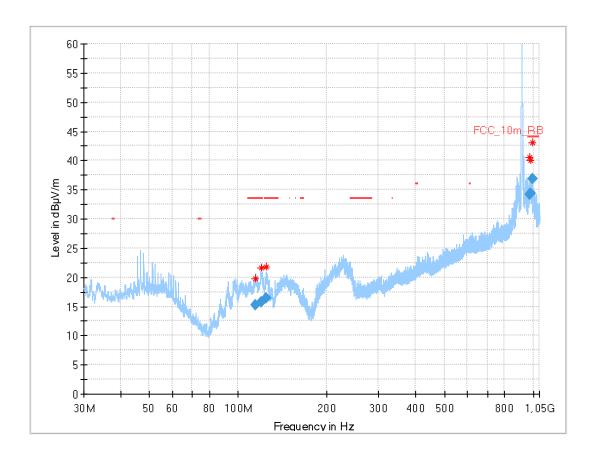

| Frequency / MHz | Field Strength / (dBµV/m) | Measurement distance / m |  |  |
|-----------------|---------------------------|--------------------------|--|--|
| 30 - 88         | 30.0                      | 10                       |  |  |
| 88 – 216        | 33.5                      | 10                       |  |  |
| 216 – 960       | 36.0                      | 10                       |  |  |
| Above 960       | 54.0                      | 3                        |  |  |

**Result:** See result table below the plots.

© CTC advanced GmbH Page 48 of 87



Plot 1: 30 MHz - 1 GHz, horizontal & vertical polarisation 915.420 MHz

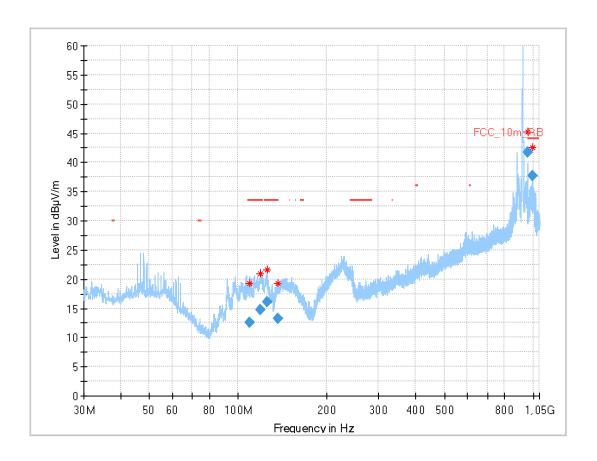



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|--------------------|--------------------|----------------|-----|---------------|-----------------|
| 110.760            | 10.99                 | 33.5              | 22.5           | 1000               | 120.0              | 112.0          | V   | 2             | 12              |
| 115.136            | 15.01                 | 33.5              | 18.5           | 1000               | 120.0              | 151.0          | ٧   | 95            | 12              |
| 120.177            | 16.06                 | 33.5              | 17.4           | 1000               | 120.0              | 143.0          | ٧   | 45            | 10              |
| 125.626            | 16.66                 | 33.5              | 16.8           | 1000               | 120.0              | 163.0          | ٧   | 114           | 9               |
| 980.873            | 29.19                 | 44.0              | 14.8           | 1000               | 120.0              | 108.0          | Н   | 224           | 24              |
| 992.003            | 36.57                 | 44.0              | 7.4            | 1000               | 120.0              | 123.0          | Н   | 208           | 24              |

© CTC advanced GmbH Page 49 of 87



Plot 2: 30 MHz - 1 GHz, horizontal & vertical polarisation 915.795 MHz

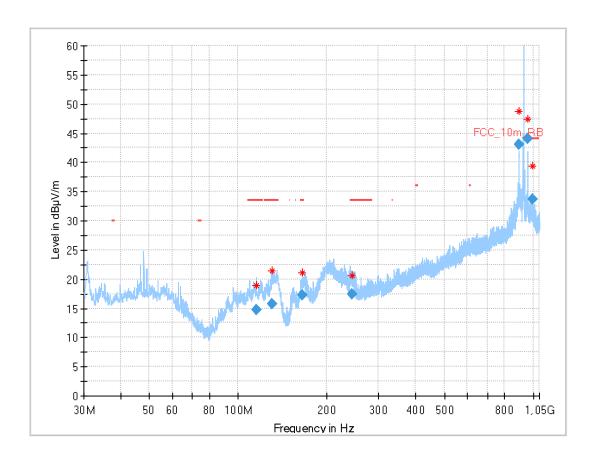



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|--------------------|--------------------|----------------|-----|---------------|-----------------|
| 114.910            | 15.26                 | 33.5              | 18.2           | 1000               | 120.0              | 170.0          | V   | 1             | 12              |
| 119.759            | 15.70                 | 33.5              | 17.8           | 1000               | 120.0              | 170.0          | V   | 96            | 11              |
| 125.031            | 16.39                 | 33.5              | 17.1           | 1000               | 120.0              | 170.0          | V   | 67            | 9               |
| 975.520            | 34.19                 | 44.0              | 9.8            | 1000               | 120.0              | 170.0          | ٧   | 263           | 24              |
| 982.639            | 34.42                 | 44.0              | 9.6            | 1000               | 120.0              | 170.0          | V   | -14           | 24              |
| 992.035            | 36.81                 | 44.0              | 7.2            | 1000               | 120.0              | 170.0          | ٧   | 104           | 24              |

© CTC advanced GmbH Page 50 of 87



Plot 3: 30 MHz - 1 GHz, horizontal & vertical polarisation 921.420 MHz




| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|--------------------|--------------------|----------------|-----|---------------|-----------------|
| 109.419            | 12.58                 | 33.5              | 20.9           | 1000               | 120.0              | 102.0          | ٧   | 112           | 12              |
| 119.097            | 14.79                 | 33.5              | 18.7           | 1000               | 120.0              | 126.0          | ٧   | 67            | 11              |
| 125.234            | 16.15                 | 33.5              | 17.4           | 1000               | 120.0              | 170.0          | ٧   | 67            | 9               |
| 136.863            | 13.20                 | 33.5              | 20.3           | 1000               | 120.0              | 132.0          | ٧   | 247           | 9               |
| 960.002            | 41.67                 | 44.0              | 2.3            | 1000               | 120.0              | 170.0          | ٧   | -22           | 24              |
| 992.004            | 37.78                 | 44.0              | 6.2            | 1000               | 120.0              | 98.0           | Н   | 103           | 24              |

© CTC advanced GmbH Page 51 of 87



Plot 4: 30 MHz - 1 GHz, horizontal & vertical polarisation 927.42MHz



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|--------------------|--------------------|----------------|-----|---------------|-----------------|
| 115.014            | 14.76                 | 33.5              | 18.7           | 1000               | 120.0              | 170.0          | V   | 75            | 12              |
| 130.738            | 15.72                 | 33.5              | 17.8           | 1000               | 120.0              | 170.0          | ٧   | 103           | 9               |
| 165.360            | 17.26                 | 33.5              | 16.2           | 1000               | 120.0              | 106.0          | ٧   | 112           | 10              |
| 243.999            | 17.49                 | 33.5              | 16.0           | 1000               | 120.0              | 120.0          | V   | 80            | 13              |
| 895.519            | 43.13                 |                   |                | 1000               | 120.0              | 170.0          | V   | 174           | 24              |
| 960.011            | 43.1                  | 44.0              | 0.9            | 1000               | 120.0              | 170.0          | V   | 249           | 24              |
| 992.012            | 33.68                 | 44.0              | 10.3           | 1000               | 120.0              | 170.0          | V   | 22            | 24              |

© CTC advanced GmbH Page 52 of 87



## 12.10.2 Spurious emissions radiated above 1 GHz

### **Description:**

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

#### **Measurement:**

| Measurement parameters  |                          |  |  |  |  |
|-------------------------|--------------------------|--|--|--|--|
| Detector                | Peak / RMS               |  |  |  |  |
| Sweep time              | Auto                     |  |  |  |  |
| Resolution bandwidth    | 1 MHz                    |  |  |  |  |
| Video bandwidth         | 3 x RBW                  |  |  |  |  |
| Span                    | 1 GHz to 12.75 GHz       |  |  |  |  |
| Trace mode              | Max hold                 |  |  |  |  |
| Measured modulation     | FHSS single channel mode |  |  |  |  |
| Test setup              | See sub clause 7.2 B     |  |  |  |  |
| Measurement uncertainty | See sub clause 9         |  |  |  |  |

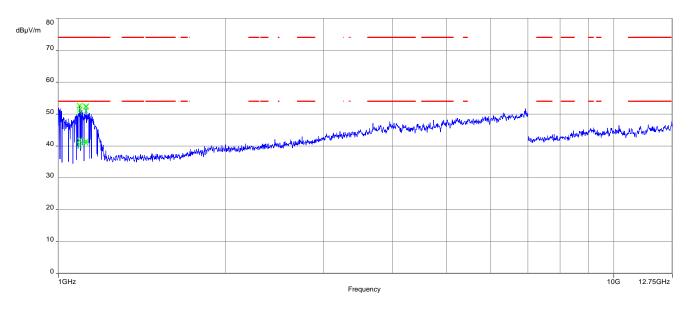
The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

#### Limits:

| FCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                 | IC |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------|----|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TX spurious em                                     | ssions radiated |    |  |  |  |  |
| In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). |                                                    |                 |    |  |  |  |  |
| §15.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                 |    |  |  |  |  |
| Frequency / MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field strength / (dBµV/m) Measurement distance / m |                 |    |  |  |  |  |
| Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54.0 3                                             |                 |    |  |  |  |  |

© CTC advanced GmbH Page 53 of 87




## Result:

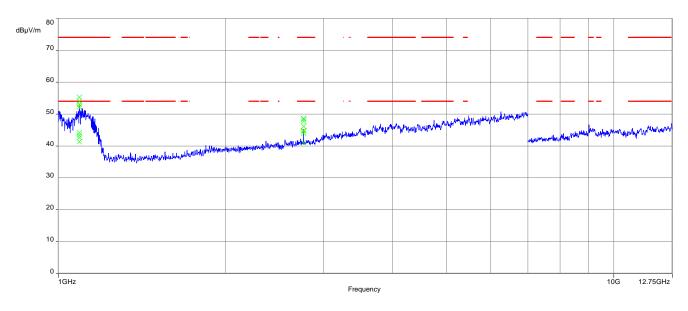
| TX spurious emissions radiated |                    |          |             |  |  |  |  |  |
|--------------------------------|--------------------|----------|-------------|--|--|--|--|--|
| Channel Frequency              | Spurious Frequency | Detector | Level       |  |  |  |  |  |
| 915.420 MHz                    | 1092 MHz           | Peak     | 52.7 dBμV/m |  |  |  |  |  |
|                                | 1092 MHz           | RMS      | 41.8 dBµV/m |  |  |  |  |  |
|                                | 1122 MHz           | Peak     | 52.6 dBμV/m |  |  |  |  |  |
|                                | 1122 MHz           | RMS      | 41.5 dBµV/m |  |  |  |  |  |
| 915.795 MHz                    | 1092 MHz           | Peak     | 52.7 dBμV/m |  |  |  |  |  |
|                                | 1092 MHz           | RMS      | 41.8 dBµV/m |  |  |  |  |  |
|                                | 1122 MHz           | Peak     | 52.6 dBμV/m |  |  |  |  |  |
|                                | 1122 MHz           | RMS      | 41.5 dBμV/m |  |  |  |  |  |
| 921.420 MHz                    | 1092 MHz           | Peak     | 55.3 dBμV/m |  |  |  |  |  |
|                                | 1092 MHz           | RMS      | 44.2 dBμV/m |  |  |  |  |  |
|                                | 1122 MHz           | Peak     | 52.6 dBμV/m |  |  |  |  |  |
|                                | 1122 MHz           | RMS      | 41.5 dBμV/m |  |  |  |  |  |
|                                | 2764 MHz           | Peak     | 48.6 dBμV/m |  |  |  |  |  |
|                                | 2764 MHz           | RMS      | 44.8 dBμV/m |  |  |  |  |  |
| 927.42MHz                      | 1092 MHz           | Peak     | 52.7 dBμV/m |  |  |  |  |  |
|                                | 1092 MHz           | RMS      | 41.8 dBμV/m |  |  |  |  |  |
|                                | 1122 MHz           | Peak     | 52.6 dBμV/m |  |  |  |  |  |
|                                | 1122 MHz           | RMS      | 41.5 dBμV/m |  |  |  |  |  |

© CTC advanced GmbH Page 54 of 87

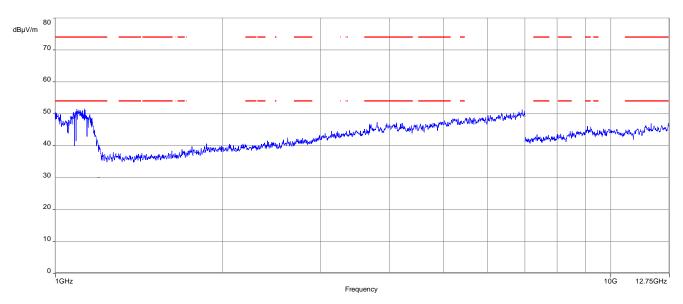


Plot 1: 1 GHz - 12.75 GHz, horizontal & vertical polarisation 915.420 MHz




Plot 2: 1 GHz - 12.75 GHz, horizontal & vertical polarisation 915.795 MHz




© CTC advanced GmbH Page 55 of 87



Plot 3: 1 GHz - 12.75 GHz, horizontal & vertical polarisation 921.420 MHz



Plot 4: 1 GHz - 12.75 GHz, horizontal & vertical polarisation 927.42MHz



© CTC advanced GmbH Page 56 of 87



## 12.11 Spurious emissions conducted below 30 MHz (AC conducted)

## **Description:**

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

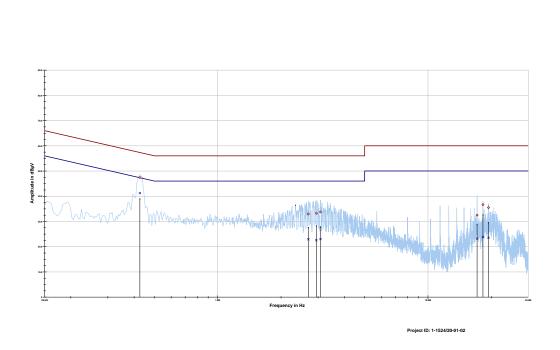
### **Measurement:**

| Measurement parameters  |                             |  |  |  |  |  |  |  |
|-------------------------|-----------------------------|--|--|--|--|--|--|--|
| Detector                | Peak - Quasi Peak / Average |  |  |  |  |  |  |  |
| Sweep time              | Auto                        |  |  |  |  |  |  |  |
| Resolution bandwidth    | F < 150 kHz: 200 Hz         |  |  |  |  |  |  |  |
| The solution bandwidth  | F > 150 kHz: 9 kHz          |  |  |  |  |  |  |  |
| Video bandwidth         | F < 150 kHz: 1 kHz          |  |  |  |  |  |  |  |
| Video balldwidth        | F > 150 kHz: 100 kHz        |  |  |  |  |  |  |  |
| Span                    | 9 kHz to 30 MHz             |  |  |  |  |  |  |  |
| Trace mode              | Max hold                    |  |  |  |  |  |  |  |
| Measured modulation     | DSSS, FHSS Hybrid           |  |  |  |  |  |  |  |
| Test setup              | See sub clause 7.4 A        |  |  |  |  |  |  |  |
| Measurement uncertainty | See sub clause 9            |  |  |  |  |  |  |  |

#### **Limits:**

| FCC             |                         |   | IC                   |
|-----------------|-------------------------|---|----------------------|
| Frequency / MHz | Quasi-Peak / (dBµV / m) |   | Average / (dBμV / m) |
| 0.15 - 0.5      | 66 to 56*               |   | 56 to 46*            |
| 0.5 - 5         | 56                      |   | 46                   |
| 5 - 30.0        | 6                       | 0 | 50                   |

<sup>\*</sup>Decreases with the logarithm of the frequency

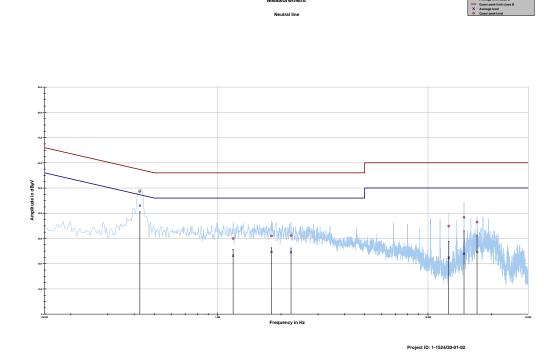

### Results:

| TX spurious emissions conducted < 30 MHz / (dBμV / m) @ 3m |          |                |  |  |  |  |  |
|------------------------------------------------------------|----------|----------------|--|--|--|--|--|
| f / MHz                                                    | Detector | Level / dBμV/m |  |  |  |  |  |
| See result table below the plots.                          |          |                |  |  |  |  |  |

© CTC advanced GmbH Page 57 of 87



Plot 1: 150 kHz to 30 MHz, phase line




| Frequency | Quasi peak<br>level | Margin quasi<br>peak | Limit QP | Average<br>level | Margin<br>average | Limit AV |
|-----------|---------------------|----------------------|----------|------------------|-------------------|----------|
| MHz       | dΒμV                | dB                   | dΒμV     | dΒμV             | dB                | dΒμV     |
| 0.426113  | 47.42               | 9.91                 | 57.328   | 41.22            | 6.89              | 48.111   |
| 2.698444  | 32.95               | 23.05                | 56.000   | 22.92            | 23.08             | 46.000   |
| 2.944706  | 33.23               | 22.77                | 56.000   | 22.53            | 23.47             | 46.000   |
| 3.082762  | 33.77               | 22.23                | 56.000   | 23.01            | 22.99             | 46.000   |
| 17.134650 | 32.50               | 27.50                | 60.000   | 23.20            | 26.80             | 50.000   |
| 18.268950 | 36.66               | 23.34                | 60.000   | 23.85            | 26.15             | 50.000   |
| 19.410712 | 35.50               | 24.50                | 60.000   | 23.50            | 26.50             | 50.000   |

© CTC advanced GmbH Page 58 of 87



Plot 2: 150 kHz to 30 MHz, neutral line



| Frequency | Quasi peak<br>level | Margin quasi<br>peak | Limit QP | Average<br>level | Margin<br>Average | Limit AV |
|-----------|---------------------|----------------------|----------|------------------|-------------------|----------|
| MHz       | dΒμV                | dB                   | dΒμV     | dΒμV             | dB                | dΒμV     |
| 0.426113  | 48.62               | 8.71                 | 57.328   | 43.00            | 5.11              | 48.111   |
| 1.183556  | 29.99               | 26.01                | 56.000   | 23.16            | 22.84             | 46.000   |
| 1.802944  | 30.99               | 25.01                | 56.000   | 24.69            | 21.31             | 46.000   |
| 2.232038  | 31.15               | 24.85                | 56.000   | 24.51            | 21.49             | 46.000   |
| 12.563869 | 34.91               | 25.09                | 60.000   | 22.32            | 27.68             | 50.000   |
| 14.847394 | 38.40               | 21.60                | 60.000   | 23.95            | 26.05             | 50.000   |
| 17.127188 | 36.50               | 23.50                | 60.000   | 24.66            | 25.34             | 50.000   |

© CTC advanced GmbH Page 59 of 87



## 13 Measurement results Part 2 DTS

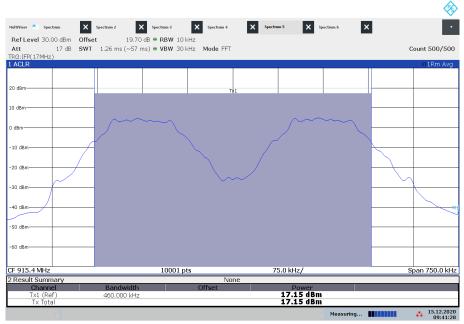
## 13.1 Maximum output power

## **Measurement:**

| Measurement parameter    |                                                            |  |  |
|--------------------------|------------------------------------------------------------|--|--|
| Detector:                | Peak                                                       |  |  |
| Sweep time:              | Auto                                                       |  |  |
| Resolution bandwidth:    | 10 kHz                                                     |  |  |
| Video bandwidth:         | 30 kHz                                                     |  |  |
| Span:                    | 750 kHz                                                    |  |  |
| Trace-Mode:              | Max Hold                                                   |  |  |
| Measurement method       | According to ANSI C63.10-2013<br>11.9.2.2.2 Method AVGSA-1 |  |  |
| Used equipment:          | See chapter 7.3 A                                          |  |  |
| Measurement uncertainty: | See chapter 9                                              |  |  |

## Limits:

| FCC                                            | IC |  |
|------------------------------------------------|----|--|
| 1 watt (30 dBm) Maximum Output Power Conducted |    |  |


## **Result:**

| Test Conditions |           | Maximum Output Power Conducted / dBm |           |           |  |
|-----------------|-----------|--------------------------------------|-----------|-----------|--|
|                 |           | 915.4 MHz                            | 921.8 MHz | 927.4 MHz |  |
| $T_nom$         | $V_{nom}$ | 17.2                                 | 16.4      | 16.3      |  |

© CTC advanced GmbH Page 60 of 87

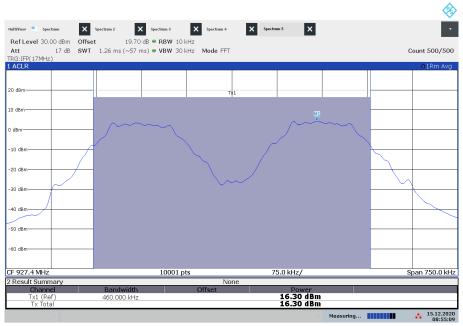


#### Plot 1: Low Channel



09:41:29 15.12.2020

Plot 2: Middle Channel




08:59:03 15.12.2020

© CTC advanced GmbH Page 61 of 87



## Plot 3: High Channel



08:55:10 15.12.2020

© CTC advanced GmbH Page 62 of 87



# 13.2 Power spectral density

## **Description:**

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

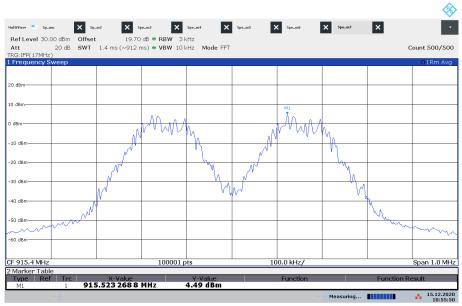
### **Measurement:**

| Measurement parameter   |                                                          |  |  |
|-------------------------|----------------------------------------------------------|--|--|
| Detector:               | RMS                                                      |  |  |
| Sweep time:             | auto                                                     |  |  |
| Video bandwidth:        | 3 kHz                                                    |  |  |
| Resolution bandwidth:   | 10 kHz                                                   |  |  |
| Span:                   | 750 kHz                                                  |  |  |
| Trace-Mode:             | average                                                  |  |  |
| Measurement method      | According to ANSI C63.10-2013<br>11.10.3 Method AVGPSD-1 |  |  |
| Test setup              | See sub clause 7.3 A                                     |  |  |
| Measurement uncertainty | See sub clause 9                                         |  |  |

## Limits:

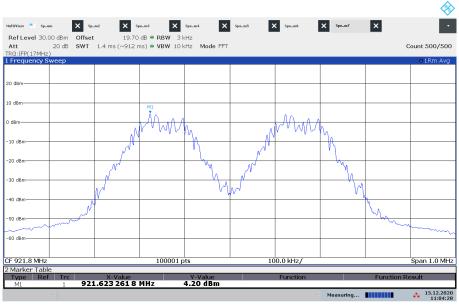
| FCC                                                                                                                                                                                                                                       | IC |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| Power Spectral Density                                                                                                                                                                                                                    |    |  |
| The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds |    |  |

1.0-second duration.


## Results:

| Modulation | Power Spectral density / (dBm/3kHz) |           | n/3kHz)   |
|------------|-------------------------------------|-----------|-----------|
| Channel    | 915.4 MHz                           | 921.8 MHz | 927.4 MHz |
|            | 4.49                                | 4.20      | 3.96      |

© CTC advanced GmbH Page 63 of 87

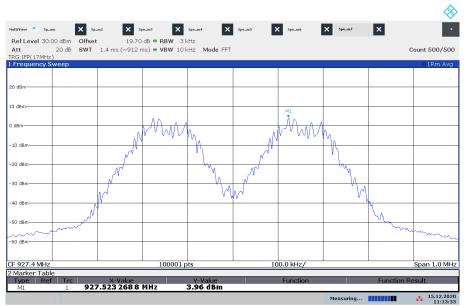



#### Plot 1: Low Channel



10:55:51 15.12.2020

### Plot 2: Middle Channel




11:04:29 15.12.2020

© CTC advanced GmbH Page 64 of 87



## Plot 3: High Channel



11:13:33 15.12.2020

© CTC advanced GmbH Page 65 of 87



# 13.3 Spectrum bandwidth - 6 dB bandwidth and 99% bandwidth

## **Description:**

Measurement of the 6 dB bandwidth of the modulated signal.

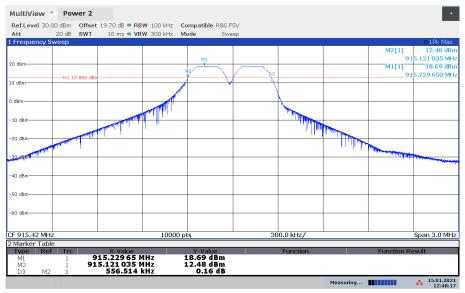
## **Measurement:**

| Measurement parameter   |                               |  |  |
|-------------------------|-------------------------------|--|--|
| Detector:               | Peak                          |  |  |
| Sweep time:             | Auto                          |  |  |
| Resolution bandwidth:   | 99% OBW: 1% - 5% Of the OBW   |  |  |
| nesolution bandwidth.   | 6 dB BW: 100 kHz              |  |  |
| Video bandwidth:        | ≥ 3 x RBW                     |  |  |
| Span:                   | See plots                     |  |  |
| Trace-Mode:             | Max Hold                      |  |  |
| Measurement method      | According to ANSI C63.10-2013 |  |  |
| Measurement method      | 11.8 DTS bandwidth            |  |  |
| Test setup              | See sub clause 7.3 A          |  |  |
| Measurement uncertainty | See sub clause 9              |  |  |

## Limits:

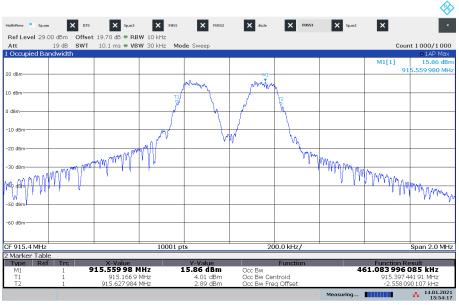
| FCC                                                   | IC |  |
|-------------------------------------------------------|----|--|
| Spectrum Bandwidth – 6 dB Bandwidth                   |    |  |
| The minimum 6 dB bandwidth shall be at least 500 kHz. |    |  |

## Results:


| Test Conditions |           | 6 dB Bandwidth / kHz |           |           |
|-----------------|-----------|----------------------|-----------|-----------|
|                 |           | 915.4 MHz            | 921.8 MHz | 927.4 MHz |
| $T_nom$         | $V_{nom}$ | 556.51               | 560.94    | 555.70    |

| Test Conditions |           | 99% Bandwidth / kHz |           |           |
|-----------------|-----------|---------------------|-----------|-----------|
|                 |           | 915.4 MHz           | 921.8 MHz | 927.4 MHz |
| $T_nom$         | $V_{nom}$ | 461.08              | 458.89    | 459.64    |

© CTC advanced GmbH Page 66 of 87

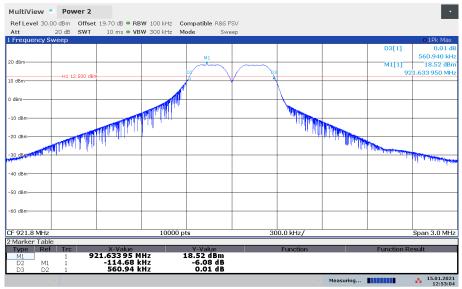



Plot 1: Low Channel, 6 dB-BW



12:48:17 15.01.2021

Plot 2: Low Channel, 99%OBW




15:54:18 14.01.2021

© CTC advanced GmbH Page 67 of 87

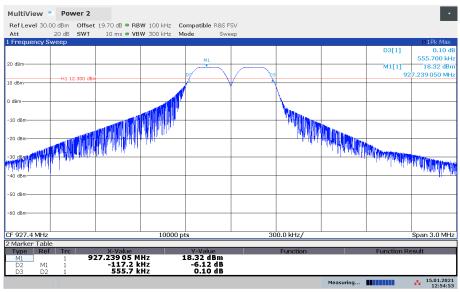


Plot 3: Middle Channel, 6 dB-BW



12:53:04 15.01.2021

Plot 4: Middle Channel, 99%OBW




15:55:33 14.01.2021

© CTC advanced GmbH Page 68 of 87



Plot 5: High Channel, 6 dB-BW



12:54:54 15.01.2021

Plot 6: High Channel, 99%OBW



16:03:02 14.01.2021

© CTC advanced GmbH Page 69 of 87



## 13.4 Detailed spurious emissions @ the band edge - conducted and radiated

### **Description:**

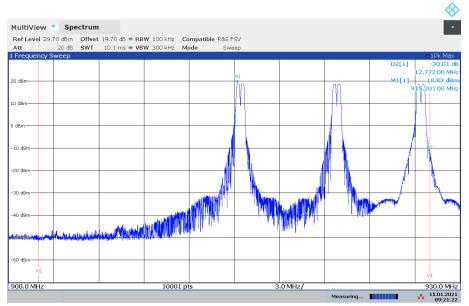
Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel mode.

#### **Measurement:**

| Measurement parameters  |                                                      |  |  |
|-------------------------|------------------------------------------------------|--|--|
| Detector                | Peak                                                 |  |  |
| Sweep time              | Auto                                                 |  |  |
| Resolution bandwidth    | 100 kHz                                              |  |  |
| Video bandwidth         | 300 kHz                                              |  |  |
| Span                    | Lower Band Edge: 902 MHz<br>Upper Band Edge: 928 MHz |  |  |
| Trace mode              | Max hold                                             |  |  |
| Test setup              | See sub clause 7.3 A                                 |  |  |
| Measurement uncertainty | See sub clause 9                                     |  |  |

### Limits:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.


### **Results conducted:**

| Scenario                              | Spurious band edge conducted / dB |                 |
|---------------------------------------|-----------------------------------|-----------------|
| Modulation                            | lowest channel                    | highest channel |
| Lower band edge – single channel mode | > 30 dB                           | > 30 dB         |
| Upper band edge – single channel mode | > 30 dB                           | > 30 dB         |

© CTC advanced GmbH Page 70 of 87



## Plot 1: lowest, middle and highest channel



09:21:22 15.01.2021

© CTC advanced GmbH Page 71 of 87



## **Results radiated:**

No restricted band in the range  $\pm$  2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                        | MHz                   | MHz             | GHz              |
|----------------------------|-----------------------|-----------------|------------------|
| 0.090 - 0.110              | 16.42 - 16.423        | 399.9 - 410     | 4.5 - 5.15       |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525   | 608 - 614       | 5.35 - 5.46      |
| 2.1735 - 2.1905            | 16.80425 - 16.80475   | 960 - 1240      | 7.25 - 7.75      |
| 4.125 - 4.128              | 25.5 - 25.67          | 1300 - 1427     | 8.025 - 8.5      |
| 4.17725 - 4.17775          | 37.5 - 38.25          | 1435 - 1626.5   | 9.0 - 9.2        |
| 4.20725 - 4.20775          | 73 - 74.6             | 1645.5 - 1646.5 | 9.3 - 9.5        |
| 6.215 - 6.218              | 74.8 - 75.2           | 1660 - 1710     | 10.6 - 12.7      |
| 6.26775 - 6.26825          | 108 - 121.94          | 1718.8 - 1722.2 | 13.25 - 13.4     |
| 6.31175 - 6.31225          | 123 - 138             | 2200 - 2300     | 14.47 - 14.5     |
| 8.291 - 8.294              | 149.9 - 150.05        | 2310 - 2390     | 15.35 - 16.2     |
| 8.362 - 8.366              | 156.52475 - 156.52525 | 2483.5 - 2500   | 17.7 - 21.4      |
| 8.37625 - 8.38675          | 156.7 - 156.9         | 2690 - 2900     | 22.01 - 23.12    |
| 8.41425 - 8.41475          | 162.0125 - 167.17     | 3260 - 3267     | 23.6 - 24.0      |
| 12.29 - 12.293             | 167.72 - 173.2        | 3332 - 3339     | 31.2 - 31.8      |
| 12.51975 - 12.52025        | 240 - 285             | 3345.8 - 3358   | 36.43 - 36.5     |
| 12.57675 - 12.57725        | 322 - 335.4           | 3600 - 4400     | ( <sup>2</sup> ) |
| 13.36 - 13.41              |                       |                 |                  |

© CTC advanced GmbH Page 72 of 87



## 13.5 Spurious Emissions Conducted

#### **Description:**

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

#### **Measurement:**

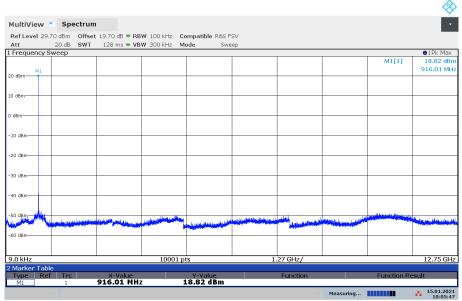
| Measurement parameter    |                                          |  |  |  |  |
|--------------------------|------------------------------------------|--|--|--|--|
| Detector:                | Peak                                     |  |  |  |  |
| Sweep time:              | Auto                                     |  |  |  |  |
| Video bandwidth:         | F < 1 GHz: 1 MHz<br>F > 1 GHz: 1 MHz     |  |  |  |  |
| Resolution bandwidth:    | F < 1 GHz: 100 kHz<br>F > 1 GHz: 100 kHz |  |  |  |  |
| Span:                    | 9 kHz to 12.75 GHz                       |  |  |  |  |
| Trace-Mode:              | Max Hold                                 |  |  |  |  |
| Used equipment:          | See chapter 7.3A                         |  |  |  |  |
| Measurement uncertainty: | See chapter 9                            |  |  |  |  |

#### **Limits:**

| FCC                             | IC |  |  |  |
|---------------------------------|----|--|--|--|
| TX spurious emissions conducted |    |  |  |  |

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

#### **Result:**


| Emission Limitation |   |                                   |                                      |                        |                     |  |  |
|---------------------|---|-----------------------------------|--------------------------------------|------------------------|---------------------|--|--|
| Frequency<br>/ MHz  |   | Amplitude<br>of emission<br>/ dBm | of emission emission power frequency |                        | Results             |  |  |
| 915.4               |   | 18.8                              | 24 dBm                               |                        | Operating frequency |  |  |
|                     |   |                                   | -30 dBc                              | No emissions detected! |                     |  |  |
| 921.8               |   | 18.5                              | 24 dBm                               |                        | Operating frequency |  |  |
|                     |   |                                   | -30 dBc                              | No emissions detected! |                     |  |  |
| 927.4               |   | 18.4                              | 24 dBm                               |                        | Operating frequency |  |  |
|                     | • |                                   | -30 dBc                              | No emissions detected! |                     |  |  |

© CTC advanced GmbH Page 73 of 87



## Plots:

Plot 1: Low channel, 9 kHz - 12.75 GHz



10:05:47 15.01.2021

Plot 2: Middle channel, 9 kHz - 12.75 GHz



10:02:00 15.01.2021

© CTC advanced GmbH Page 74 of 87



## Plot 3: High channel, 9 kHz - 12.75 GHz



10:04:19 15.01.2021

© CTC advanced GmbH Page 75 of 87



## 13.6 Spurious Emissions Radiated < 30 MHz

## **Description:**

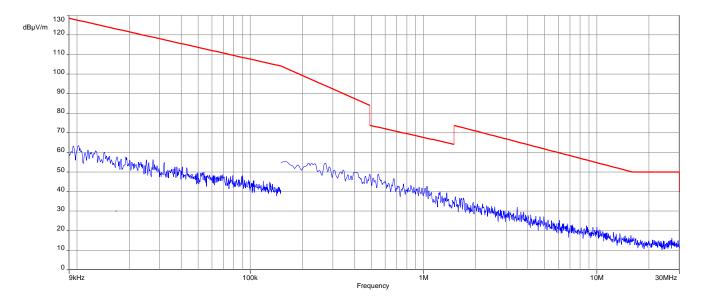
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

#### **Measurement:**

| Measurement parameter    |                      |  |  |  |  |
|--------------------------|----------------------|--|--|--|--|
| Detector:                | Peak / Quasi Peak    |  |  |  |  |
| Sweep time:              | Auto                 |  |  |  |  |
| Video bandwidth:         | F < 150 kHz: 200 Hz  |  |  |  |  |
| video bandwidth.         | F > 150 kHz: 9 kHz   |  |  |  |  |
| Resolution bandwidth:    | F < 150 kHz: 1 kHz   |  |  |  |  |
| nesolution pandwidth.    | F > 150 kHz: 100 kHz |  |  |  |  |
| Span:                    | 9 kHz to 30 MHz      |  |  |  |  |
| Trace-Mode:              | Max Hold             |  |  |  |  |
| Used equipment:          | See chapter 7.2 A    |  |  |  |  |
| Measurement uncertainty: | See chapter 9        |  |  |  |  |

## **Limits:**

| FCC             |                         |   | IC                   |
|-----------------|-------------------------|---|----------------------|
|                 | Z                       |   |                      |
| Frequency (MHz) | Field strength (dBµV/m) |   | Measurement distance |
| 0.009 - 0.490   | 2400/F(kHz)             |   | 300                  |
| 0.490 - 1.705   | 24000/F(kHz)            |   | 30                   |
| 1.705 - 30.0    | 3                       | 0 | 30                   |


#### Result:

| Spurious emission level |          |                     |                                       |  |                    |          |                     |  |
|-------------------------|----------|---------------------|---------------------------------------|--|--------------------|----------|---------------------|--|
|                         | -/-      |                     | mid channel                           |  |                    | -/-      |                     |  |
| Frequency<br>/ MHz      | Detector | Level<br>/ (dBµV/m) | Frequency / Detector Level / (dBµV/m) |  | Frequency<br>/ MHz | Detector | Level<br>/ (dBµV/m) |  |
|                         |          |                     |                                       |  |                    |          |                     |  |
|                         |          |                     | No Peaks detected!                    |  |                    |          |                     |  |
|                         |          |                     |                                       |  |                    |          |                     |  |

© CTC advanced GmbH Page 76 of 87



## Plot 1: TX-Mode mid channel



© CTC advanced GmbH Page 77 of 87



### 13.7 Spurious Emissions Radiated > 30 MHz

## 13.7.1 Spurious emissions radiated 30 MHz to 1 GHz

#### **Description:**

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

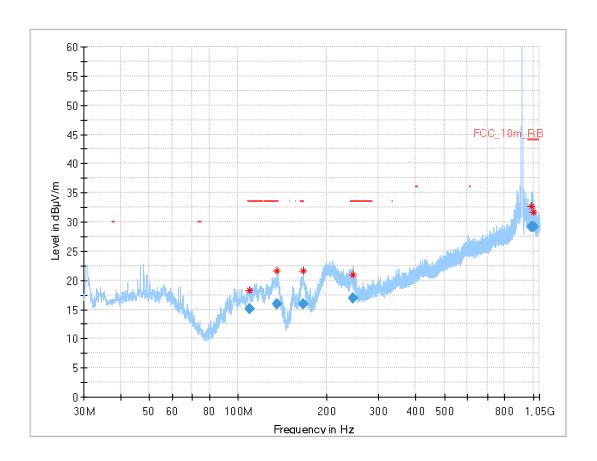
#### **Measurement:**

| Measurement parameters  |                      |  |  |  |
|-------------------------|----------------------|--|--|--|
| Detector                | Peak / Quasi Peak    |  |  |  |
| Sweep time              | Auto                 |  |  |  |
| Resolution bandwidth    | 3 x VBW              |  |  |  |
| Video bandwidth         | 120 kHz              |  |  |  |
| Span                    | 30 MHz to 1 GHz      |  |  |  |
| Trace mode              | Max hold             |  |  |  |
| Measured modulation     | DTS                  |  |  |  |
| Test setup              | See sub clause 7.1 A |  |  |  |
| Measurement uncertainty | See sub clause 9     |  |  |  |

#### **Limits:**

| FCC                          | IC                            |
|------------------------------|-------------------------------|
| Band-edge Compliance of cond | ducted and radiated emissions |

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


| Frequency / MHz | Field Strength / (dBµV/m) | Measurement distance / m |
|-----------------|---------------------------|--------------------------|
| 30 - 88         | 30.0                      | 10                       |
| 88 – 216        | 33.5                      | 10                       |
| 216 - 960       | 36.0                      | 10                       |
| Above 960       | 54.0                      | 3                        |

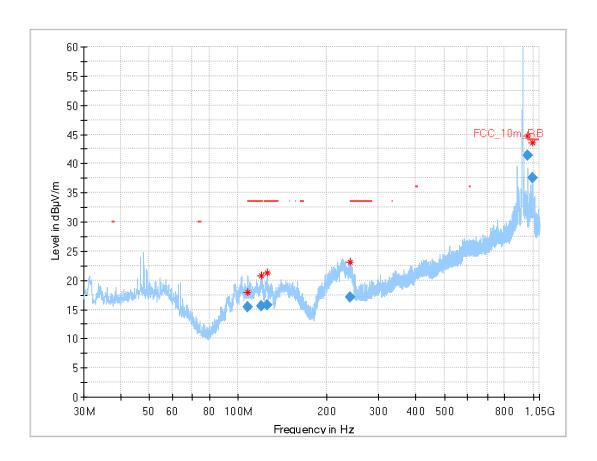
**Result:** See result table below the plots.

© CTC advanced GmbH Page 78 of 87



Plot 1: 30 MHz - 1 GHz, horizontal & vertical polarisation (lowest channel)




#### Final results:

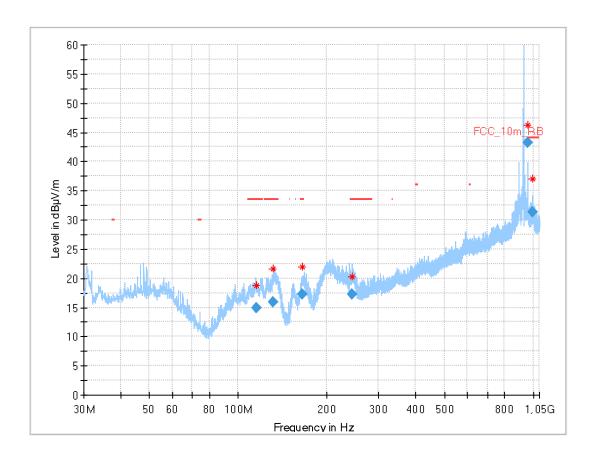
| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|--------------------|--------------------|----------------|-----|---------------|-----------------|
| 109.599            | 15.10                 | 33.5              | 18.4           | 1000               | 120.0              | 110.0          | ٧   | 67            | 12              |
| 135.629            | 15.90                 | 33.5              | 17.6           | 1000               | 120.0              | 159.0          | ٧   | 157           | 9               |
| 166.578            | 15.84                 | 33.5              | 17.7           | 1000               | 120.0              | 117.0          | ٧   | 98            | 10              |
| 245.125            | 16.95                 | 33.5              | 16.6           | 1000               | 120.0              | 101.0          | ٧   | 112           | 13              |
| 988.911            | 29.24                 | 44.0              | 14.8           | 1000               | 120.0              | 121.0          | Н   | 247           | 24              |
| 1004.401           | 29.24                 | 44.0              | 14.8           | 1000               | 120.0              | 105.0          | Н   | 247           | 24              |

© CTC advanced GmbH Page 79 of 87



Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)




## Final results:

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|--------------------|--------------------|----------------|-----|---------------|-----------------|
| 107.892            | 15.42                 |                   |                | 1000               | 120.0              | 101.0          | ٧   | 100           | 13              |
| 120.022            | 15.64                 | 33.5              | 17.9           | 1000               | 120.0              | 170.0          | ٧   | 112           | 10              |
| 125.524            | 15.83                 | 33.5              | 17.7           | 1000               | 120.0              | 170.0          | ٧   | 100           | 9               |
| 240.521            | 17.04                 | 33.5              | 16.5           | 1000               | 120.0              | 101.0          | ٧   | 67            | 13              |
| 960.009            | 41.38                 | 44.0              | 2.6            | 1000               | 120.0              | 170.0          | ٧   | 93            | 24              |
| 991.988            | 37.47                 | 44.0              | 6.5            | 1000               | 120.0              | 170.0          | ٧   | 94            | 24              |

© CTC advanced GmbH Page 80 of 87



Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)



## Final results:

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|--------------------|--------------------|----------------|-----|---------------|-----------------|
| 115.045            | 14.85                 | 33.5              | 18.7           | 1000               | 120.0              | 101.0          | ٧   | 163           | 12              |
| 131.562            | 15.90                 | 33.5              | 17.6           | 1000               | 120.0              | 139.0          | ٧   | 67            | 9               |
| 165.499            | 17.30                 | 33.5              | 16.2           | 1000               | 120.0              | 131.0          | ٧   | 86            | 10              |
| 243.227            | 17.27                 | 33.5              | 16.2           | 1000               | 120.0              | 104.0          | ٧   | 67            | 13              |
| 960.009            | 43.20                 | 44.0              | 0.8            | 1000               | 120.0              | 170.0          | ٧   | 158           | 24              |
| 992.040            | 31.26                 | 44.0              | 12.7           | 1000               | 120.0              | 102.0          | Н   | 22            | 24              |

© CTC advanced GmbH Page 81 of 87



## 13.7.2 Spurious emissions radiated above 1 GHz

## **Description:**

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

#### **Measurement:**

| Measurement parameters  |                                          |  |  |
|-------------------------|------------------------------------------|--|--|
| Detector                | Peak / RMS                               |  |  |
| Sweep time              | Auto                                     |  |  |
| Resolution bandwidth    | 1 MHz                                    |  |  |
| Video bandwidth         | 3 x RBW                                  |  |  |
| Span                    | 1 GHz to 12.75 GHz                       |  |  |
| Trace mode              | Max hold                                 |  |  |
| DTS, FHSS Hybrid        | DTS                                      |  |  |
| Test setup              | See sub clause 6.2 C (1 GHz – 12.75 GHz) |  |  |
| Measurement uncertainty | See sub clause 9                         |  |  |

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

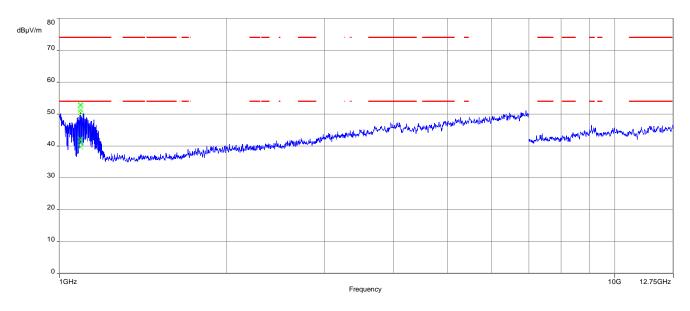
## Limits:

| FCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |              | IC                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|--------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TX spurious emissions radiated |              |                          |  |  |
| In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). |                                |              |                          |  |  |
| §15.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |              |                          |  |  |
| Frequency / MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field strengt                  | h / (dBµV/m) | Measurement distance / m |  |  |
| Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 960 54.                        |              | 3                        |  |  |

© CTC advanced GmbH Page 82 of 87



## Result:


| Spurious emission level |          |                     |                    |          |                     |                    |          |                     |
|-------------------------|----------|---------------------|--------------------|----------|---------------------|--------------------|----------|---------------------|
| -/-                     |          |                     | mid channel        |          |                     | -/-                |          |                     |
| Frequency<br>/ MHz      | Detector | Level<br>/ (dBµV/m) | Frequency<br>/ MHz | Detector | Level<br>/ (dBµV/m) | Frequency<br>/ MHz | Detector | Level<br>/ (dBµV/m) |
|                         |          |                     | 1000               | Peak     | 53.0                |                    |          |                     |
|                         |          |                     | 1092               | AVG      | 42.1                |                    |          |                     |

© CTC advanced GmbH Page 83 of 87



## Plots:

## Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (middle channel)



© CTC advanced GmbH Page 84 of 87



# 14 Glossary

|     | EUT          | Equipment under test                                                  |
|-----|--------------|-----------------------------------------------------------------------|
|     | DUT          | Device under test                                                     |
|     | UUT          | Unit under test                                                       |
|     | GUE          | GNSS User Equipment                                                   |
|     | ETSI         | European Telecommunications Standards Institute                       |
|     | EN           | European Standard                                                     |
|     | FCC          | Federal Communications Commission                                     |
| F   | CC ID        | Company Identifier at FCC                                             |
|     | IC           | Industry Canada                                                       |
|     | PMN          | Product marketing name                                                |
|     | HMN          | Host marketing name                                                   |
|     | HVIN         | Hardware version identification number                                |
|     | FVIN         | Firmware version identification number                                |
|     | EMC          | Electromagnetic Compatibility                                         |
|     | HW           | Hardware                                                              |
|     | SW           | Software                                                              |
| Inv | v. No.       | Inventory number                                                      |
|     | or SN        | Serial number                                                         |
|     | С            | Compliant                                                             |
|     | NC           | Not compliant                                                         |
|     | NA           | Not applicable                                                        |
|     | NP           | Not performed                                                         |
|     | PP           | Positive peak                                                         |
|     | QP           | Quasi peak                                                            |
|     | AVG          | Average                                                               |
|     | OC           | Operating channel                                                     |
|     | OCW          | Operating channel bandwidth                                           |
|     | OBW          | Occupied bandwidth                                                    |
|     | 00B          | Out of band                                                           |
|     | DFS          | Dynamic frequency selection                                           |
|     | CAC          | Channel availability check                                            |
|     | OP           | Occupancy period                                                      |
|     | NOP          | Non occupancy period                                                  |
|     | DC           | Duty cycle                                                            |
|     | PER          | Packet error rate                                                     |
|     | CW           | Clean wave                                                            |
|     | MC           | Modulated carrier                                                     |
| ٧   | WLAN         | Wireless local area network                                           |
| ı   | RLAN         | Radio local area network                                              |
|     | DSSS         | Dynamic sequence spread spectrum                                      |
| C   | OFDM         | Orthogonal frequency division multiplexing                            |
|     | _            |                                                                       |
|     | FHSS         | Frequency hopping spread spectrum                                     |
|     | FHSS<br>GNSS | Frequency hopping spread spectrum  Global Navigation Satellite System |

© CTC advanced GmbH Page 85 of 87



## 15 Document history

| Version | Applied changes | Date of release |
|---------|-----------------|-----------------|
| -/-     | Initial release | 2021-01-15      |
| А       | HVIN changed    | 2021-01-21      |

## 16 Accreditation Certificate - D-PL-12076-01-04

| first page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | last page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deutsche Akkreditierungsstelle GmbH  Entrusted according to Section 8 subsection 1 AkkstelleG in connection with Section 1 subsection 1 AkkstelleGBV  Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition  Accreditation  The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory  CTC advanced GmbH  Untertürkheimer Straße 6-10, 66117 Saarbrücken  is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields:  Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards  The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number 0-Pt-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages.  Registration number of the certificate: D-PL-12076-01-04  Frankfurt am Main, 09.06.2020  The certificate topscher with its source reflects the status at the time of the date of issue. The current status of the scape of | Deutsche Akkreditierungsstelle GmbH  Office Berlin Spittedmarkt 10 Luropa-Allee S2 Bundeallee 100 38116 Braunschweig Bundeallee 100 Bundeallee |
| accreditation can be found in the distalance of accreditate bodies of Deutsche Akkreditierungsstelle GmbA:<br>https://www.dokks.de/en/content/accreditate-bodies-dokks<br>law.edes.estala.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

© CTC advanced GmbH Page 86 of 87



# 17 Accreditation Certificate - D-PL-12076-01-05

| Deutsche Akkreditierungsstelle GmbH  Gertrustel according to bestone 3 absection 1 AMStelled in connection with Section 1 support to be the support of the Multilateral Agreements of EA, IAC and MF for Multial Recognition  Accreditation  The Deutsche Akkreditierungsstelle GmbH Untertuithelmer Straße 6-10, 66117 Saarbrücken  Is competent under the terms of DN 6117 Saarbrücken  Is competent under the terms of DN 6117 Saarbrücken  Is competent under the terms of DN 6117 Saarbrücken  Is competent under the terms of DN 6117 Saarbrücken  Is competent under the terms of DN 6117 Saarbrücken  Telecommunication (FCC Requirements)  The accreditation certificate shall only apply in connection with the notice of accreditation of DN 620 200 strategy and the cover sheet by the conforming seasons with the notice of accreditation of DN 620 200 strategy and the cover sheet by the conforming seasons with the notice of accreditation of DN 620 200 strategy and the cover sheet by the conforming seasons with the notice of accreditation of DN 620 200 strategy and the cover sheet by the conforming seasons with the notice of accreditation of DN 620 200 strategy and the cover sheet by the conforming seasons to find Seyverd on the stage of accreditation and strategy and strategy and the cover sheet by the conforming seasons to find Seyverd on the stage of accreditation of DN 620 200 strategy and the cover sheet the cover sheet by the conforming seasons to find Seyverd on the stage of accreditation of DN 620 200 strategy and the cover sheet the cover sheet by the cover sheet the cover sheet by the cover sheet the cov | first page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | last page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frankfurt am Main, 09.06.2020 by code Outside. Toger Head of Division  The certificate together with its onner reflects the status at the time of the date of issue. The current status of the scope of accreditation can be found in the database of accredited bodies of Devistche Aldreditor-ungsstelle GmbH.  https://www.addds.de/en/content/occredited-bodies-dakks  The sense mutual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Deutsche Akkreditierungsstelle  Deutsche Akkreditierungsstelle GmbH  Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition  Accreditation  The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory  CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken  Is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields:  Telecommunication (FCC Requirements)  The accreditation certificate shall only apply in connection with the notice of accreditation of 09,06,2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages.  Registration number of the certificate: D-PL-12076-01-05  Frankfurt am Main, 09,06,2020  The certificate together with its owner, reflects the satus at the time of the date of issue. The current stotus of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinstant of the scope of accreditation can be found in the distinct of the scope of accreditation | Office Berlin SpiriteImarkt 10 Europa-Alliee 52 Bundesallee 100 10117 Berlin  Office Braunschweig Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig  The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (Dakš). Exempted is the unchanged form of separate disseminations of the cover shee by the conformity assessment body mentioned overleat.  No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKKS.  The accreditation are strated pursuant to the Act on the Accreditation Body (AkšSiellsG) of 31 July 2009 (Federal Law Gasette 1p. 3625) and the Regulation (EQ) No 765/7009 of the European Parliament and of the the Accreditation of the Cover Section of the European Cooperation for Accreditation on Cooperation for Accreditation (EQ), International Accreditation Forum (AF) and International Laboratory Accreditation Cooperation (ILAC), International Accreditation Forum (AF) and International Laboratory Accreditation Cooperation (ILAC), International Accreditation Forum (AF) and International Laboratory Accreditation Cooperation (ILAC), International Accreditation Forum (AF) and International Laboratory Accreditation EA: www.european-accreditation ong |

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

© CTC advanced GmbH Page 87 of 87