

Report No.: TBR-C-202306-0105-3 Page: 1 of 26

FCC Radio Test Report

FCC ID: 2AU4DDCA

: TBR-C-202306-0105-3
: X-Sense Innovations Co., Ltd.
est (EUT)
: Smart Smoke and Carbon Monoxide Alarm Listener with Voice
Alerts
: SAL100
: X-SENSE
: RW-C-202306-0105-2-1#& RW-C-202306-0105-2-2#
: 2023-07-12
: 2023-07-12 to 2023-07-20
: 2023-07-21
: FCC Part 15, Subpart C 15.249
: ANSI C63.10:2013
: PASS
In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

: Long La.

Seven.wu

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86 75526509301 Fax: +86 75526509195

Contents

CO	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	12
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Data	13
6.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	15
	5.3 Test Procedure	
	5.4 EUT Operating Condition	
	5.5 Test Data	17
7.	BANDWIDTH TEST	
	6.1 Test Setup	
	6.2 Test Procedure	
	6.3 EUT Operating Condition	
	6.4 Test Data	
8.	ANTENNA REQUIREMENT	
	7.1 Standard Requirement	
	7.2 Antenna Connected Construction	

7.3 Result	
ATTACHMENT A RADIATED EMISSION TEST DATA	20
ATTACHMENT BBANDWIDTH TEST DATA	26

 Report No.: TBR-C-202306-0105-3

 Page:
 4 of 26

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202306-0105-3	Rev.01	Initial issue of report	2023-07-21
	E		
A LUCAR		ROA ROAD	
	Idon		The second
LO DE			
	CER.		
	6		2
a be	BU		
	00		
A CONTRACT	3	FOR THE	
THE PARTY	mB		
		TOUR DUE	A V

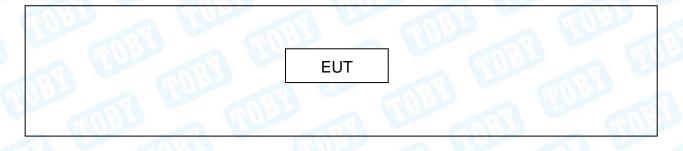
1. General Information about EUT

1.1 Client Information

Address : Park Community, Yuehai Avenue, Nanshan District, Shenzhen, China Manufacturer : X-Sense Innovations Co., Ltd.	Applicant		X-Sense Innovations Co., Ltd.
Address B4 503D, Tower B, Kexing Science Park, No15 Keyuan Road, Technology	Address	;	B4 503D,Tower B, Kexing Science Park, No15 Keyuan Road, Technology Park Community, Yuehai Avenue, Nanshan District, Shenzhen, China
	Manufacturer		X-Sense Innovations Co., Ltd.
	Address		B4 503D,Tower B, Kexing Science Park, No15 Keyuan Road, Technology Park Community, Yuehai Avenue, Nanshan District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Smart Smoke and Carbon Monoxide Alarm Listener with Voice Alerts				
Model(s)		SAL100	SAL100			
Model Difference						
		Operation Frequency: 912.375MHz				
B		Number of Channel:	1 Channel			
Product Description	:	Out Power: 77.67dBuV/m@3m Peak				
		Antenna Gain: 1dBi spring antenna				
		Modulation Type:	FSK			
Power Rating	:	LR03AM4 1.5V AAA battery*2, 1200mAh				
Software Version	2	SAL100_V1.0.2				
Hardware Version	R	SAL100_V1.2				
Connecting I/O		Please refer to the User's Manual				
Port(S)						


Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

	Equipment Information						
Name Model FCC ID/SDOC Manufacturer Used "							
COm.							
Cable Information							
Number	Shielded Type	Ferrite Core	Length	Note			
		(N)					

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Radiated Test			
Final Test Mode Description			
Mode 1	TX Mode		

Note:

For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

(1) According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF mode.

Test Software Version	Adjust and control the corresponding transmission frequency through the EUT entity key.
Frequency	912.375MHz
FKS	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})	
	Level Accuracy:		
Conducted Emission	9kHz~150kHz	±3.42 dB	
	150kHz to 30MHz	±3.42 dB	
Radiated Emission	Level Accuracy:	±4.60 dB	
Radiated Emission	9kHz to 30 MHz	±4.00 uB	
Radiated Emission	Level Accuracy:	±4.40 dB	
	30MHz to 1000 MHz	±4.40 dB	
Radiated Emission	Level Accuracy:	±4.20 dB	
	Above 1000MHz	14.20 UD	

Report No.: TBR-C-202306-0105-3 Page: 9 of 26

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

FCC Part 15 Subpart C(15.249)						
Standard Section	Test Item					
FCC	iest tiem	Test Sample(s)	Judgment	Remark		
15.203	Antenna Requirement	RW-C-202306-0105-2-2#	PASS	N/A		
15.205	Restricted Bands	RW-C-202306-0105-2-1#	PASS	N/A		
15.207	AC Power Conducted Emission	RW-C-202306-0105-2-1#	N/A	N/A		
15.249 &15.209	Radiated Spurious Emission	RW-C-202306-0105-2-2#	PASS	N/A		
15.215(C)	20dB Bandwidth	RW-C-202306-0105-2-2#	PASS	N/A		

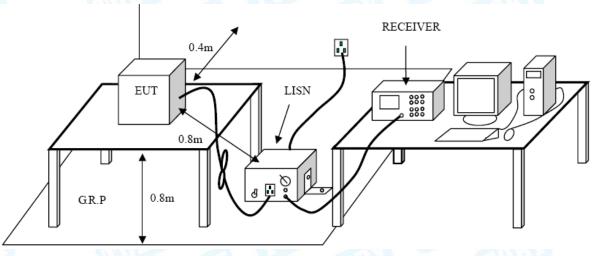
3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120-3	Tonscend	V3.2.22

4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024	
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb. 22, 2024	
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023	
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024	
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024	
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023	
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023	
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023	
Highpass Filter	CD	HPM-6.4/18G) (N/A	N/A	
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A	
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A	
Antenna Conducte	d Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 20, 2023	Jun. 19, 2024	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024	
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Sep.01.2022	Aug. 31, 2023	
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep.01.2022	Aug. 31, 2023	
Vector Signal Generator	Agilent	N5182A	MY50141294 Sep.01.202		Aug. 31, 2023	
Analog Signal Generator	Agilent	N5181A	MY48180463 Sep.01.2022		Aug. 31, 2023	
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Sep.01.2022	Aug. 31, 2023	
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Sep.01.2022	Aug. 31, 2023	
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A	
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep.01.2022	Aug. 31, 2023	
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 20, 2023	Jun. 19, 2024	
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A	
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382 Sep.01.2022		Aug. 31, 2023	
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Feb. 23, 2023	Feb.22, 2024	
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 20, 2023	Jun. 19, 2024	

5. Conducted Emission Test


- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Conducted Emission Test Limit

	Maximum RF Line Voltage (dBμV)					
Frequency	Quasi-peak Level	Average Level				
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back

and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN is at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Not Applicable.

6. Radiated Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.209
 - 5.1.2 Test Limit

TOBY

Radiated Emission Limit (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Me	eters (at 3m)
(MHz)	Peak	Average
Above 1000	74	54

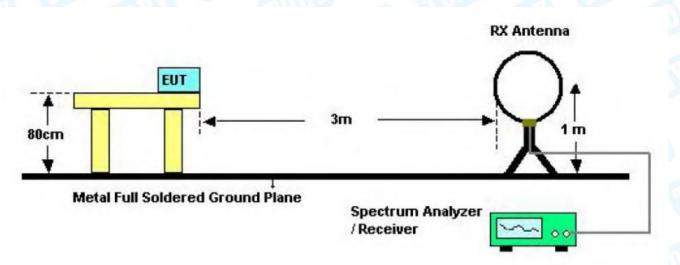
Note:

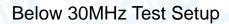
(1) The tighter limit applies at the band edges.

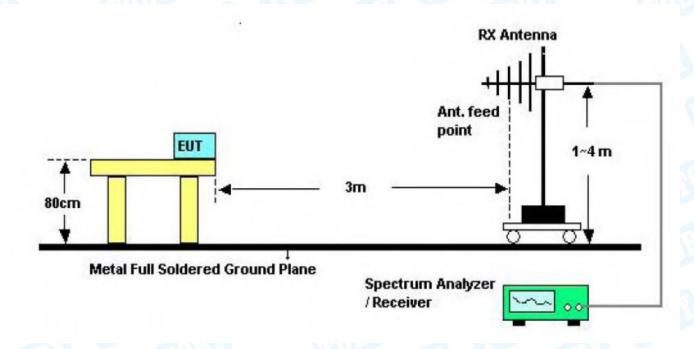
(2) Emission Level(dBuV/m)=20log Emission Level(Uv/m)

Limits of radiated emission measurement (15.249)

FCC Part 15 (15.249), Subpart C						
Limit Frequency Range (MHz)						
Field strength of fundamental	000,000					
50000 μV/m (94 dBμV/m) @ 3 m	902~928					
Field strength of fundamental	Delaw 000 and Above 000					
500 μV/m (54 dBμV/m) @ 3 m	Below 902 and Above 928					

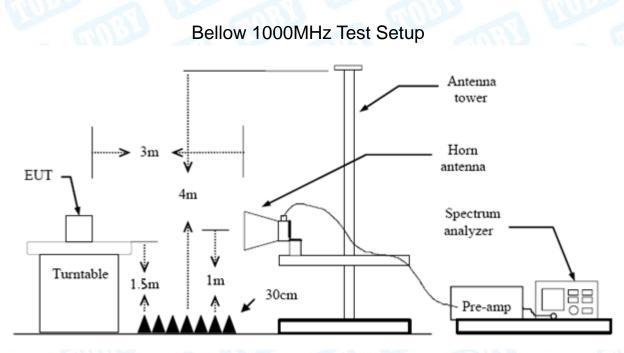





Restricted bands requirement for equipment operating in 902MHz to 928 MHz (15.249)

Restricted Frequency Band (MHz)	(dBuV/m)(at 3 M)		
902~928	Attenuated by at least 50 dB below the level of the fundamental or to the general radiated		
ROBI	emission limits in 15.209, whichever is the lesser attenuation		

5.2 Test Setup



Above 1GHz Test Setup

5.3 Test Procedure

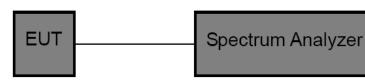
- (1) The measuring distance of 3m shall be used for measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

(8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The EUT was set to Continual Transmitting in maximum power, and new batteries are used during testing.

5.5 Test Data


Please refer to the Attachment A.

7. Bandwidth Test

6.1 Test Setup

6.2 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Bandwidth: RBW=100 kHz, VBW=300kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- 6.3 EUT Operating Condition

The EUT was set to continuously transmitting for the Bandwidth Test.

6.4 Test Data

Please refer to the Attachment B.

8. Antenna Requirement

- 7.1 Standard Requirement
 - 7.1.1 Standard

FCC Part 15.203

7.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

7.3 Result

The EUT antenna is spring antenna Antenna. It complies with the standard requirement.

	Antenna Type	
100	Permanent attached antenna	(D)
	Unique connector antenna	
D	Professional installation antenna	0.01

Attachment A-- Radiated Emission Test Data

Field Strength of the Fundamental

TOBY

Temperature:	24.3 ℃		Relative Humidity:	45%
Test Voltage:	DC 3V	WU.	AV	-
Ant. Pol.	Horizontal			Children and the
Test Mode:	TX 912.375MHz		m UD S	
Remark:	2			130
80.0 dBu∀/m		2		
70		¥		
60				
50			(RF)FCC 15C 3M Rad	iation
40			Margin -6 dB	
30 1	which was and a superior and the superio	'₩ <u></u>	an a	31. 0
20	enalisenskapadel janes fil og se det jande produktionen av att att att att att att att att att	and a second a second a second a second and	waareen aan ahaa ahaa ahaa ahaa ahaa ahaa ah	allan an 1994 - An
20				
10				
0				
-10				
-20				

No.	Frequency (MHz)	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	902.0000	35.57	-7.52	28.05	46.00	-17.95	peak
2 *	912.3600	85.01	-7.34	77.67	94.00	-16.33	QP
3	928.0000	34.48	-7.07	27.41	46.00	-18.59	peak

Emission Level= Read Level+ Correct Factor

					100				6	111	100			
Ten	npera	ature:	24.3	°℃				5	Re	lative	Hum	idity:	45%	
Tes	t Vol	tage:	DC	3V		-	11	11.2		1			1	5
Ant	. Pol	.	Vert	ical	-				61	195		~	1970	
Tes	t Mo	de:	TX 9	912.3	75MHz	_								
Rer	nark	:	16	3	2		NU					e	a Bi	3
80.0	dBu	iV/m				3								1
70						Ĩ								
60														
50														
)FCC 1! rgin -6 c	5C 3M Radiati 18	on	
40						1					gin d			
30	Holinda	- Sullin Mundam	mindurals	han	wheelphan	nt hunt	monthers	downwally	ogenowny	ntatimous	when	unonuhuhenyuu	3 Marting and	peak
20														
10														
0														
-10														
-20	00.000	002.00	000 00	000	00 0	12.00		010	00	021.00	024.6	0 007 0	0 000	
. 9	00.000	903.00	906.00	909.	.00 9	12.00	(MHz)	918.	UU	921.00	924.0	0 927.0	0 930	<u>.</u> 00
N	lo.	Freque (MHz			ading BuV)		ctor 3/m)	Lev (dBu)		Lim (dBu\		Margin (dB)	Detect	or
	1	902.00	00	35	5.26	-7	.52	27.	74	46.0	00	-18.26	peal	<
2	2 *	912.36	00	84	1.43	-7	.34	77.	09	94.0	0	-16.91	QP	Ť

-7.07

28.01

-17.99

peak

46.00

Emission Level= Read Level+ Correct Factor

35.08

928.0000

3

Radiated Spurious Emission (9 KHz~30 MHz)

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

Radiated Spurious Emission (Below 1 GHz)

emperature:	24.3 ℃	Relative Humidity:	45%
est Voltage:	DC 3V		~
nt. Pol.	Horizontal		C C
est Mode:	TX 912.375MHz		
lemark:	Only worse case is	reported	
80.0 dBuV/m			<u>\$</u>
70			
60			
50		(RF)FCC 15C 3M F Margin -6 dB	Tadiation
40			5
30		2	Marmult pe
20	1	3 3 manun pour minun	prenuture in the second s
10 month march	much many marked	Lather have been and the second second	
0			
-10			
-20			
30.000	£0 00	(MHz) 300 00	100

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	125.0066	44.93	-23.52	21.41	43.50	-22.09	peak
2	143.8295	47.19	-22.58	24.61	43.50	-18.89	peak
3	239.9874	43.99	-22.91	21.08	46.00	-24.92	peak
4	541.3725	43.10	-14.32	28.78	46.00	-17.22	peak
5	779.6068	45.58	-9.50	36.08	46.00	-9.92	peak
6 *	912.8620	84.98	-7.34	77.64	94.00	-16.36	QP

Emission Level= Read Level+ Correct Factor

20 10 10 -10 -20 30.000 Cn nn (MHz) 3nn nn 10	
Ant. Pol. Vertical Test Mode: TX 912.375MHz Remark: Only worse case is reported 00.0 dBuV/m 70 0 60 0 60 0 60 0 70 0 70 0 60 0 90 0 <td< td=""><td>2</td></td<>	2
Test Mode: TX 912.375MHz Remark: Only worse case is reported 90.0 dBuV/m 70 0 60 (RFJFC: 15C 3M Radiation 50 0 40 0 30 0 20 1 10 0 20 1 10 0 20 1 30.000 En no	Jaco
Remark: Only worse case is reported 80.0 dBuV/m 70 60 60 (RFJFCC 15C 3M Radiation Margin & dB 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 60 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 <	
00.0 dBuV/m 70 60 60 60 60 60 60 60 60 60 6	
00.0 dBuV/m 70 60 60 60 60 60 60 60 60 60 6	
70 60 (RF)FCC 15C 3M Radiation 50 (RF)FCC 15C 3M Radiation 40 (RF)FCC 15C 3M Radiation 30 (RF)FCC 15C 3M Radiation 10 (RF)FCC 15C 3M Radiation 10	
60 60 10 10 10 10 10 10 10 10 10 1]
50 Margin - 6 dB 40 Margin - 6 dB 30 Margin - 6 dB 20 1 10 Margin - 6 dB 10 Margin - 6 dB 10 1 20 1 30 1	
40 30 20 10 10 -10 -20 30.000 En nn (MHz) 3nn nn 10	-
0 -10 -20 30.000 En nn (MHz) 3nn nn 10	-
0 -10 -20 30.000 En nn (MHz) 3nn nn 10	//peak
0 -10 -20 30.000 En nn (MHz) 3nn nn 10	
0 -10 -20 30.000 £n nn (MHz) 3nn nn 10	
-10 -20 30.000 En no (MH2) 30.000 En no 10	1
00- 010 010 010 010 010 010 010 010 010 01	
30.000 £0.00 10	
	00.000
No.Frequency (MHz)Reading (dBuV)Factor (dB/m)Level (dBuV/m)Limit (dBuV/m)Margin (dB)No.(MHz)(dBuV)(dBuV)(dB/m)Level (dBuV/m)Limit (dBuV/m)Margin (dB)	ctor
1 66.4989 42.45 -24.15 18.30 40.00 -21.70 pe	ak
2 107.8877 42.05 -24.93 17.12 43.50 -26.38 pe	ak
3 138.3873 38.33 -22.77 15.56 43.50 -27.94 pe	ak
4 300.3672 37.66 -20.84 16.82 46.00 -29.18 pe	ak
5 670.4893 37.40 -11.72 25.68 46.00 -20.32 pe	ak
6 * 912.8620 84.78 -7.34 77.44 94.00 -16.56 Q	, ⊥

Emission Level= Read Level+ Correct Factor

Radiated Spurious Emission (Above 1 GHz)

Temperature:	26 ℃	Relative Humidity:	54%			
Test Voltage:	DC 3V	(10)				
Ant. Pol.	Horizontal	any any				
Test Mode:	TX 912.375MHz		Can			
Remark:	Remark: No report for the emission which more than 10 dB below the					
	prescribed limit.					

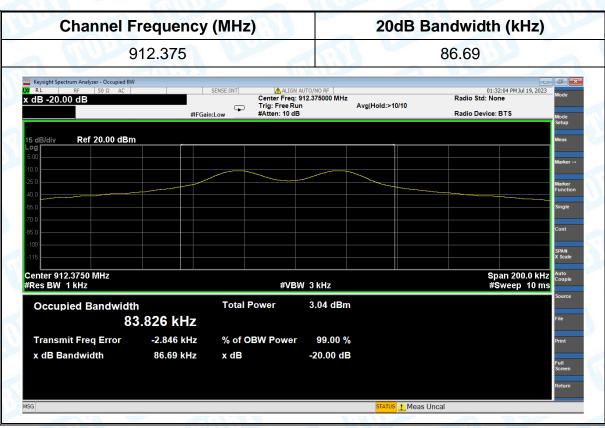
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4901.500	50.41	-13.85	36.56	74.00	-37.44	peak
2	7808.500	48.22	-6.87	41.35	74.00	-32.65	peak
3	10511.500	45.78	2.44	48.22	74.00	-25.78	peak
4 *	14362.000	41.69	6.73	48.42	74.00	-25.58	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Tem	perature:	26 ℃		Relative Humidity:	54%		
Test	Voltage:	DC 3V	AR LEM	0000			
Ant.	Pol.	Vertical					
ſest	Mode:	TX 912.375	TX 912.375MHz				
Rem	nark:	k: No report for the emission which more than 10 dB below the					
		prescribed l	imit.				
90.0	dBu¥/m						
80				(RF) FCC PART 15	C (PEAK)		
70							
60							
50			with the second strong	(RF) FCC PART 15	C (AVG)		
40	4	" Xummer	a manustration and a second	" Jurtu Manda Mark	Mr. Martinger		
	manyman	non and the second		"way!			
30	AL ANT						
20							
10							
0							
-10							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4570.000	52.60	-15.05	37.55	74.00	-36.45	peak
2	7681.000	49.45	-7.07	42.38	74.00	-31.62	peak
3 *	10894.000	44.94	4.20	49.14	74.00	-24.86	peak
4	14285.500	42.47	6.30	48.77	74.00	-25.23	peak


Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit. 6. The near value cavarage limit. So only show the pask value
- 6. The peak value < average limit, So only show the peak value.

Attachment B--Bandwidth Test Data

-----END OF THE REPORT----

