

RADIO TEST REPORT FCC ID: 2AU4M-BSC200

Product: BIKE SMART COMPUTER

Trade Mark: iGPSPORT Model No.: BSC200

Family Model: BSC200S,BSC200C,BSC200E,BSC205,BSC205S

Report No.: S22120802006001

Issue Date: 09 Jan,2023

Prepared for

Wuhan Qiwu Technology Co., Ltd.

3 / F, Creative workshop, No.04, District D, Creative world, No.16 Yezhihu West Road, Hongshan District, Wuhan City, Hubei Province, China.

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel:400-800-6106,0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	1 TEST RESULT CERTIFICATION					
2	2 SUMMARY OF TEST RESULTS4					
3	FACILITIES AND ACCREDITATIONS					
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5			
4	GE	NERAL DESCRIPTION OF EUT	6			
5	DE	SCRIPTION OF TEST MODES	8			
6	SE	FUP OF EQUIPMENT UNDER TEST	9			
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9			
7	TES	ST REQUIREMENTS	13			
0	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST	16 25 26 28 29 31 32 33			
8		ST RESULTS				
	8.1 8.2 8.3 8.4 8.5	MAXIMUM CONDUCTED OUTPUT POWER OCCUPIED CHANNEL BANDWIDTH. MAXIMUM POWER SPECTRAL DENSITY LEVEL. BAND EDGE CONDUCTED RF SPURIOUS EMISSION	34 36 40 42 44 47			
	8.2 8.3 8.4 8.5	Occupied Channel Bandwidth	49 53 55			

1 TEST RESULT CERTIFICATION					
Applicant's name:	.: Wuhan Qiwu Technology Co., Ltd.				
Address:	3 / F, Creative workshop, No.04, District D, Creative world,				
	No.16 Yezhihu West Road, Hongshan District, Wuhan City,			City,	
	Hubei Province, China.				
Manufacturer's Name:	Wuhan Qi	wu Technology Co., Lto	ł.		
Address	3 / F, Crea	ative workshop, No.04,	District D, Creative wo	orld,	
	No.16 Yezhihu West Road, Hongshan District, Wuhan City,			City,	
	Hubei Pro	vince, China.			
Product description					
Product name:	BIKE SMA	ART COMPUTER			
Model and/or type reference:	BSC200				
Family Model:	BSC200S	,BSC200C,BSC200E,B	SC205,BSC205S		
Test Sample Number:	S2212080	020006			
Measurement Procedure Used:					
	APPLIC	ABLE STANDARD	S		
APPLICABLE STANDAR	D/ TEST	PROCEDURE	TEST RE	SULT	
FCC 47 CFR Pa	art 2, Subpa	art J			
FCC 47 CFR Pa	rt 15, Subp	art C			
KDB 174176 D01 Line (Conducted	FAQ v01r01	Compli	ed	
ANSI C63	.10-2013				
KDB 558074 D01 15.247	Meas Guid	dance v05r02			
This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document. The test results of this report relate only to the tested sample identified in this report.					
Date of Test	:	08 Dec,2022 ~	• 09 Jan,2023		
Testing Engineer	:	prany. Hu			
		(Mary	^r Hu)		
Authorized Signatory :		(Alex	les (10)	-	

FCC Part15 (15.247), Subpart C						
Standard Section	Test Item	Verdict	Remark			
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)	Peak Output Power	PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (e)	15.247 (e) Power Spectral Density PASS					
15.247 (d) Band Edge Emission PASS						
15.247 (d) Spurious RF Conducted Emission PASS						
15.203 Antenna Requirement PASS						

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

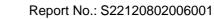
3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.


3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification						
Equipment	BIKE SMART COMPUTER					
Trade Mark iGPSPORT						
FCC ID 2AU4M-BSC200						
Model No.	BSC200					
Family Model	BSC200S,BSC200C,BSC200E,BSC205,BSC205S					
Model Difference	All models are the same circuit and RF module, except the appearance.					
Operating Frequency	2402MHz~2480MHz					
Modulation	GFSK					
Number of Channels	40 Channels					
Antenna Type	Metal Antenna					
Antenna Gain	2.47dBi					
Power supply	DC supply: DC 3.7V from battery or DC 5V from Type-C port					
	Adapter supply:					
Hardware Version	N/A					
Software Version	N/A					

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

	Revision History				
Report No.	Version	Description	Issued Date		
S22120802006001	Rev.01	Initial issue of report	09 Jan,2023		

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (2Mbps for GFSK modulation) were used for all test.

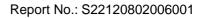
The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.


Test Cases					
Test Item	Data Rate/ Modulation				
AC Conducted Emission	Mode 1: normal link mode				
	Mode 1: normal link mode				
Radiated Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps/2Mbps				
Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps/2Mbps				
	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps/2Mbps				
Conducted Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps/2Mbps				
Conducted Test Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps/2Mbps				
Cases	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps/2Mbps				

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 2Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

NTEK LOW [®] Creatificate #4298.01	rt No.: S22120802006001
6 SETUP OF EQUIPMENT UNDER TEST	
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
For AC Conducted Emission Mode	
AC PLUG AE-1 Adapter EUT	
For Radiated Test Cases	
EUT	
For Conducted Test Cases	
Measurement C-2 EUT	
Note:The temporary antenna connector is soldered on the PCB board in ord tests and this temporary antenna connector is listed in the equipment list.	er to perform conducted

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	0.4m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.08	2023.11.07	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.08	2023.11.07	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.11.08	2023.11.07	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2022.11.08	2023.11.07	1 year
16	Filter	TRILTHIC	2400MHz	29	2022.11.08	2023.11.07	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	onduction Test ed	quipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.11.08	2023.11.07	1 year
2	LISN	R&S	ENV216	101313	2022.11.08	2023.11.07	1 year
3	LISN	SCHWARZB ECK	NNLK 8129	8129245	2022.11.08	2023.11.07	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MHz)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MHz)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MHz)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

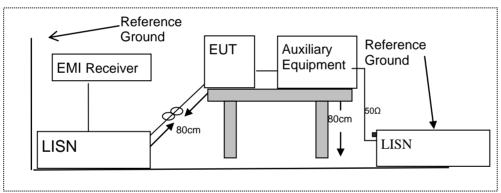
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

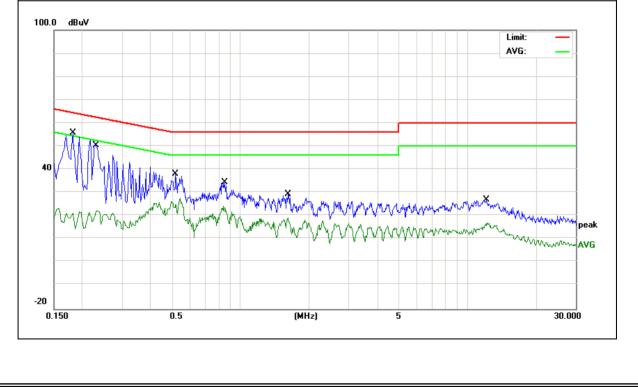
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	BIKE SMART COMPUTER	Model Name :	BSC200
Temperature:	20 7	Relative Humidity:	50%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

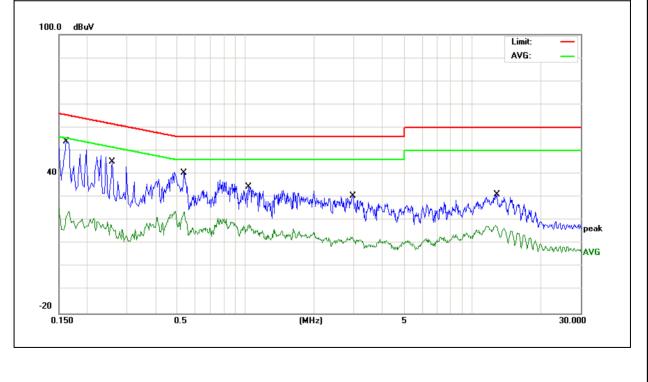
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demeri
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1819	46.20	9.61	55.81	64.39	-8.58	QP
0.1819	10.93	9.61	20.54	54.39	-33.85	AVG
0.2300	40.78	9.63	50.41	62.45	-12.04	QP
0.2300	12.54	9.63	22.17	52.45	-30.28	AVG
0.5180	28.53	9.66	38.19	56.00	-17.81	QP
0.5180	15.22	9.66	24.88	46.00	-21.12	AVG
0.8500	24.85	9.68	34.53	56.00	-21.47	QP
0.8500	13.87	9.68	23.55	46.00	-22.45	AVG
1.6180	19.60	9.67	29.27	56.00	-26.73	QP
1.6180	8.01	9.67	17.68	46.00	-28.32	AVG
12.0659	17.00	10.00	27.00	60.00	-33.00	QP
12.0659	6.67	10.00	16.67	50.00	-33.33	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3


EUT:	BIKE SMART COMPUTER	Model Name :	BSC200
Temperature:	20 ℃	Relative Humidity:	50%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domorik
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1620	44.44	9.65	54.09	65.36	-11.27	QP
0.1620	12.32	9.65	21.97	55.36	-33.39	AVG
0.2580	35.50	9.62	45.12	61.49	-16.37	QP
0.2580	7.00	9.62	16.62	51.49	-34.87	AVG
0.5340	30.71	9.66	40.37	56.00	-15.63	QP
0.5340	14.14	9.66	23.80	46.00	-22.20	AVG
1.0300	24.81	9.69	34.50	56.00	-21.50	QP
1.0300	8.15	9.69	17.84	46.00	-28.16	AVG
2.9660	20.80	9.69	30.49	56.00	-25.51	QP
2.9660	2.26	9.69	11.95	46.00	-34.05	AVG
12.8060	21.10	9.98	31.08	60.00	-28.92	QP
12.8060	7.27	9.98	17.25	50.00	-32.75	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 art 13:203, Restricted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV	/m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

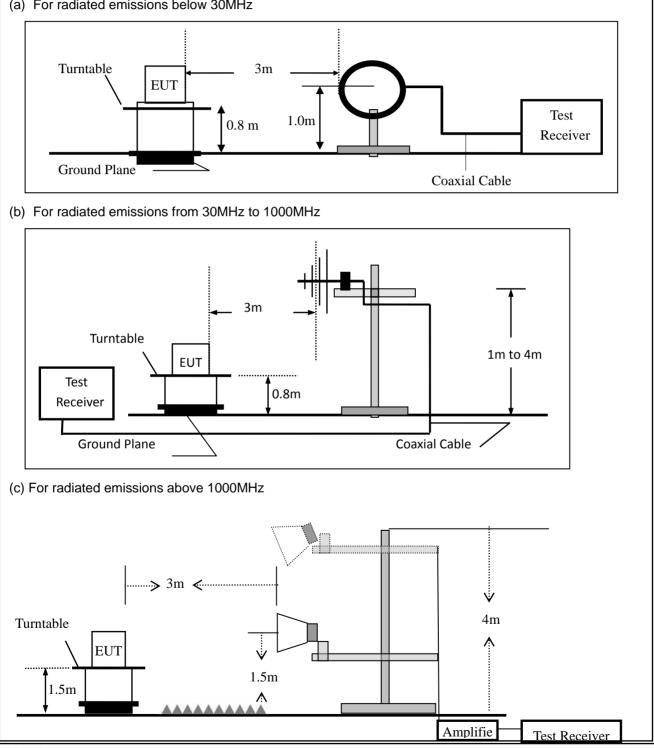
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 **Measuring Instruments**


NTEK 北测

The Measuring equipment is listed in the section 6.3 of this test report.

ACC Certificate #4298.01

7.2.4 **Test Configuration**

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:								
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth					
30 to 1000	QP	120 kHz	300 kHz					
Above 1000	Peak	1 MHz	1 MHz					
Above 1000	Average	1 MHz	1 MHz					

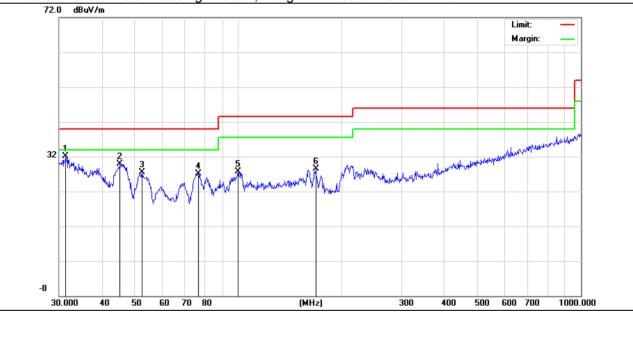
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

EUT:	BIKE SMART COMPUTER	Model No.:	BSC200
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	BIKE SMART COMPUTER	Model Name :	BSC200
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.7V		

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	31.3992	6.76	25.40	32.16	40.00	-7.84	QP
V	45.2165	12.20	17.66	29.86	40.00	-10.14	QP
V	52.3912	13.94	13.48	27.42	40.00	-12.58	QP
V	76.5121	12.23	14.83	27.06	40.00	-12.94	QP
V	99.8777	9.85	17.78	27.63	43.50	-15.87	QP
V	168.4138	11.16	17.35	28.51	43.50	-14.99	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	rtoman
Н	100.5806	8.82	17.66	26.48	43.50	-17.02	QP
Н	161.4738	7.05	17.98	25.03	43.50	-18.47	QP
Н	233.3487	7.85	17.77	25.62	46.00	-20.38	QP
Н	336.0350	8.97	21.25	30.22	46.00	-15.78	QP
Н	416.1791	8.28	23.63	31.91	46.00	-14.09	QP
H Remark:	607.7866	7.36	26.59	33.95	46.00	-12.05	QP
<u>=missior</u> 72.1	n Level= Meter R 0 dBu¥/m	eading+ Fact	or, Margin=			Limit: — Margin: —	_
						6	
32	March & March and March an	, un de la company	www.all.wall.handing	have and the grand and	we have here we want	A. Area and a second	
		Nor-Mahlbarton and					_
-8							_
3(D.000 40 50	60 70 80	(MH	z) 3	00 400 500	600 700 10	00.000
	0.000 40 50	60 70 80	(МН	z] 3	00 400 500	600 700 10	00.000

	Spurious I	Emission	Above 1	IGHz (1GI	Hz to 25G	iHz)				
Е	UT:	BIKE	SMART	COMPUT	ΓER	Model No.	:	BSC200		
Т	emperature:	20 ℃				Relative Humidity: 48%				
Т	est Mode:	Mode	2/Mode	3/Mode4		Test By: Mary Hu				
								-		
	Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
				Low Cha	nnel (2402	2 MHz)(GFSI	K)Above 1	IG	-	
	4802.83	64.05	5.21	35.59	44.30	60.55	74.00	-13.45	Pk	Vertical
	4802.83	43.08	5.21	35.59	44.30	39.58	54.00	-14.42	AV	Vertical
	7206.29	60.93	6.48	36.27	44.60	59.08	74.00	-14.92	Pk	Vertical
	7206.29	43.23	6.48	36.27	44.60	41.38	54.00	-12.62	AV	Vertical
	4804.95	64.51	5.21	35.55	44.30	60.97	74.00	-13.03	Pk	Horizontal
	4804.95	43.33	5.21	35.55	44.30	39.79	54.00	-14.21	AV	Horizontal
	7206.90	64.00	6.48	36.27	44.52	62.23	74.00	-11.77	Pk	Horizontal
	7206.90	43.55	6.48	36.27	44.52	41.78	54.00	-12.22	AV	Horizontal
				Mid Cha	nnel (2440	MHz)(GFS	<)Above 1	G	-	
	4880.609	63.13	5.21	35.66	44.20	59.80	74.00	-14.20	Pk	Vertical
	4880.609	43.09	5.21	35.66	44.20	39.76	54.00	-14.24	AV	Vertical
	7320.517	61.22	7.10	36.50	44.43	60.39	74.00	-13.61	Pk	Vertical
	7320.517	43.98	7.10	36.50	44.43	43.15	54.00	-10.85	AV	Vertical
	4880.361	61.60	5.21	35.66	44.20	58.27	74.00	-15.73	Pk	Horizontal
	4880.361	43.45	5.21	35.66	44.20	40.12	54.00	-13.88	AV	Horizontal
	7320.980	61.34	7.10	36.50	44.43	60.51	74.00	-13.49	Pk	Horizontal
	7320.980	43.82	7.10	36.50	44.43	42.99	54.00	-11.01	AV	Horizontal
				High Cha	innel (2480) MHz)(GFSI	<) Above	1G		
	4960.671	60.33	5.21	35.52	44.21	56.85	74.00	-17.15	Pk	Vertical
	4960.671	43.64	5.21	35.52	44.21	40.16	54.00	-13.84	AV	Vertical
	7440.141	62.83	7.10	36.53	44.60	61.86	74.00	-12.14	Pk	Vertical
	7440.141	43.59	7.10	36.53	44.60	42.62	54.00	-11.38	AV	Vertical
	4960.835	62.09	5.21	35.52	44.21	58.61	74.00	-15.39	Pk	Horizontal
	4960.835	43.68	5.21	35.52	44.21	40.20	54.00	-13.80	AV	Horizontal
	7440.583	64.11	7.10	36.53	44.60	63.14	74.00	-10.86	Pk	Horizontal
	7440.583	43.82	7.10	36.53	44.60	42.85	54.00	-11.15	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

UT:	E	BIKE SM	ART COM	PUTER	Model N	Model No.:		BSC200		
emperature:	4	20 ℃			Relative	Humidity:	48%			
est Mode:	ſ	Mode2/ N	/lode4		Test By		Mary H	u		
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
				2Mb	os(GFSK)					
2310.00	64.28	2.97	27.80	43.80	51.25	74	-22.75	Pk	Horizonta	
2310.00	39.39	2.97	27.80	43.80	26.36	54	-27.64	AV	Horizonta	
2310.00	63.69	2.97	27.80	43.80	50.66	74	-23.34	Pk	Vertical	
2310.00	43.29	2.97	27.80	43.80	30.26	54	-23.74	AV	Vertical	
2390.00	61.03	3.14	27.21	43.80	47.58	74	-26.42	Pk	Vertical	
2390.00	43.66	3.14	27.21	43.80	30.21	54	-23.79	AV	Vertical	
2390.00	61.29	3.14	27.21	43.80	47.84	74	-26.16	Pk	Horizonta	
2390.00	43.83	3.14	27.21	43.80	30.38	54	-23.62	AV	Horizonta	
2483.50	60.92	3.58	27.70	44.00	48.20	74	-25.80	Pk	Vertical	
2483.50	43.64	3.58	27.70	44.00	30.92	54	-23.08	AV	Vertical	
2483.50	64.28	3.58	27.70	44.00	51.56	74	-22.44	Pk	Horizonta	
2483.50	43.71	3.58	27.70	44.00	30.99	54	-23.01	AV	Horizonta	

Note: (1) All other emissions more than 20dB below the limit.

U	T:	E	BIKE	SMART	COMPU	TER	Model No.: BSC200				
er	nperature:	2	20 ℃				Relative Humidity: 48%				
Test Mode:		Mode2/ Mode4				Test By:		Mary H	u		
Г											
	Frequency	Rea Lev		Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
	(MHz)	(dB	μV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
	3260	62.	.73	4.04	29.57	44.70	51.64	74	-22.36	Pk	Vertical
	3260	43.	.15	4.04	29.57	44.70	32.06	54	-21.94	AV	Vertical
	3260	60.	.24	4.04	29.57	44.70	49.15	74	-24.85	Pk	Horizontal
Γ	3260	43.	.83	4.04	29.57	44.70	32.74	54	-21.26	AV	Horizontal
Γ	3332	62.	.81	4.26	29.87	44.40	52.54	74	-21.46	Pk	Vertical
Γ	3332	43.	.66	4.26	29.87	44.40	33.39	54	-20.61	AV	Vertical
	3332	61.	.64	4.26	29.87	44.40	51.37	74	-22.63	Pk	Horizontal
	3332	43.	.38	4.26	29.87	44.40	33.11	54	-20.89	AV	Horizontal
Γ	17797	49.	.12	10.99	43.95	43.50	60.56	74	-13.44	Pk	Vertical
Γ	17797	34.	.87	10.99	43.95	43.50	46.31	54	-7.69	AV	Vertical
Γ	17788	46.	.51	11.81	43.69	44.60	57.41	74	-16.59	Pk	Horizontal
Γ	17788	34.	.70	11.81	43.69	44.60	45.60	54	-8.40	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3*RBW.

c) Detector = Peak.

d) Trace mode = max hold.

- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	BIKE SMART COMPUTER	Model No.:	BSC200
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

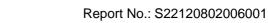
7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure


The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	BIKE SMART COMPUTER	Model No.:	BSC200
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	BIKE SMART COMPUTER	Model No.:	BSC200
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	BIKE SMART COMPUTER	Model No.:	BSC200
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	BIKE SMART COMPUTER	Model No.:	BSC200
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Mary Hu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

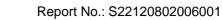
1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup


Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 25GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

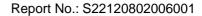
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

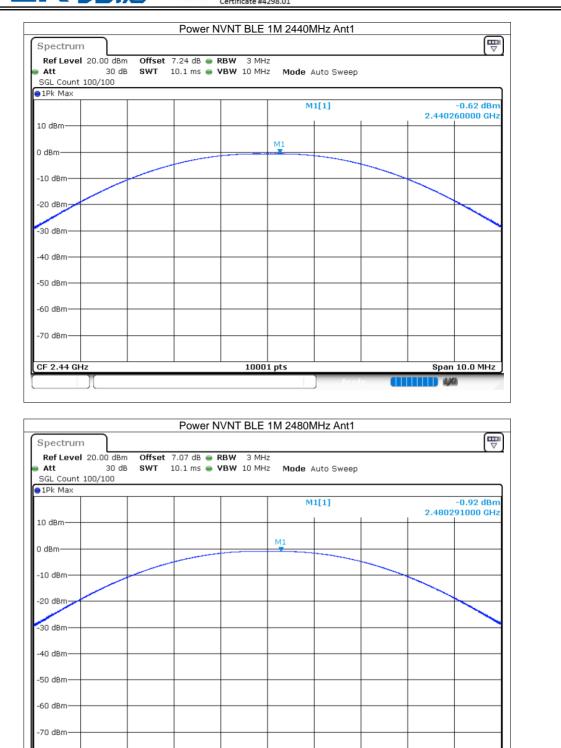
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached Metal Antenna (Gain: 2.47dBi). It comply with the standard requirement.

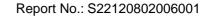

8 TEST RESULTS

1M


8.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-0.91	30	Pass
NVNT	BLE	2440	Ant1	-0.62	30	Pass
NVNT	BLE	2480	Ant1	-0.92	30	Pass

		Power NV	Test Gra	ірпs /I 2402MHz	Ant1		
Spectrum)						E
Ref Level 20.0	L Offset	7.07 dB 曼 RB	W 3 MHz				(v
Att		10.1 ms 👄 VB		Mode Auto	Sweep		
SGL Count 100/	100						
●1Pk Max		1 1					
				M1[1]		2 4022	-0.91 dBn 98000 GH
10 dBm		-					
0 dBm				M1		_	
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
60 ID							
-60 dBm							
-70 dBm							
-/U aBm							
CF 2.402 GHz			10001 p	ts		Span	10.0 MHz
					Ready		


10001 pts

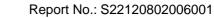
CF 2.48 GHz

Span 10.0 MHz

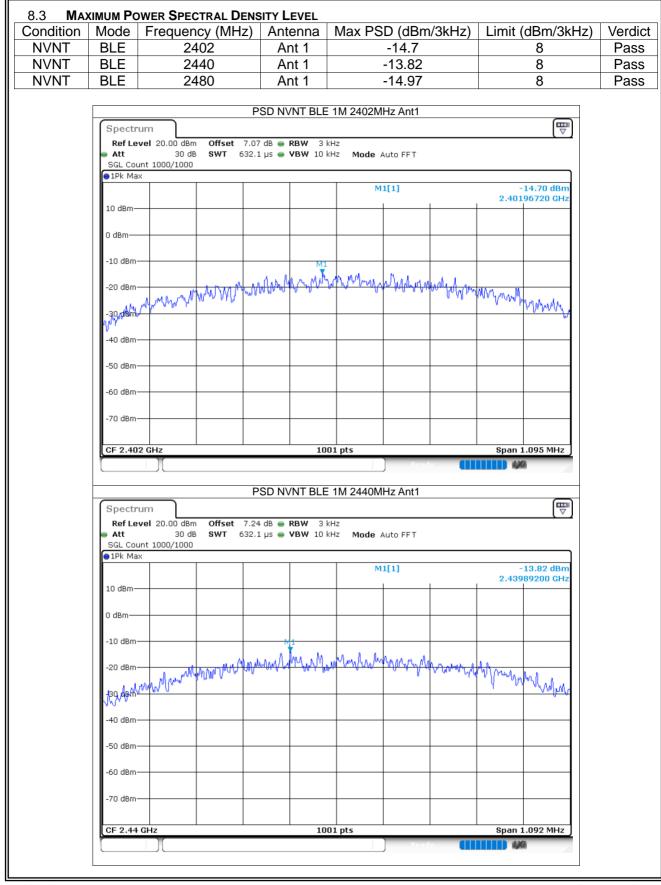
8.2 O C		HANNEL BANDW	IDTH								
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict				
NVNT	BLE	2402	Ant 1	1.059	0.73	0.5	Pass				
NVNT	BLE	2440	Ant 1	1.056	0.728	0.5	Pass				
NVNT	BLE	2480	Ant 1	1.063	0.753	0.5	Pass				
OBW NVNT BLE 1M 2402MHz Ant1											
	Spectrum 🕎										
	👄 Att	Ref Level 20.00 dBm Offset 7.07 dB RBW 30 kHz Att 30 dB SWT 63.2 μs w VBW 100 kHz SGL Count 100/100 KHz Mode Auto FFT									
	10 dBm				M1[1] Occ Bw	-5.05 dBm 2.402011000 GHz 1.059094091 MHz					
	0 dBm-										
	-10 dBn -20 dBn	T1			T2						
	-30 dBn					2 mm					
	-40 dBn -50 dBn										
	-60 dBn										
	-70 dBn	n									
	CE 2.4	02 GHz		10001 pts		Span 2.0 MHz					
				10001 pt3	Ready 🚺						

			-6dB Ba	ndwidth NVNT E	BLE 1M 2402MHz	z Ant1	
Spectr	um						
Ref Le	vel 2	20.00 dBm	Offset 7.07 d	3 👄 RBW 100 kHz	2		
Att 🛛		30 dB	SWT 18.9 μ	s 👄 VBW 300 kHz	Mode Auto FFT		
SGL Cou	unt 10	00/100					
∋1Pk Ma	X						
					M1[1]		-1.82 dBm
10 dBm-							2.401770820 GHz
TO UDIII-					M2[1]		-7.79 dBm
0 dBm—				M1			2.401665000 GHz
o abiii			M2			мв	
-10 dBm-			- I - I	, 			
10 00.00							
-20 dBm-							<u> </u>
-30 dBm·	_						
		-					
-40 dBm·	_						
-50 dBm·	_						
-60 dBm·	-						
-70 dBm·	_						
CF 2.40	2 GH	z		10001	pts		Span 2.0 MHz
Marker					•		
Type	Ref	Trc	X-value	Y-value	Function	Func	tion Result
M1		1	2.40177082 GH	z -1.82 dBr	m		
M2		1	2.401665 GH	z -7.79 dBr	m		
MЗ		1	2.402395 GH	z -7.85 dBr	m		
		(D.C.	adv CIII	436

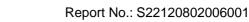
Version.1.3



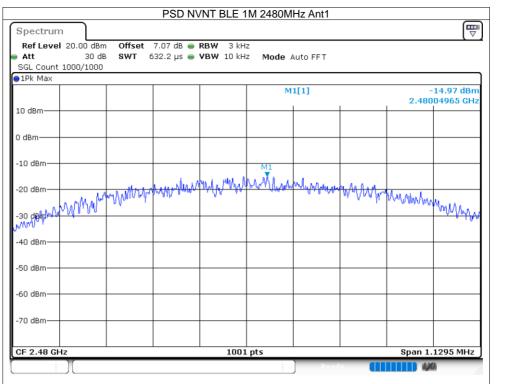
		-6dB Band	width NVNT BL	E 1M 2440MHz	Ant1	
Spectrum						
Ref Level	20.00 dBn	n Offset 7.24 dB (● RBW 100 kHz			
Att	30 d8	в SWT 18.9 µs (🛢 VBW 300 kHz	Mode Auto FFT		
SGL Count 3	100/100					
1Pk Max						
				M1[1]		-1.31 dBm
10 dBm						2.440281370 GHz
				M2[1]		-7.32 dBm
0 dBm				M1		2.439663000 GHz
5 dbiii		M2			13	
-10 dBm						
10 000						
-20 dBm—						
	/	1				
-30.dBm						
~+						
-40 dBm						
-50 dBm —						
-60 dBm —					+	
-70 dBm — 🕂					+	
CF 2.44 GH	z			ts		Span 2.0 MHz
larker						
Type Ref	Trc	X-value	Y-value	Function	Function	Result
M1	1	2.44028137 GHz	-1.31 dBm	. anocion	ranction	. Rosan
M2	1	2.439663 GHz	-7.32 dBm			
M3	1	2.440391 GHz	-7.29 dBm			
	7					4.444
				Rea		



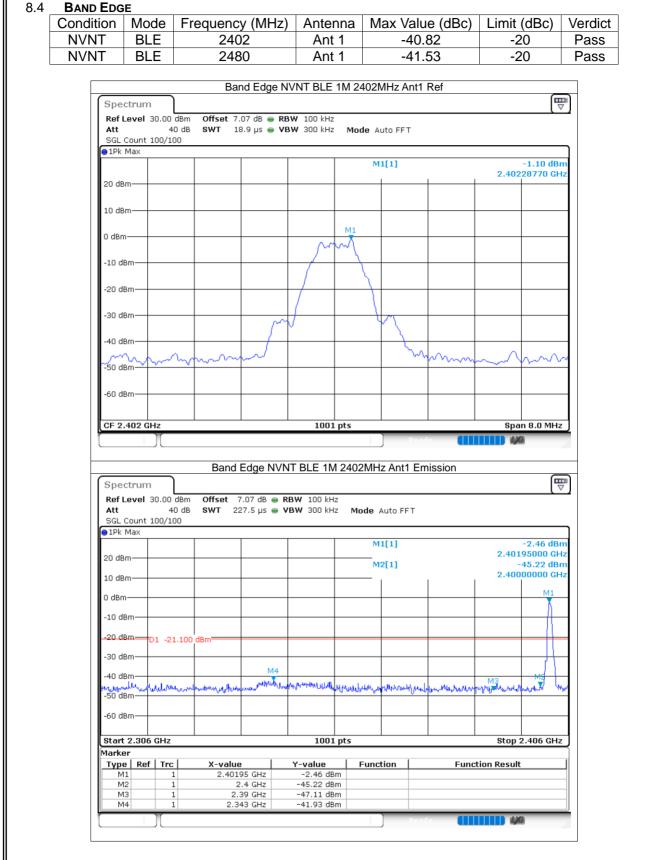
Version.1.3

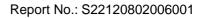


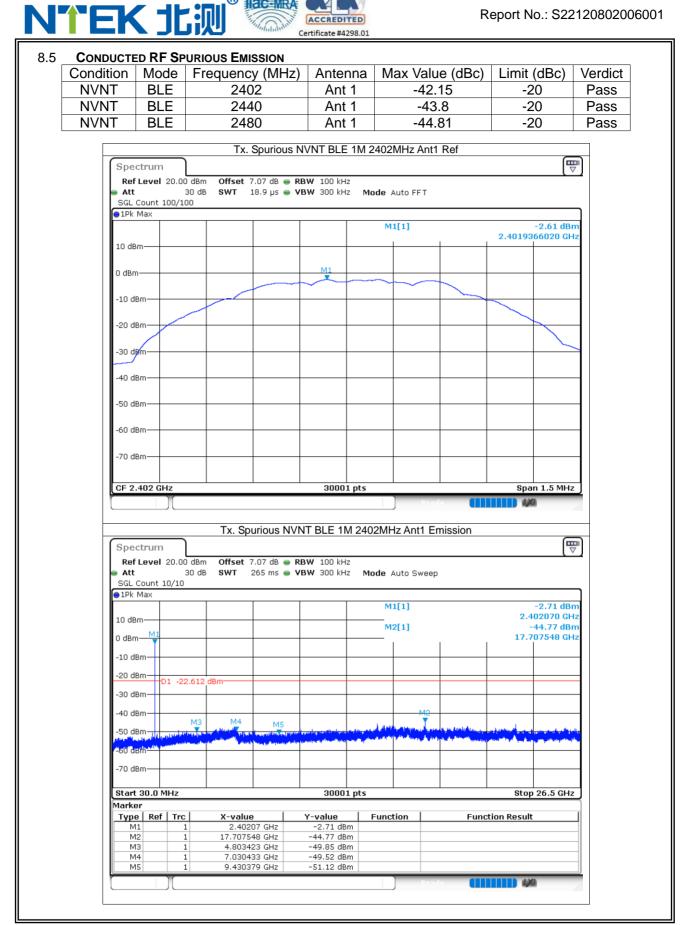
Pectrum Ref Level 20.00 dBm Offset 7.07 dB ● RBW 100 kHz Att 30 dB SWT 18.9 μs ● VBW 300 kHz GL Count 100/100 1Pk Max 0 dBm 0 dBm 0 dBm	2 Mode Auto FFT 		-2.08 dBr 2.480023800 GH
Att 30 dB SWT 18.9 µs • VBW 300 kHz GGL Count 100/100 1Pk Max 0 dBm	2 Mode Auto FFT 		
SGL Count 100/100 1Pk Max 0 dBm	M1[1] M2[1]		
1Pk Max	M2[1]		
0 dBm	M2[1]		
	M2[1]		
			2 480023800 CH
			2.100020000 011
			-8.07 dBr
	M1		2.479659000 GH
M2	M N	3	
LO dBm			
20 dBm			
30.dBm			
			4
+0 dBm			
50 dBm			
50 dBm			
70 dBm			
F 2.48 GHz 10001	L pts	I	Span 2.0 MHz
arker			
Type Ref Trc X-value Y-value	Function	Functio	n Result
M1 1 2.4800238 GHz -2.08 dBr	m		
M2 1 2.479659 GHz -8.07 dBr			
M3 1 2.480412 GHz -8.07 dBr	m		
	Ready		420



ACCREDITED Certificate #4298.01

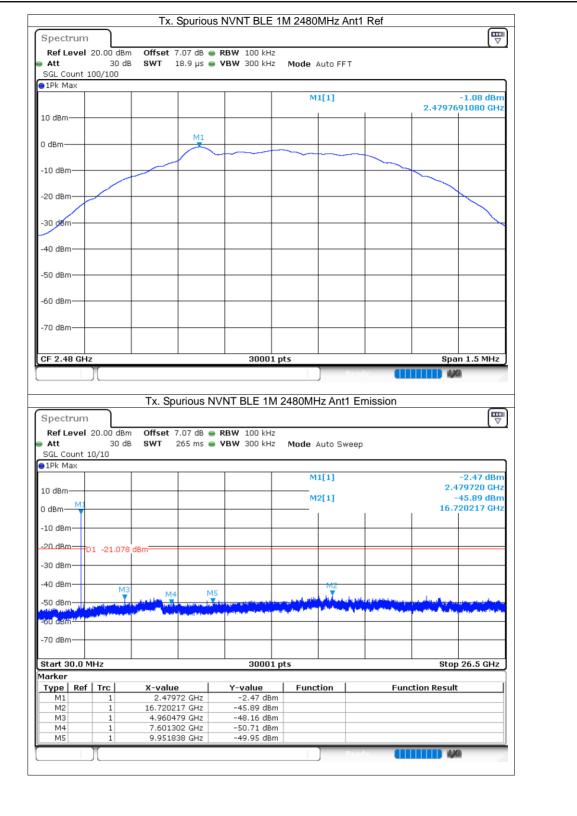

ITEK 北视





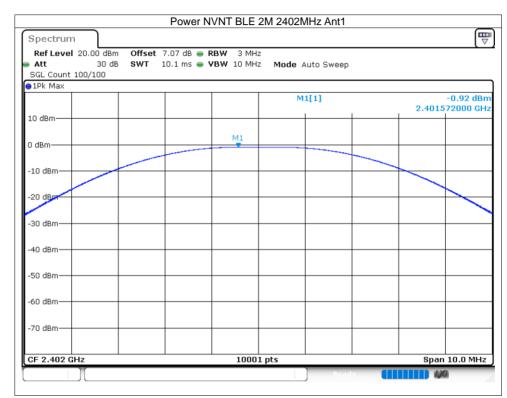
Att SGL Count	30.00 dBm 40 dB 100/100			BW 100 kHz BW 300 kHz	Mode A	uto FFT			
●1Pk Max				1 1	M	1[1]			-2.22 dBm
					IVI			2.480	00800 GHz
20 dBm-									
10 dBm									
0 dBm				M	1 (m				
-10 dBm					\rightarrow				
-20 dBm					\rightarrow				
-30 dBm						-			
-40 dBm									
\sim	him	hann-	m			\sim	min	m	mm
-50 dBm									
-60 dBm									
				1001	pts			 Spa	n 8.0 MHz
CF 2.48 GH	1z	Band	Edge NVI	NT BLE 1M] Pead z Ant1 Em	nission	·····	
Spectrum		Offset 7	'.07 dB 👄 F	NT BLE 1M	2480MH		nission		
Spectrum Ref Level Att SGL Count	1 30.00 dBm 40 dB	Offset 7	'.07 dB 👄 F	NT BLE 1M	2480MH		nission		
Spectrum Ref Level Att SGL Count	1 30.00 dBm 40 dB	Offset 7	'.07 dB 👄 F	NT BLE 1M	2480MH 2 2 Mode /	Auto FFT	nission		
Spectrum Ref Level Att SGL Count 1Pk Max	1 30.00 dBm 40 dB	Offset 7	'.07 dB 👄 F	NT BLE 1M	2 2 2 2 Mode /	Auto FFT	nission	2.479	-1.09 dBm 75000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	1 30.00 dBm 40 dB	Offset 7	'.07 dB 👄 F	NT BLE 1M	2 2 2 2 Mode /	Auto FFT	nission	2.479	-1.09 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm M1	1 30.00 dBm 40 dB	Offset 7	'.07 dB 👄 F	NT BLE 1M	2 2 2 2 Mode /	Auto FFT	hission	2.479	-1.09 dBm 75000 GHz 45.94 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- M1	1 30.00 dBm 40 dB	Offset 7	'.07 dB 👄 F	NT BLE 1M	2 2 2 2 Mode /	Auto FFT	nission	2.479	-1.09 dBm 75000 GHz 45.94 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm	1 30.00 dBm 40 dB	Offset 7	'.07 dB 👄 F	NT BLE 1M	2 2 2 2 Mode /	Auto FFT	nission	2.479	-1.09 dBm 75000 GHz 45.94 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	30.00 dBm 40 dB 100/100	Offset 7 SWT 22	'.07 dB 👄 F	NT BLE 1M	2 2 2 2 Mode /	Auto FFT	nission	2.479	-1.09 dBm 75000 GHz 45.94 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	1 30.00 dBm 40 dB	Offset 7 SWT 22	'.07 dB 👄 F	NT BLE 1M	2 2 2 2 Mode /	Auto FFT	nission	2.479	-1.09 dBm 75000 GHz 45.94 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 cBm -30 dBm	30.00 dBm 40 dB 100/100	Offset 7 SWT 22	'.07 dB 👄 F	NT BLE 1M	2 2 2 2 Mode /	Auto FFT	hission	2.479	-1.09 dBm 75000 GHz 45.94 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 cBm -30 dBm -40 dBm	30.00 dBm 40 dB 100/100	Offset 7 SWT 22	/.07 dB 👄 F /7.5 μs 👄 //	NT BLE 1M	2 2480MH	Auto FFT 1[1] 2[1]		2.479	-1.09 dBm 75000 GHz 45.94 dBm 50000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 cBm -30 dBm	0 0 dBm 40 dB 100/100	Offset 7 SWT 22	/.07 dB 👄 F /7.5 μs 👄 //	NT BLE 1M	2 2480MH	Auto FFT 1[1] 2[1]		2.479	-1.09 dBm 75000 GHz 45.94 dBm 50000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 cBm -30 dBm -40 dBm -40 dBm	0 0 dBm 40 dB 100/100	Offset 7 SWT 22	/.07 dB 👄 F /7.5 μs 👄 //	NT BLE 1M	2 2480MH	Auto FFT 1[1] 2[1]		2.479	-1.09 dBm 75000 GHz 45.94 dBm 50000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	01 -22.223	Offset 7 SWT 22	/.07 dB 👄 F /7.5 μs 👄 //	NT BLE 1M	2 2480MH	Auto FFT 1[1] 2[1]		2.479 - 2.483 	-1.09 dBm 75000 GHz 45.94 dBm 50000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 cBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm	30.00 dBm 40 dB 100/100	Offset 7 SWT 22	.07 dB ● F 27.5 μs ● N	NT BLE 1M	22480MH	Auto FFT 1[1] 2[1]	ayborethick for all these	2.479 - 2.483 	-1.09 dBm 75000 GHz 45.94 dBm 50000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm Start 2.476 Marker Type Ref	D1 -22.223	Offset 7 SWT 22	2.07 dB 27.5 μs	NT BLE 1M	2480MH	Auto FFT 1[1] 2[1]	ayborethick for all these	2.479 - 2.483 	-1.09 dBm 75000 GHz 45.94 dBm 50000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 cBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm	30.00 dBm 40 dB 100/100 D1 -22.223 M4 Alw(p), W (p), may 5 GHz f Trc 1 1	Offset 7 SWT 22 dBm 	.07 dB ● F 27.5 μs ● N	NT BLE 1M	2 2480MH	Auto FFT 1[1] 2[1]	ayborethick for all these	2.479 - 2.483 	-1.09 dBm 75000 GHz 45.94 dBm 50000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm Start 2.476 Marker Type Ref	01 -22.223 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	Offset 7 SWT 22 dBm dBm <u>M3</u> 	27.5 μs • Υ	NT BLE 1M	2 Mode / 2 Mode / 	Auto FFT 1[1] 2[1]	ayherethedyspalleton	2.479 - 2.483 	-1.09 dBm 75000 GHz 45.94 dBm 50000 GHz

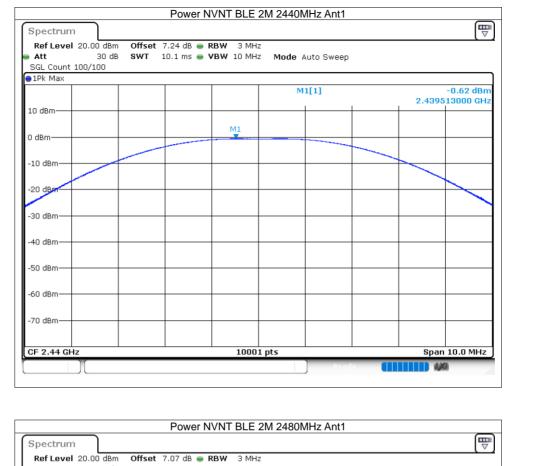
R

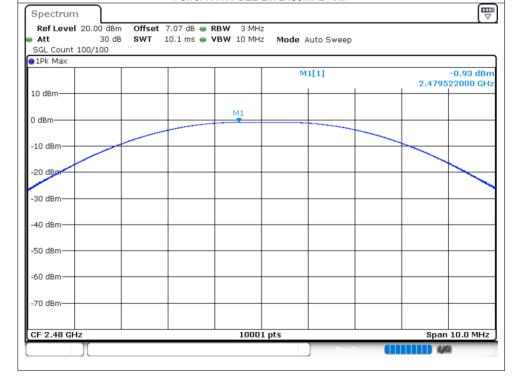

ilac-M

ACCREDITED

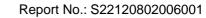
Att SGL Count 100	30 dB 😽	ffset 7.24 dB 👄 WT 18.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode Auto	FFT		
●1Pk Max				M1[1]			-1.92 dBm
10 dBm						2.44003	399490 GHz
10 0.011							
0 dBm				41			
10 -10							
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							├───│ │
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.44 GHz						O	
			30001		Doody 🚺	арс	an 1.5 MHz
Spectrum Ref Level 20		x. Spurious N		2440MHz A	nt1 Emission		
-	.00 dBm 0 30 dB S	ffset 7.24 dB 🖷					
Ref Level 20 Att SGL Count 10/	.00 dBm 0 30 dB S	ffset 7.24 dB 🖷	RBW 100 kHz	Mode Auto	Sweep		
Ref Level 20 Att SGL Count 10/ 1Pk Max	.00 dBm 0 30 dB S	ffset 7.24 dB 🖷	RBW 100 kHz	Mode Auto 	Sweep		-1.80 dBm 440010 GHz
Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm	.00 dBm 0 30 dB S	ffset 7.24 dB 🖷	RBW 100 kHz	Mode Auto	Sweep		-1.80 dBm
Ref Level 20 Att SGL Count 10// SGL Count 10// 10// 10 dBm M1 0	.00 dBm 0 30 dB S	ffset 7.24 dB 🖷	RBW 100 kHz	Mode Auto 	Sweep		-1.80 dBm 440010 GHz -45.72 dBm
Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm 10 dBm	.00 dBm O 30 dB S' 10	ffset 7.24 dB ● ₩T 265 ms ●	RBW 100 kHz	Mode Auto 	Sweep		-1.80 dBm 440010 GHz -45.72 dBm
Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm 10 dBm M1 0 dBm 0 dBm -10 dBm 01	.00 dBm 0 30 dB S	ffset 7.24 dB ● ₩T 265 ms ●	RBW 100 kHz	Mode Auto 	Sweep		-1.80 dBm 440010 GHz -45.72 dBm
Ref Level 20 Att SGL Count 10/ SGL Count 10/ 10/ IPk Max 10 0 dBm 10 -10 dBm 10 -20 dBm D1 -30 dBm 10	.00 dBm O 30 dB S' 10	ffset 7.24 dB ● ₩T 265 ms ●	RBW 100 kHz	Mode Auto 	Sweep		-1.80 dBm 440010 GHz -45.72 dBm
Ref Level 20 Att SGL Count 10/ SGL Count 10/ 10/ IPk Max 10 dBm 10 0 dBm M1 0 -10 dBm 01 -30 dBm -30 dBm -40 dBm -10	.00 dBm O 30 dB S' 10	ffset 7.24 dB ● ₩T 265 ms ●	RBW 100 kHz	Mode Auto M1[1] M2[1]	Sweep		-1.80 dBm 440010 GHz -45.72 dBm
Mef Level 20 Att SGL Count 10/ IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 0 dBm -20 dBm 01 -30 dBm -50 dBm	-21.915 dBm- MC	ffset 7.24 dB ● WT 265 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto 	Sweep		-1.80 dBm 440010 GHz -45.72 dBm
Ref Level 20 Att SGL Count 10/ IPk Max 10 dBm 10 dBm 10 -10 dBm 0 -20 dBm 01 -30 dBm 01 -30 dBm 01	-21.915 dBm	ffset 7.24 dB ● WT 265 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto M1[1] M2[1]	Sweep		-1.80 dBm 440010 GHz -45.72 dBm
Ref Level 20 Att SGL Count 10/ SGL Count 10/ 10/ IPk Max 0 0 0 10 dBm 0 0 0 -10 dBm 01 0 0 -30 dBm 01 -30 dBm 01 -30 dBm -50 dBm 01 -50 dBm	-21.915 dBm- MC	ffset 7.24 dB ● WT 265 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto M1[1] M2[1]	Sweep		-1.80 dBm 440010 GHz -45.72 dBm
Ref Level 20 Att SGL Count 10/ 1Pk Max 10 10 dBm 10 -10 dBm 0 -20 dBm 01 -30 dBm 01 -50 dBm 01 -70 dBm -70 dBm	-21.915 dBm	ffset 7.24 dB ● WT 265 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto M1[1] M2[1] M2[1] M2	Sweep		-1.80 dBm #40010 GHz -45.72 dBm 005527 GHz
Ref Level 20 Att SGL Count 10/ SGL Count 10/ 10/ IPk Max 10 dBm 10 dBm 10 -10 dBm 0 -20 dBm 01 -30 dBm 01 -30 dBm 01 -30 dBm 01 -70 dBm 01	-21.915 dBm ⁻	ffset 7.24 dB • WT 265 ms •	RBW 100 kHz VBW 300 kHz	Mode Auto M1[1] M2[1] M2[1] M2	Sweep	16.(-1.80 dBm +40010 GHz -45.72 dBm 005527 GHz
Ref Level 20 Att SGL Count 10/ SGL Count 10/ 10/ IPk Max 10 dBm 10 dBm 10 -10 dBm 0 -20 dBm 01 -30 dBm 01 -30 dBm 01 -30 dBm 01 -70 dBm 01	-21.915 dBm ⁻	ffset 7.24 dB ● WT 265 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto M1[1] M2[1] M2[1] M2 M2 M2	Sweep		-1.80 dBm +40010 GHz -45.72 dBm 005527 GHz
Ref Level 20 Att SGL Count 10/ 1Pk Max 10 10 dBm 10 -10 dBm 0 -20 dBm 01 -30 dBm 01 -30 dBm 01 -30 dBm 01 -30 dBm 01 -50 dBm 01 -50 dBm 01 -50 dBm 01 -70 dBm 01	-21.915 dBm -21.915 dBm z	ffset 7.24 dB WT 265 ms WT 265 ms	RBW 100 kHz VBW 300 kHz 	Mode Auto M1[1] M2[1] M2[1] M2	Sweep	16.(-1.80 dBm +40010 GHz -45.72 dBm 005527 GHz
Ref Level 20 Att SGL Count 10/ SGL Count 10/ IPk Max 10 dBm M1 0 dBm D1 -10 dBm D1 -30 dBm D1 -30 dBm -01 -30 dBm -01 -30 dBm -01 -50 dBm -01 -50 dBm -01 -60 dBm -01 -70 dBm -01 Start 30.0 MH; -01 M1 -01 M2 -01 M4 -01	-21.915 dBm -21.915 dBm -21.91	ffset 7.24 dB ● WT 265 ms ● ////////////////////////////////	RBW 100 kHz VBW 300 kHz	Mode Auto M1[1] M2[1] M2[1] M2	Sweep	16.(-1.80 dBm +40010 GHz -45.72 dBm 005527 GHz
Ref Level 20 Att SGL Count 10/ 1Pk Max 10 10 dBm 10 -10 dBm 10 -20 dBm D1 -30 dBm -0 -70 dBm -0 <td>-21.915 dBm- -21.915 dBm- -21.9</td> <td>ffset 7.24 dB • WT 265 ms • </td> <td>RBW 100 kHz VBW 300 kHz</td> <td>Mode Auto M1[1] M2[1] M2[1] M2 M2</td> <td>Sweep</td> <td>16.(</td> <td>-1.80 dBm 140010 GHz -45.72 dBm 005527 GHz</td>	-21.915 dBm- -21.915 dBm- -21.9	ffset 7.24 dB • WT 265 ms • 	RBW 100 kHz VBW 300 kHz	Mode Auto M1[1] M2[1] M2[1] M2	Sweep	16.(-1.80 dBm 140010 GHz -45.72 dBm 005527 GHz



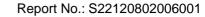

2M

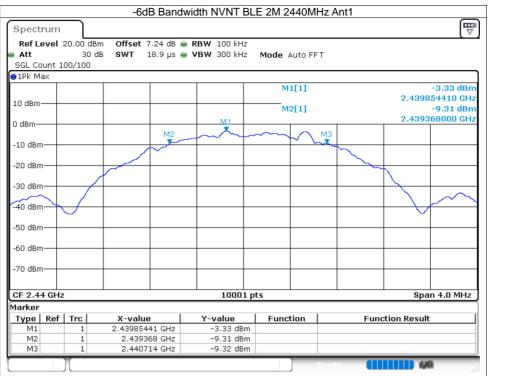

8.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	-0.92	30	Pass
NVNT	BLE	2440	Ant 1	-0.62	30	Pass
Condition NVNT NVNT NVNT	BLE	2480	Ant 1	-0.93	30	Pass

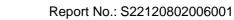


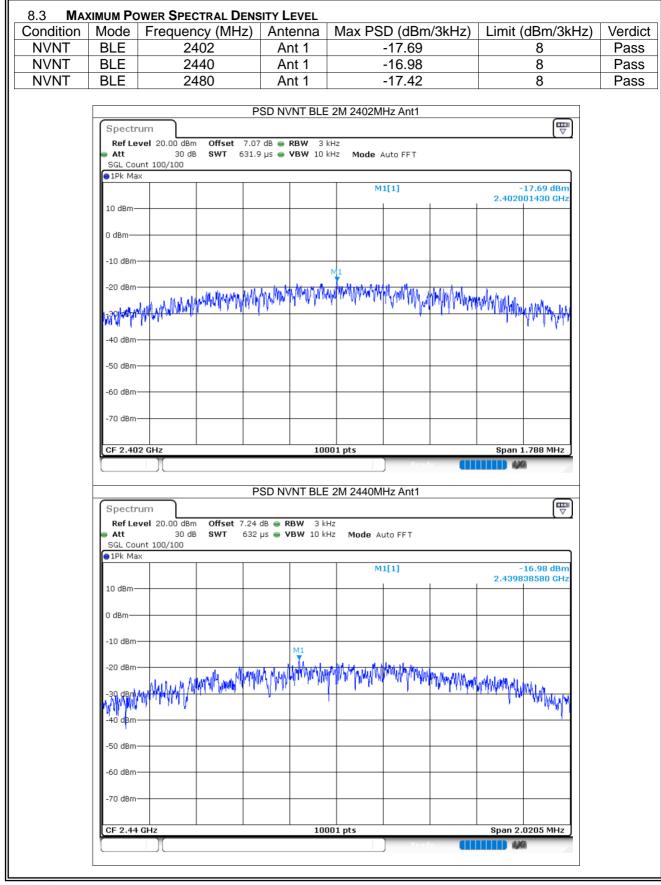
Version.1.3


8.2 O C	CUPIED C	HANNEL BANDW		000/	6 JD		
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdic
NVNT	BLE	2402	Ant 1	2.085	1.192	0.5	Pass
NVNT	BLE	2440	Ant 1	2.081	1.347	0.5	Pass
NVNT	BLE	2480	Ant 1	2.064	1.189	0.5	Pass
	_		OBW NVN	NT BLE 2M 2402	2MHz Ant1		
	Spectr		-1 2 02 40 - 00	n so ku-			
	e Att	evel 20.00 dBm Offs 30 dB SW1	et 7.07 dB 👄 RB1 38 µs 👄 VB1	W SUKHZ W 200 kHz Mode	e Auto FFT		
	SGL Co	unt 100/100					
	UPK Me				M1[1]	-4.65 dBm	
	10 dBm-				Occ Bw	2.402096390 GHz 2.085391461 MHz	
	0 dBm—			M1			
	-10 dBm			$\sim\sim\sim\sim\sim\sim$			
	-10 080	T1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		MAN MATE		
	-20 dBm		~~		- Vie		
	00 dB					γ	
	-30 dBm					$\overline{\mathbf{x}}$	
	<u>~4o 4a</u> 66					m	
		\sim				W	
	-50 dBm						
	-60 dBm						
	-70 dBm						
	05.0.46			10001		2	
	CF 2.40	I2 GHz		10001 pts		Span 4.0 MHz	
					Ready		

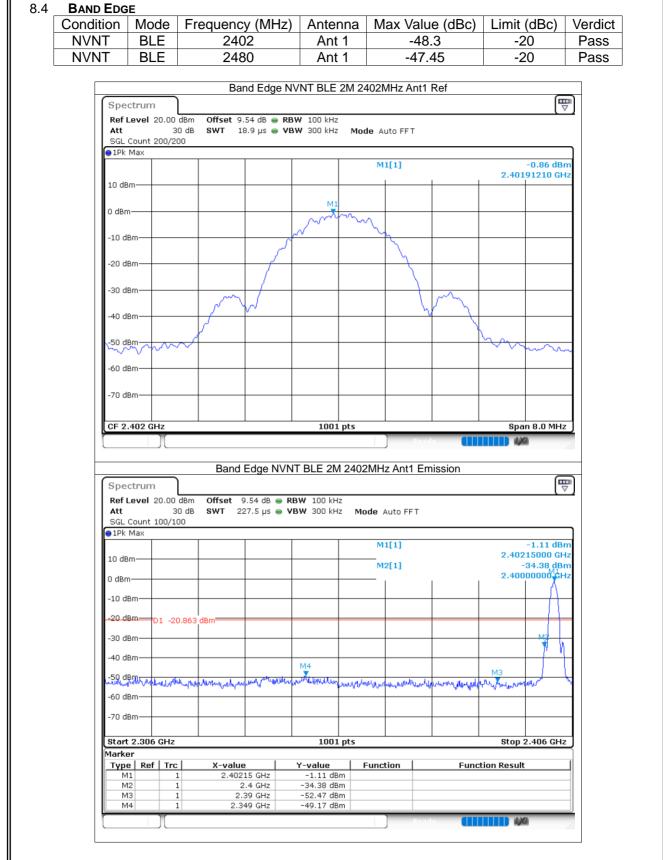


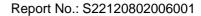
10 dBm M1 0 dBm M1 -10 dBm M2 -20 dBm M3 -20 dBm M3 -30 dBm -30 dBm -40 dBm -30 dBm -50 dBm -30 dBm -50 dBm -30 dBm -60 dBm -30 dBm -70 dBm -30 dBm -70 dBm -30 dBm -70 dBm -30 dBm -70 dBm -30 dBm	
Att 30 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 •	
SGL Count 100/100 IPK Max M1[1] 10 dBm M2 M2[1] 0 dBm M2 M3 - -10 dBm M2 M3 - -20 dBm M2 - - - -20 dBm - - - - - -30 dBm - <td></td>	
IPk Max M1[1] 10 dBm M2[1] 0 dBm M2 -10 dBm M2 -20 dBm M3 -20 dBm M3 -30 dBm -9 -40 dBm -9 -50 dBm -9 -60 dBm -9 -70 dBm -9	
M1[1] 10 dBm M2[1] 0 dBm M1 -10 dBm M2 -20 dBm M3 -20 dBm M3 -30 dBm -30 dBm -40 dBm -40 dBm -50 dBm -40 dBm -60 dBm -40 dBm -70 dBm -40 dBm	
10 dBm M2[1] 0 dBm M1 -10 dBm M2 -20 dBm M3 -20 dBm M3 -30 dBm M3 -30 dBm M3 -40 dBm M3 -50 dBm M3 -60 dBm M3 -70 dBm M3 -70 dBm M3 -70 dBm M1	
10 dBm M1 0 dBm M1 -10 dBm M2 -10 dBm M3 -20 dBm M3 -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -71 dBm -70 dBm	-3.01 dBm
M2 M3 -10 dBm M2 -20 dBm M3 -20 dBm M3 -30 dBm M3 -40 dBm M3 -50 dBm M3 -60 dBm M1 -70 dBm M1	2.401811220 GHz
0 dBm M2 M3 -10 dBm M2 M3 -20 dBm -30 dBm -40 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm	-9.02 dBm
-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -70	2.401467000 GHz
-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	
30 dBm 40 dBm 50 dBm 60 dBm 60 dBm 70 dBm 70 dBm 70 dBm 70 dBm 10001 pts 10001	_
30 dBm 40 dBm 50 dBm 60 dBm 70 dBm 70 dBm Type Ref Trc X-value Y-value Function Function M1 1 2.40181122 GHz -3.01 dBm	
40 dBm	
40 dBm	
-50 dBm	
-50 dBm	
60 dBm 60 dBm<	
TO dBm Image: CF 2.402 GHz 10001 pts CF 2.402 GHz 10001 pts Tarker Type Ref Trc X-value Y-value Function Function M1 1 2.40181122 GHz -3.01 dBm -3.01 dBm -3.01 dBm	
TO dBm Image: CF 2.402 GHz 10001 pts CF 2.402 GHz 10001 pts Tarker Type Ref Trc X-value Y-value Function Function M1 1 2.40181122 GHz -3.01 dBm -3.01 dBm -3.01 dBm	
CF 2.402 GHz 10001 pts larker Type Ref Trc X-value Y-value Function Function M1 1 2.40181122 GHz -3.01 dBm -3.01 dBm -3.01 dBm	
CF 2.402 GHz 10001 pts Iarker Type Ref Trc X-value Y-value Function Function M1 1 2.40181122 GHz -3.01 dBm	
Marker Yealue Function Type Ref Trc X-value Y-value Function M1 1 2.40181122 GHz -3.01 dBm Function	
Marker Yealue Function Type Ref Trc X-value Y-value Function M1 1 2.40181122 GHz -3.01 dBm Function	
Type Ref Trc X-value Y-value Function Function M1 1 2.40181122 GHz -3.01 dBm	Span 4.0 MHz
M1 1 2.40181122 GHz -3.01 dBm	
	on Result
M2 1 2.401467 GHz -9.02 dBm	
M3 1 2.402659 GHz -8.98 dBm	
Ready	

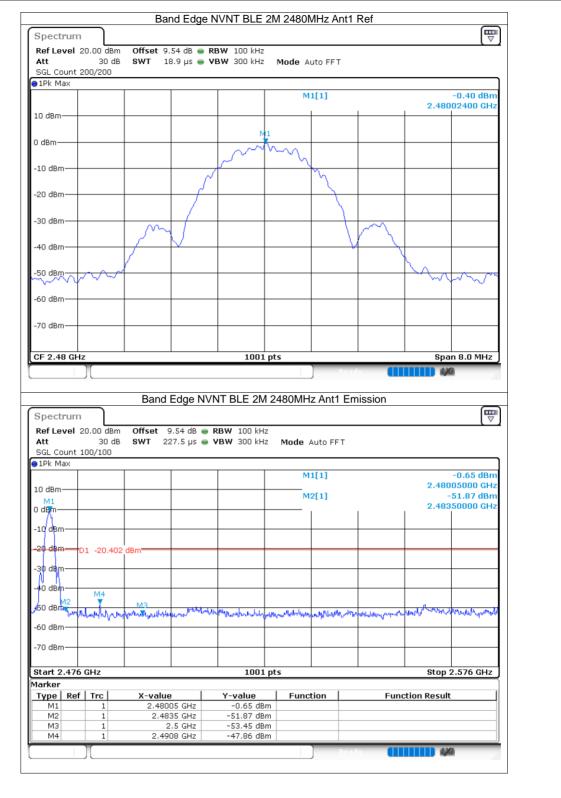


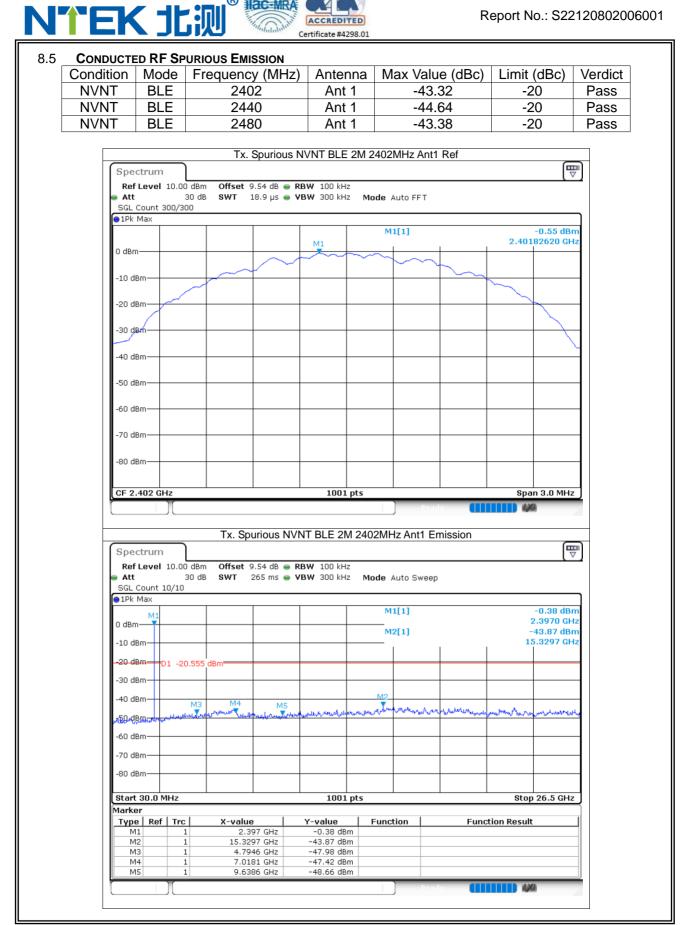


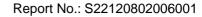
-	6dB Bandwidth NVNT BL	.E 2M 2480MHz Ant	1	
Spectrum				₽
Ref Level 20.00 dBm Offse	t 7.07 dB 👄 RBW 100 kHz			
Att 30 dB SWT	18.9 µs 👄 VBW 300 kHz	Mode Auto FFT		
SGL Count 100/100				
∋1Pk Max				
		M1[1]	-3	.69 dBm
10 dBm			2.479796	
		M2[1]		.69 dBm
0 dBm	M1		2.479429	DOO GHz
	M2			
-10 dBm				
-20 dBm				
-30 dBm				
				\sim
-40 dBm				
-50 dBm				
60 d0				
-60 dBm				
-70 dBm				
-/0 ubin				
CF 2.48 GHz	10001 p	ts	Span 4	.0 MHz
Marker				
Type Ref Trc X-va		Function	Function Result	
	79602 GHz -3.69 dBm			
	79429 GHz -9.69 dBm			
M3 1 2.48	30618 GHz -9.68 dBm			

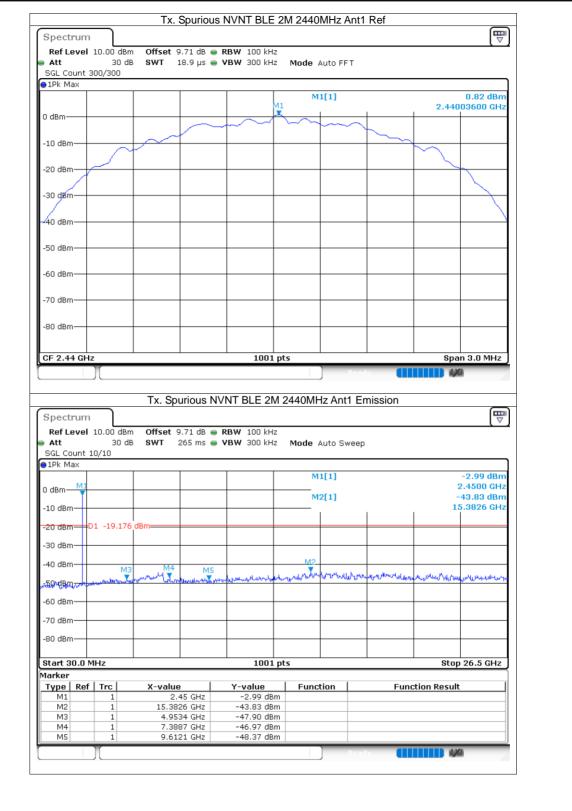

ACCREDITED Certificate #4298.01

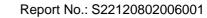

TEK 北测


Spectrum		
Ref Level 20.00 dBm Offset 7.07 dB RBW 3		
Att 30 dB SWT 632.1 µs ● VBW 10 SGL Count 100/100) kHz Mode Auto FFT	
1Pk Max		
	M1[1]	-17.42 dBm
10 dBm		2.479935440 GHz
D dBm		
-10 dBm		
M1		
-20 dBm	and the Miller of March and a section	AN ATA MALA
-20 dBm- BB ablight WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	te a character de la Materia Massa Abbe	THE THE WORLD'S AND
BU diskut da ha		
.' -40 dBm		
-50 dBm		
-60 dBm		
-70 dBm		
CF 2.48 GHz 10	0001 pts	Span 1.7835 MHz






R


ilac-M

ACCREDITED

