

Test Report # 319197 C (RFx)

 Equipment Under Test:
 982057

 Test Date(s):
 December 3rd, 2019

 Pass & Seymour, Inc. d/b/a Legrand Attn: Joshua Haines 50 Boyd Avenue Syracuse, NY 13209

Report Issued by: Zach Wilson, EMC Engineer

Signature: John Will Date: 5/18/2020

Report Reviewed by: Adam Alger, Quality Manager

Signature: Adum O Alge Date: 5/18/2020

Report Constructed by: Zach Wilson, EMC Engineer

Signature: Sych Word Date: 5/18/2020

This test report may not be reproduced, except in full, without approval of Laird Connectivity, Inc.

Company: Pass & Seymour, Inc. d/b/a

Legrand

Job: C-3272

Report: TR 319197 C

Page **1** of **12**

Name: 982057

Model: 982057

Serial: Engineering Sample

CONTENTS

C	ontent	S	2
	Laird	Connectivity Test Services in Review	3
1	Tes	t Report Summary	4
2	Clie	ent Information	5
	2.1	Equipment Under Test (EUT) Information	5
	2.2	Product Description	5
	2.3	Modifications Incorporated for Compliance	5
	2.4	Deviations and Exclusions from Test Specifications	5
	2.5	Radio Programming	5
	2.6	EUT Power	5
3	Ref	ferences	6
4	Und	certainty Summary	7
5	Tes	st Data	8
	5.1	Zigbee Fundamental Emission	8
6	Exc	clusion Calculation	10
	6.1	FCC	10
	6.2	ISED Canada	11
7	Rev	vision History	12

Company: Pass & Seymour, Inc. d/b/a Legrand

Report: TR 319197 C

Job: C-3272

Page **2** of **12**

Name: 982057

Model: 982057

Serial: Engineering Sample

Laird Connectivity Test Services in Review

The Laird Technologies, Inc. laboratory located at W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA is recognized through the following organizations:

A2LA – American Association for Laboratory Accreditation

Accreditation based on ISO/IEC 17025:2017 with Electrical (EMC) Scope

A2LA Certificate Number: 1255.01

Scope of accreditation includes all test methods listed herein unless otherwise noted

Federal Communications Commission (FCC) - USA

Accredited Test Firm Registration Number: 953492

Recognition of two 3 meter Semi-Anechoic Chambers

Innovation, Science and Economic Development Canada

Accredited U.S. Identification Number: US0218

Recognition of two 3 meter Semi-Anechoic Chambers

Company: Pass & Seymour, Inc. d/b/a
Legrand

Report: TR 319197 C

Page 3 of 12

Model: 982057

Model: 982057

Serial: Engineering Sample

1 TEST REPORT SUMMARY

During **December 3**rd, **2019** the Equipment Under Test (EUT), **982057**, as provided by **Pass & Seymour**, **Inc. d/b/a Legrand** was tested to the following requirements of the **Federal Communications Commission** and **Innovation**, **Science** and **Economic Development Canada**:

Test Requirements	Description	Specification	Method	Compliant
RSS-102	Radio Frequency Exposure Compliance of Radiocommunication Apparatus	Reported	RSS-102 Section 2.5.2	Reported
FCC Part 1.1307, 2.1091, 2.1093	RF Exposure and equipment authorization requirements	Reported	FCC KDB 447498 D01	Reported

Notice:

The results relate only to the item tested as configured and described in this report. Any additional configurations, modes of operation, or modifications made to the equipment under test after the specified test date(s) are at the decision of the client and may not apply to the data seen in this test report.

The decision rule for Pass / Fail assessment to the specification or standard listed in this test report has been agreed upon by the client and laboratory to be as follows:

Measurement Type	Rule
Emissions – Amplitude	N/A
Emissions – Frequency	N/A
Immunity	N/A

Company: Pass & Seymour, Inc. d/b/a Legrand	Page 4 of 12	Name: 982057
Report: TR 319197 C		Model: 982057
Job: C-3272		Serial: Engineering Sample

2 CLIENT INFORMATION

Company Name	Pass & Seymour, Inc. d/b/a Legrand
Contact Person	Joshua Haines
Address	50 Boyd Avenue Syracuse, NY 13209

2.1 Equipment Under Test (EUT) Information

The following information has been supplied by the client

Product Name	982057
Model Number	982057
Serial Number	Engineering Sample
FCC ID	2AU5D92057
IC ID	25764-982057

2.2 Product Description

Zigbee module using a custom PCB F-type antenna. The antenna gain is 1.7 dBi. Low channel set at 2405 MHz, Mid channel at 2440 MHz, and High channel at 2475 MHz.

2.3 Modifications Incorporated for Compliance

None noted at time of test

2.4 Deviations and Exclusions from Test Specifications

None noted at time of test

2.5 Radio Programming

Channel increments by POR implemented by customer.

2.6 EUT Power

EUT powered by 5VDC on a lab power supply.

Company: Pass & Seymour, Inc. d/b/a Legrand		Name: 982057
Report: TR 319197 C	Page 5 of 12	Model: 982057
Job: C-3272		Serial: Engineering Sample

3 REFERENCES

Publication	Edition	Date
CFR Title 47	-	2019
RSS-102	5	2015
FCC KDB 447498 D01	v06	2015

Company: Pass & Seymour, Inc. d/b/a
Legrand

Report: TR 319197 C

Page 6 of 12

Model: 982057

Model: 982057

Serial: Engineering Sample

4 UNCERTAINTY SUMMARY

Using the guidance of the following publications the calculated measurement uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k = 2.

References	Version / Date
CISPR 16-4-1	Ed. 2 (2009-02)
CISPR 16-4-2	Ed. 2 (2011-06)
CISPR 32 Ed. 1 (2012-01) ANSI C63.23 2012	
A2LA P103c August 10, 201	
ETSI TR 100-028	V1.3.1 (2001-03)

Measurement Type	Configuration	Uncertainty ±
Radiated Emissions	Biconical Antenna	5.0 dB
Radiated Emissions	Log Periodic Antenna	5.3 dB
Radiated Emissions	Horn Antenna	4.7 dB
AC Line Conducted Emissions	Artificial Mains Network	3.4 dB
Telecom Conducted Emissions	Asymmetric Artificial Network	4.9 dB
Disturbance Power Emissions	Absorbing Clamp	4.1 dB
Radiated Immunity	3 Volts/meter	2.2 dB
Conducted Immunity	CDN/EM/BCI	2.4/3.5/3.4 dB
EFT Burst/Surge	Peak pulse voltage	164 volts
ESD Immunity	15 kV level	1377 Volts

Parameter	ETSI U.C. ±	U.C. ±
Radio Frequency, from F0	1x10 ⁻⁷	0.55x10 ⁻⁷
Occupied Channel Bandwidth	5 %	2 %
RF conducted Power (Power Meter)	1.5 dB	1.2 dB
RF conducted emissions (Spectrum Analyzer)	3.0 dB	1.7 dB
All emissions, radiated	6.0 dB	5.3 dB
Temperature	1° C	0.65° C
Humidity	5 %	2.9 %
Supply voltages	3 %	1 %

Company: Pass & Seymour, Inc. d/b/a Legrand	Page 7 of 12	Name: 982057
Report: TR 319197 C		Model: 982057
Job: C-3272		Serial: Engineering Sample

Quote : 319197

5 TEST DATA

5.1 Zigbee Fundamental Emission

Operator	Zach Wilson	QA	Anthony Smith
Temperature	28.4°C	R.H. %	32.5
Test Date	12/3/2019	Location	Radio Bench
Requirement	FCC 15.247, RSS-247	Method	ANSI C63.10 Section 11.9.1.1

Test Parameters

Frequency	2405-2475 MHz
RBW	10 MHz
VBW	50 MHz
EUT Power	5VDC
EUT Mode	Zigbee Transmit
Example Calculation	Conducted Power (e.i.r.p.) = Conducted Power (dBm) + Antenna Gain (dBi)

Instrumentation

PE : Zach Wilson

 Date : 25-Nov-2019
 Test : Conducted Radio
 Job : C-3272

 No.
 Asset
 Description
 Manufacturer
 Model
 Serial
 Cal Date
 Cal Due Date
 Equipment Status

 1
 EE 960087
 Analyzer - Spectrum
 Agilent
 N9010A
 MY53400296
 4/24/2019
 4/24/2020
 Active Calibration

 2
 AA 960172
 Cable
 A.H. Systems, Inc. SAC-26G-1
 387
 12/9/2018
 12/9/2019
 Active Verification

Customer: Legrand

Company: Pass & Seymour, Inc. d/b/a Legrand	Page 8 of 12	Name: 982057
Report: TR 319197 C		Model: 982057
Job: C-3272		Serial: Engineering Sample

Table

Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Margin (dB)
2405	5.6	30.0	24.4
2440	5.7	30.0	24.3
2475	5.7	30.0	24.3

Plots

Worst Case Conducted Peak Output Power Mid Channel

Company: Pass & Seymour, Inc. d/b/a Legrand Report: TR 319197 C

Job: C-3272

Name: 982057

Serial: Engineering Sample

6 EXCLUSION CALCULATION

6.1 FCC

Worst Case: 5.7 dBm (Pout) + 1 dB (Tune-Up Tolerance) = 6.7 dBm = 4.7 mW

Test Separation Distance Used: 5 mm

FCC RF Exposure Calculation

 a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $[\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR, 30 where

f_(GHz) is the RF channel transmit frequency in GHz

[(4.7mW)/(5mm)]*[2.45GHz] = 2.3 Numeric Threshold

The result of the calculation, 2.3, is less than the numeric threshold of 3.0 and 7.5. Therefore, routine SAR testing is *excluded for FCC* if the end device is *greater than or equal to 5 mm* from the end user.

Company: Pass & Seymour, Inc. d/b/a
Legrand

Report: TR 319197 C

Page 10 of 12

Model: 982057

Serial: Engineering Sample

6.2 ISED Canada

ISED Canada Limits

Frequency (MHz)	Exemption Limits (mW)				
	At separation distance of ≤5 mm	At separation distance of 10 mm	At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm
≤300	71 mW	101 mW	132 mW	162 mW	193 mW
450	52 mW	70 mW	88 mW	106 mW	123 mW
835	17 mW	30 mW	42 mW	55 mW	67 mW
1900	7 mW	10 mW	18 mW	34 mW	60 mW
2450	4 mW	7 mW	15 mW	30 mW	52 mW
3500	2 mW	6 mW	16 mW	32 mW	55 mW
5800	1 mW	6 mW	15 mW	27 mW	41 mW

Module Worst Case: **5.7 dBm** (Pout) + **1 dB** (Tune-Up Tolerance) + **1.7 dBi** (Antenna Gain) = **8.4 dBm = 6.9 mW**Test Separation Distance Allowed: **10 mm**

Routine SAR testing is *excluded for ISED Canada* if the end device is *greater than or equal to 10 mm* from the end user.

Company: Pass & Seymour, Inc. d/b/a
Legrand
Report: TR 319197 C

Job: C-3272

Page 11 of 12

Name: 982057

Model: 982057

Serial: Engineering Sample

7 REVISION HISTORY

Version	Date	Notes	Person
v0.0	12-31-2019	Initial Draft	Zach Wilson
v0.1	5-12-2020	Added customer information	Zach Wilson
v0.2	5-18-2020	Added ISED	Zach Wilson

END OF REPORT

Company: Pass & Seymour, Inc. d/b/a Legrand	Page 12 of 12	Name: 982057
Report: TR 319197 C		Model: 982057
Job: C-3272		Serial: Engineering Sample