FCC RF Test Report

APPLICANT : Flo Technologies Inc.

EQUIPMENT : Flo by Moen Cellular Antenna

BRAND NAME : Flo by Moen

MODEL NAME : 920-007

FCC ID : 2AU5H-920007

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Aug. 25, 2020 and testing was completed on Jul. 05, 2021. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Reviewed by: Jason Jia / Supervisor

JasonJia

Approved by: Alex Wang / Manager

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Page Number Report Issued Date: Jul. 06, 2021 : Rev. 02

Report No.: FR082503-02A

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Report Version

Cert #5145.02

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SUI	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Test Software	6
	1.8	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TEST	RESULT	11
	3.1	Output Power Measurement	11
	3.2	Radiated Band Edges and Spurious Emission Measurement	13
	3.3	AC Conducted Emission Measurement	17
	3.4	Antenna Requirements	19
4	LIST	OF MEASURING EQUIPMENT	20
5	UNC	ERTAINTY OF EVALUATION	21
API	PENDI	X A. AC CONDUCTED EMISSION TEST RESULT	
API	PENDI	X B. RADIATED SPURIOUS EMISSION	
API	PENDI	X C. DUTY CYCLE PLOTS	
API	PENDI	X D. SETUP PHOTOGRAPHS	

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Report No.: FR082503-02A

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR082503-02A	Rev. 01	Initial issue of report	Jun. 30, 2021
FR082503-02A	Rev. 02	Add AC conducted emission test	Jul. 06, 2021

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 3 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Report No.: FR082503-02A

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.2	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 5.03 dB at 49.40 MHz
3.3	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 19.34 dB at 0.313 MHz

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 4 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Report No.: FR082503-02A

1 General Description

1.1 Applicant

Flo Technologies Inc.

3750 S. Robertson Blvd, Suite 202, Culver City, California, 90232, USA

1.2 Manufacturer

Trend Power Limited

Workshop F, 12/F., Reason Group Tower, 403 Castle Peak Road, Hong Kong

1.3 Product Feature of Equipment Under Test

Product Feature						
Equipment	Flo by Moen Cellular Antenna					
Brand Name	Flo by Moen					
Model Name	920-007					
FCC ID	2AU5H-920007					
	WCDMA/ LTE					
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n (HT20/HT40)					
	Bluetooth v4.1 LE(Uplink Only)					
IMEL Code	Conduction: N/A					
IMEI Code	Radiated: N/A					
HW Version	D54A15-FLO v1.0					
SW Version	D54A15-FLO MPSS: v16.02 APSS: v05.04_OE2.0					
EUT Stage	Identical Prototype					

Report No.: FR082503-02A

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. This is a change in FCC ID report in conjunction with a permissive change, the original FCC ID is NKRD54A1. The change note could be referred to the cover letter (Class II Permissive Change) which is exhibit separately. According to the change, add AC Conducted Emission and verify the conducted power / RSE from original report FR6N0801A.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification						
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz					
Number of Channels	40					
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)					
Maximum Output Power to Antenna	2.31 dBm (0.0017 W)					
Antenna Type / Gain	PCB Antenna type with gain 1.00 dBi					
Type of Modulation	Bluetooth LE : GFSK					

 Sporton International (Kunshan) Inc.
 Page Number
 : 5 of 21

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 06, 2021

 FAX: +86-512-57900958
 Report Version
 : Rev. 02

FCC ID: 2AU5H-920007 Report Template No.: BU5-FR15CBT4.0 Version 2.0

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (F	Sporton International (Kunshan) Inc.						
	No. 1098, Pengxi North Road, Kunshan Economic Developmen							
Test Site Location	Jiangsu Province 215300 People's Republic of China							
lest Site Location	TEL: +86-512-57900158							
	FAX: +86-512-57900958							
	Sporton Site No.	FCC Designation No.	FCC Test Firm					
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.					
rest one NO.	CO01-KS 03CH05-KS TH01-KS	CN1257	314309					

1.7 Test Software

I	tem	Site	Manufacture	Name	Version
	1.	03CH05-KS	AUDIX	E3	6.2009-8-24al
	2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 6 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Report No.: FR082503-02A

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	(MHz) 2444 2446 2448 2450
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 7 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Report No.: FR082503-02A

2.2 Test Mode

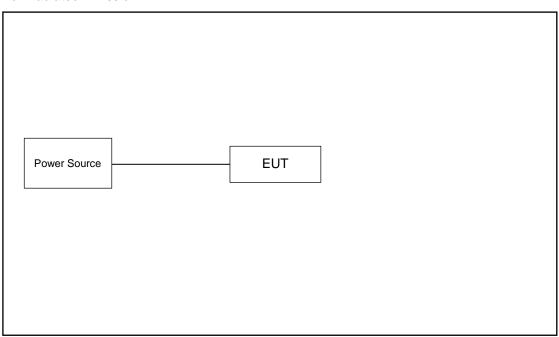
- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

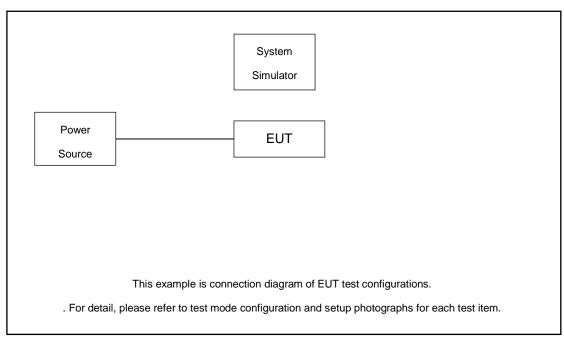
	Summary table of Test Cases
Test Item	Data Rate / Modulation
rest item	Bluetooth LE / GFSK
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Dedicted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
Radiated	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
AC	
Conducted	Mode 1: WCDMA Band V Link + BT Tx + Adaptor
Emission	
Remark: For	Radiated Test Cases, The tests were performance with Adapter.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 8 of 21


Report Issued Date : Jul. 06, 2021

Report Version : Rev. 02


Report No.: FR082503-02A

2.3 Connection Diagram of Test System

For Radiated Emission:

For Conducted Emission

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 9 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Report No.: FR082503-02A

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritus	MT8821C	N/A	N/A	Unshielded,1.8m

2.5 EUT Operation Test Setup

For Bluetooth v4.1 LE function, the engineering test program was provided and enabled to make EUT continuous transmit.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

 $Offset = RF \ cable \ loss.$

Following shows an offset computation example with cable loss 6.5 dB.

 $Offset(dB) = RF \ cable \ loss(dB).$ = 6.5 (dB)

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 10 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

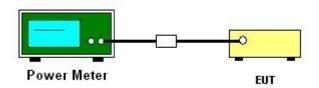
Report No.: FR082503-02A

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1
 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.2 Method AVGPM-G method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.1.4 Test Setup

Report No.: FR082503-02A

3.1.5 Test Result of Peak Output Power

Mod.	Data Rate	N TX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	1.03	30.00	1.00	2.03	36.00	Pass
BLE	1Mbps	1	19	2440	2.31	30.00	1.00	3.31	36.00	Pass
BLE	1Mbps	1	39	2480	1.45	30.00	1.00	2.45	36.00	Pass

3.1.6 Test Result of Average Output Power (Reporting Olny)

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
BLE	1Mbps	1	0	2402	1.90	0.91
BLE	1Mbps	1	19	2440	1.90	2.02
BLE	1Mbps	1	39	2480	1.90	1.26

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 12 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Report No.: FR082503-02A

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 13 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Report No.: FR082503-02A

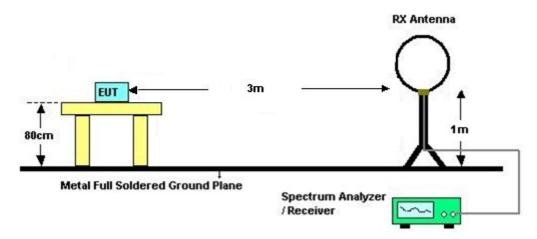
3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

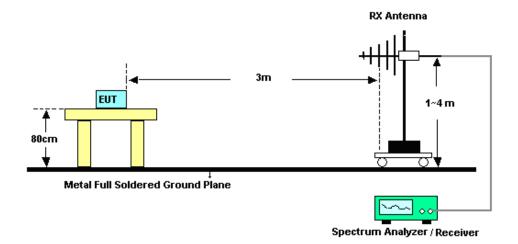
Report No.: FR082503-02A

- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

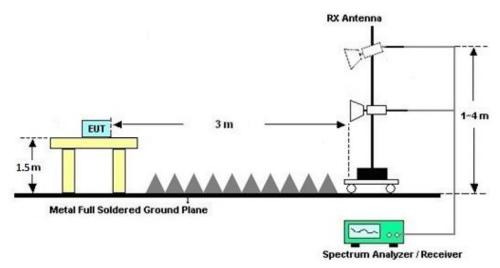
 Sporton International (Kunshan) Inc.
 Page Number
 : 14 of 21


 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 06, 2021

 FAX: +86-512-57900958
 Report Version
 : Rev. 02


FCC ID: 2AU5H-920007 Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.2.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 15 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Report No.: FR082503-02A

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

Report No.: FR082503-02A

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.2.7 Duty Cycle

Please refer to Appendix C.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix B.

Sporton International (Kunshan) Inc. Page Number : 16 of 21 TEL: +86-512-57900158 Report Issued Date: Jul. 06, 2021 FAX: +86-512-57900958 : Rev. 02 Report Version

Report Template No.: BU5-FR15CBT4.0 Version 2.0

FCC ID: 2AU5H-920007

3.3 AC Conducted Emission Measurement

3.3.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR082503-02A

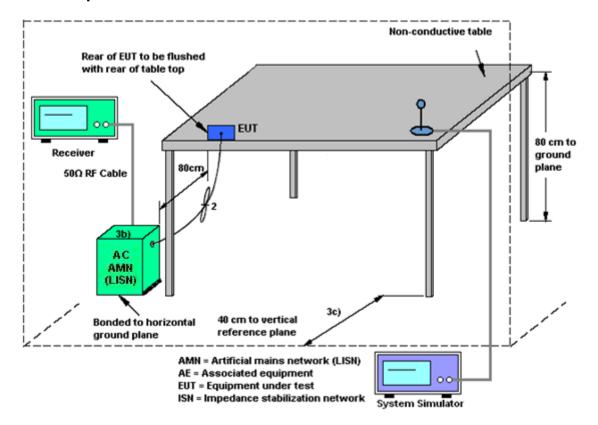
: 17 of 21

Frequency of emission (MHz)	Conducted limit (dBμV)							
Frequency of emission (MH2)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						

^{*}Decreases with the logarithm of the frequency.

3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.3.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Sporton International (Kunshan) Inc. Page Number TEL: +86-512-57900158 Report Issued Date: Jul. 06, 2021

FAX: +86-512-57900958 Report Version : Rev. 02 FCC ID: 2AU5H-920007 Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.3.4 Test Setup

3.3.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 18 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Report No.: FR082503-02A

3.4 Antenna Requirements

3.4.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.4.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 19 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Report Template No.: BU5-FR15CBT4.0 Version 2.0

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Nov. 02, 2019	Oct. 21, 2020	Nov. 01, 2020	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 15, 2020	Oct. 21, 2020	Jan. 14, 2021	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 08, 2020	Oct. 21, 2020	Jan. 07, 2021	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;M ax 30dBm	Apr.13, 2020	Oct. 22, 2020	Apr. 12, 2021	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44G,MAX 30dB	Apr. 15, 2020	Oct. 22, 2020	Apr. 14, 2021	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 10, 2019	Oct. 22, 2020	Nov. 09, 2020	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	May 30, 2020	Oct. 22, 2020	May 29, 2021	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218652	1GHz~18GHz	Apr. 26, 2020	Oct. 22, 2020	Apr. 25, 2021	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101115	18GHz~40GHz	Nov. 10, 2019	Oct. 22, 2020	Nov. 09, 2020	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Apr. 14, 2020	Oct. 22, 2020	Apr. 13, 2021	Radiation (03CH05-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 08, 2020	Oct. 22, 2020	Jan. 07, 2021	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Oct. 17, 2020	Oct. 22, 2020	Oct. 16, 2021	Radiation (03CH05-KS)
Amplifier	Keysight	83017A	MY532703 16	500MHz~26.5G Hz	Oct. 17, 2020	Oct. 22, 2020	Oct. 16, 2021	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Oct. 22, 2020	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Oct. 22, 2020	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Oct. 22, 2020	NCR	Radiation (03CH05-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 21, 2021	Jul. 05, 2021	Apr. 20, 2022	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 17, 2020	Jul. 05, 2021	Oct. 16, 2021	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Apr. 13, 2021	Jul. 05, 2021	Apr. 12, 2022	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 17, 2020	Jul. 05, 2021	Oct. 16, 2021	Conduction (CO01-KS)

NCR: No Calibration Required

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 20 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Report No.: FR082503-02A

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

<u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.906

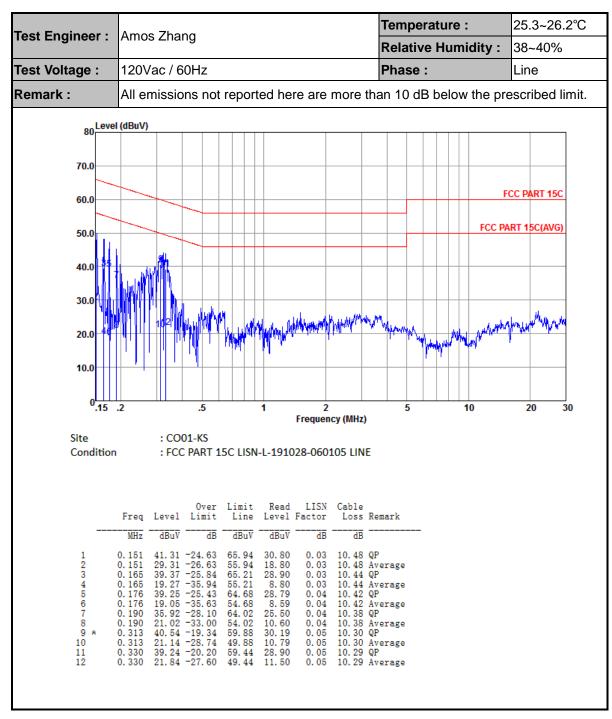
Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.0GB

<u>Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.0GB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)


Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	5.0dB

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : 21 of 21
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Appendix A. AC Conducted Emission Test Results

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : A1 of A2
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

25.3~26.2°C Temperature: Test Engineer: Amos Zhang **Relative Humidity:** 38~40% Test Voltage: 120Vac / 60Hz Phase: Neutral Remark: All emissions not reported here are more than 10 dB below the prescribed limit. 80 Level (dBuV) 70.0 FCC PART 15C 60.0 FCC PART 15C(AVG) 50.0 40.0 30.0 20.0 10.0 30 Frequency (MHz) : CO01-KS Site Condition : FCC PART 15C LISN-N-191028-060105 NEUTRAL Read LISN Cable Line Level Factor Loss Remark Level Limit dBuV dBuV dB dBuV 39. 56 -26. 04 22. 14 -33. 46 35. 56 -28. 50 22. 66 -31. 40 37. 03 -25. 45 17. 63 -34. 85 35. 61 -25. 55 16. 21 -34. 95 39. 59 -20. 12 19. 19 -30. 52 38. 58 -20. 64 20. 98 -28. 24 0. 08 0. 08 0. 08 0. 08 0. 08 10.46 QP 10.46 Average 65. 60 55. 60 29.02 0. 157 11.60 64. 06 54. 06 62. 48 10.38 QP 10.38 Average 10.35 QP 0. 189 0. 189 25. 10 12. 20 12. 20 26. 60 7. 20 25. 20 5. 80 29. 20 8. 80 28. 20 0. 08 0. 09 0. 09 0. 09 0. 09 0. 09 0.229 52. 48 61. 16 10.35 10.32 51. 16 59. 71 49. 71 59. 22 49. 22 0. 269 0. 320 10.32 Average 10.30 QP 8 10 0.320 Average 11 12 10, 29 QP 0.339 10.60 10.29 Average

Note:

- 1. Level($dB\mu V$) = Read Level($dB\mu V$) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : A2 of A2
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Appendix B. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2480	98.77	-	-	90.94	31.77	7.64	31.58	203	236	Р	Н
		2480	98.1	-	-	90.27	31.77	7.64	31.58	203	236	Α	Н
		2483.5	56.91	-17.09	74	49.08	31.77	7.64	31.58	203	236	Р	Н
BLE		2483.5	47.23	-6.77	54	39.4	31.77	7.64	31.58	203	236	Α	Н
CH 39 2480MHz		2480	95.58	-	-	87.75	31.77	7.64	31.58	369	341	Р	V
2400WITIZ		2480	94.93	-	-	87.1	31.77	7.64	31.58	369	341	Α	V
		2498.98	56.35	-17.65	74	48.35	31.89	7.67	31.56	369	341	Р	V
		2483.5	46.4	-7.6	54	38.57	31.77	7.64	31.58	369	341	Α	V

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	4962	51.67	-22.33	74	66.85	33.85	10.98	60.01	100	238	Р	Н
	4962	48.87	-5.13	54	64.05	33.85	10.98	60.01	100	238	Α	Н
	7440	42.52	-31.48	74	53.44	36.11	13.51	60.54	300	0	Р	Н
	4962	51.69	-22.31	74	66.87	33.85	10.98	60.01	341	296	Р	V
	4962	48.48	-5.52	54	63.66	33.85	10.98	60.01	341	296	Α	V
	7440	42.05	-31.95	74	52.97	36.11	13.51	60.54	300	0	Р	V
	Note	(MHz) 4962 4962 7440 4962 4962	(MHz) (dBμV/m) 4962 51.67 4962 48.87 7440 42.52 4962 51.69 4962 48.48	Limit (MHz) (dBμV/m) (dB) 4962 51.67 -22.33 4962 48.87 -5.13 7440 42.52 -31.48 4962 51.69 -22.31 4962 48.48 -5.52	Limit Line (MHz) (dBμV/m) (dB) (dBμV/m) 4962 51.67 -22.33 74 4962 48.87 -5.13 54 7440 42.52 -31.48 74 4962 51.69 -22.31 74 4962 48.48 -5.52 54	Limit Line Level (MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) 4962 51.67 -22.33 74 66.85 4962 48.87 -5.13 54 64.05 7440 42.52 -31.48 74 53.44 4962 51.69 -22.31 74 66.87 4962 48.48 -5.52 54 63.66	Limit Line Level Factor (MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) 4962 51.67 -22.33 74 66.85 33.85 4962 48.87 -5.13 54 64.05 33.85 7440 42.52 -31.48 74 53.44 36.11 4962 51.69 -22.31 74 66.87 33.85 4962 48.48 -5.52 54 63.66 33.85	Limit Line Level Factor Loss (MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) 4962 51.67 -22.33 74 66.85 33.85 10.98 4962 48.87 -5.13 54 64.05 33.85 10.98 7440 42.52 -31.48 74 53.44 36.11 13.51 4962 51.69 -22.31 74 66.87 33.85 10.98 4962 48.48 -5.52 54 63.66 33.85 10.98	Limit Line Level Factor Loss Factor (MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) (dB) 4962 51.67 -22.33 74 66.85 33.85 10.98 60.01 4962 48.87 -5.13 54 64.05 33.85 10.98 60.01 7440 42.52 -31.48 74 53.44 36.11 13.51 60.54 4962 51.69 -22.31 74 66.87 33.85 10.98 60.01 4962 48.48 -5.52 54 63.66 33.85 10.98 60.01	Limit Line Level Factor Loss Factor Pos (MHz) (dBμV/m) (dB) (dBμV) (dBμV) (dB) (dB) (cm) 4962 51.67 -22.33 74 66.85 33.85 10.98 60.01 100 4962 48.87 -5.13 54 64.05 33.85 10.98 60.01 100 7440 42.52 -31.48 74 53.44 36.11 13.51 60.54 300 4962 51.69 -22.31 74 66.87 33.85 10.98 60.01 341 4962 48.48 -5.52 54 63.66 33.85 10.98 60.01 341	Limit Line Level Factor Loss Factor Pos Pos (MHz) (dBμV/m) (dB) (dBμV) (dB) (dB) (cm) (deg) 4962 51.67 -22.33 74 66.85 33.85 10.98 60.01 100 238 4962 48.87 -5.13 54 64.05 33.85 10.98 60.01 100 238 7440 42.52 -31.48 74 53.44 36.11 13.51 60.54 300 0 4962 51.69 -22.31 74 66.87 33.85 10.98 60.01 341 296 4962 48.48 -5.52 54 63.66 33.85 10.98 60.01 341 296	Limit Line Level Factor Loss Factor Pos Pos Avg. (MHz) (dBμV/m) (dB) (dBμV) (dB/m) (dB) (dB) (cm) (deg) (P/A) 4962 51.67 -22.33 74 66.85 33.85 10.98 60.01 100 238 P 4962 48.87 -5.13 54 64.05 33.85 10.98 60.01 100 238 A 7440 42.52 -31.48 74 53.44 36.11 13.51 60.54 300 0 P 4962 51.69 -22.31 74 66.87 33.85 10.98 60.01 341 296 P 4962 48.48 -5.52 54 63.66 33.85 10.98 60.01 341 296 A

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : B1 of B4
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Emission below 1GHz 2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		51.34	20.75	-19.25	40	37.18	14.15	1.62	32.2	-	ı	Р	Н
		125.06	24.96	-18.54	43.5	36.99	17.6	2.52	32.15	-	ı	Р	Н
		158.04	25.38	-18.12	43.5	38.02	16.62	2.84	32.1	-	-	Р	Н
		176.47	21.9	-21.6	43.5	35.68	15.32	3	32.1	-	1	Р	Н
		429.64	23.58	-22.42	46	28.53	22.62	4.67	32.24	-	-	Р	Н
2.4GHz BLE		763.32	28.18	-17.82	46	26.08	28.2	6.2	32.3	100	231	Р	Н
LF		38.73	32.93	-7.07	40	43.33	20.33	1.41	32.14	-	1	Р	٧
LF		49.4	34.97	-5.03	40	50.7	14.89	1.58	32.2	100	117	Р	٧
		62.98	28.45	-11.55	40	46.68	12.08	1.79	32.1	-	1	Р	٧
		123.12	29.87	-13.63	43.5	41.92	17.6	2.5	32.15	-	1	Р	٧
		178.41	21.61	-21.89	43.5	35.49	15.21	3.01	32.1	-	-	Р	V
		833.16	27.8	-18.2	46	24.75	28.93	6.49	32.37	-	-	Р	V

Remark 2.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : B2 of B4
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

^{1.} No other spurious found.

^{2.} All results are PASS against limit line.

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : B3 of B4
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01												-	
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

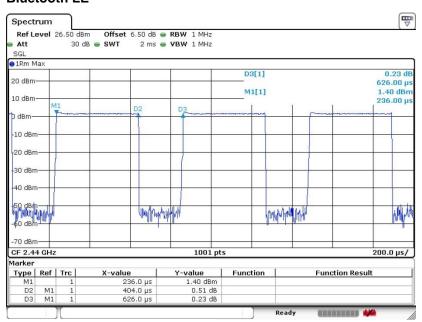
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".


Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : B4 of B4
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02

Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth LE	64.54	0.404	2.475	2.7kHz

Bluetooth LE

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AU5H-920007 Page Number : C1 of C1
Report Issued Date : Jul. 06, 2021
Report Version : Rev. 02