

Page 1 of 46 Report No.: EED32N80687202

TEST REPORT

Product Sport Earbuds

Trade mark Walker's

GWP-SPEB, GWP-SPEB-XXX(Where Model/Type reference

X = 0.9 or A-Z for different color)

GWP-SPEB Test Model No.

Serial Number N/A

Report Number EED32N80687202 FCC ID 2AU3A-GWPSPEB

Date of Issue Nov. 26, 2021

Test Standards 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

Good Sportsman Marketing, LLC 5250 Frye Road Irving TX 75061

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668

FAX: +86-755-3368 3385

Compiled by:

Report Seal

Martin bee Martin Lee

Reviewed by:

Aaron Ma

Date:

Nov. 26, 2021

David Wang

David Wang

Check No.: 7631040821

Contents 1

1 CONTENTS						Page
2 VERSION						
3 TEST SUMMARY						
4 GENERAL INFORMA						
4.2 GENERAL DESCRIPT 4.3 PRODUCT SPECIFIC 4.4 TEST CONFIGURATION 4.5 TEST ENVIRONMENT 4.6 DESCRIPTION OF S 4.7 TEST LOCATION	ON TION OF EUT CATION SUBJECTIVE TO THE ON F UPPORT UNITS CERTAINTY (95% CONFILE	HIS STANDARD.				5 5 7 7 7
5 EQUIPMENT LIST		•••••	•••••	•••••		9
6 TEST RESULTS AND	MEASUREMENT DA	ГА	•••••	•••••	•••••	11
6.2 Maximum Conduction 6.3 20dB Emission Bat 6.4 Carrier Frequence 6.5 Number of Hoppin 6.6 Time of Occupance 6.7 Band edge Measu 6.8 Conducted Spurice 6.9 Pseudorandom Frequence 6.9	MENT TED OUTPUT POWER NDWIDTH SY SEPARATION G CHANNEL Y REMENTS DUS EMISSIONS LEQUENCY HOPPING SEQUUS EMISSION & RESTRICT	JENCE				
7 APPENDIX A						
PHOTOGRAPHS OF TI	EST SETUP		•••••		•••••	44
PHOTOGRAPHS OF E	UT CONSTRUCTIONA	L DETAILS				46

Version No.	Date	Description
00	Nov. 26, 2021	Original
	São (a)	

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	N/A
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

N/A: When the EUT charging, BT will not work , So Not Applicable.

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

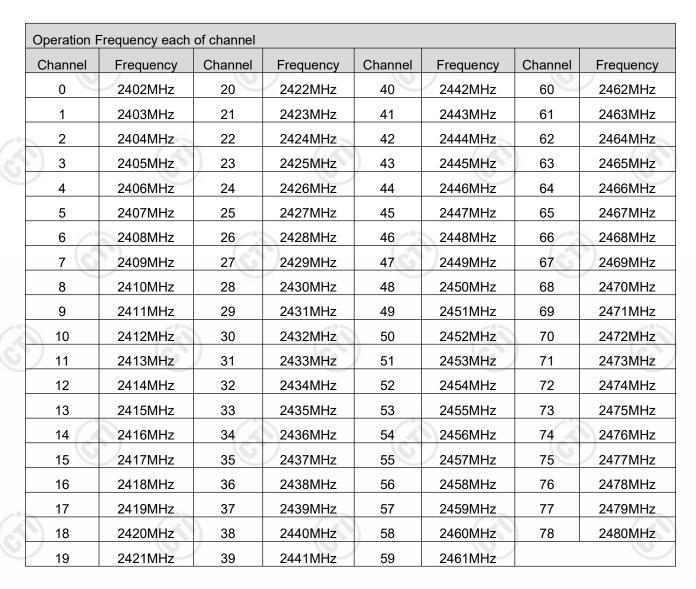
Model No.: GWP-SPEB, GWP-SPEB-XXX(Where X = 0-9 or A-Z for different color)

Only the modelGWP-SPEB was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance.

4.1 Client Information

Applicant:	Good Sportsman Marketing, LLC	
Address of Applicant:	5250 Frye Road Irving TX 75061	
Manufacturer:	Good Sportsman Marketing, LLC	
Address of Manufacturer:	5250 Frye Road Irving TX 75061	(20)
Factory:	Concord Intelligent Technology (Huizhou) Ltd.	(6)
Address of Factory:	21, Ping An Rd, Shuikou Street, Hui Cheng District, Huizhou City, Guangdong Province, China	

4.2 General Description of EUT


•	
Product Name:	Sport Earbuds
Mode No.:	GWP-SPEB, GWP-SPEB-XXX(Where X = 0-9 or A-Z for different color)
Test Mode No.:	GWP-SPEB
Trade mark:	Walker's
EUT Supports Radios application:	Bluetooth 5.0 dual mode: 2402-2480MHz
Bluetooth Version:	V5.0
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location
Power Supply:	Battery: DC 3.7V, Charge by DC 5.0V
Test Voltage:	DC 3.7V
Sample Received Date:	Aug. 05, 2021
Sample tested Date:	Aug. 05, 2021 to Aug. 24, 2021

4.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Antenna Type:	Chip antenna
Antenna Gain:	0.8dBi

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

EUT Test Software Settings	:			
Software:	BlueTest3 (manufacturer declare)			
EUT Power Grade:	Class2 (Power level is built-in set parame selected)	eters and cannot be changed and		
Use test software to set the lot transmitting of the EUT.	west frequency, the middle frequency and th	e highest frequency keep		
Mode	Channel	Frequency(MHz)		
	CH0	2402		
DH1/DH3/DH5	CH39	2441		
C:0	CH78	2480		
	CH0	2402		
2DH1/2DH3/2DH5	CH39	2441		
	CH78	2480		
	CH0	2402		
3DH1/3DH3/3DH5	CH39	2441		
	CH78	2480		

4.5 **Test Environment**

Operating Environment					
Radiated Spurious Emi	ssions:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH		-05		-0-
Atmospheric Pressure:	1010mbar		(41)		
RF Conducted:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar			(3)	
	Radiated Spurious Emis Temperature: Humidity: Atmospheric Pressure: RF Conducted: Temperature: Humidity:	Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar RF Conducted: Temperature: 22~25.0 °C Humidity: 50~55 % RH	Radiated Spurious Emissions: Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar RF Conducted: Temperature: 22~25.0 °C Humidity: 50~55 % RH	Radiated Spurious Emissions: Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar RF Conducted: Temperature: 22~25.0 °C Humidity: 50~55 % RH	Radiated Spurious Emissions: Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar RF Conducted: Temperature: 22~25.0 °C Humidity: 50~55 % RH

4.6 **Description of Support Units**

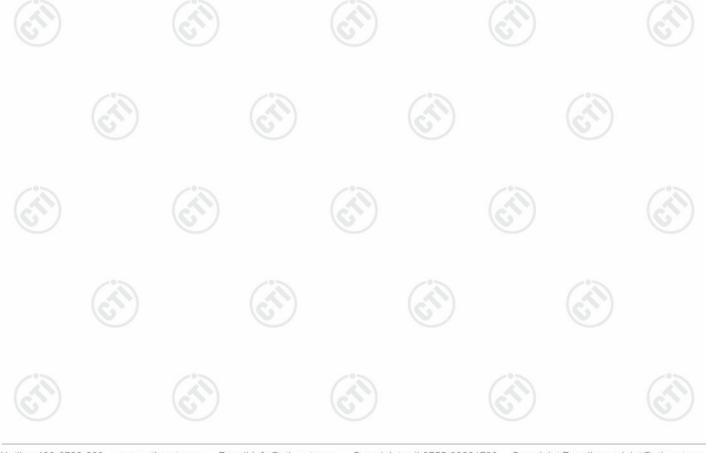
The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Notebook	DELL	DELL 3490	FCC ID and DOC	СТІ

All tests were performed at:

Centre Testing International Group Co., Ltd


Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

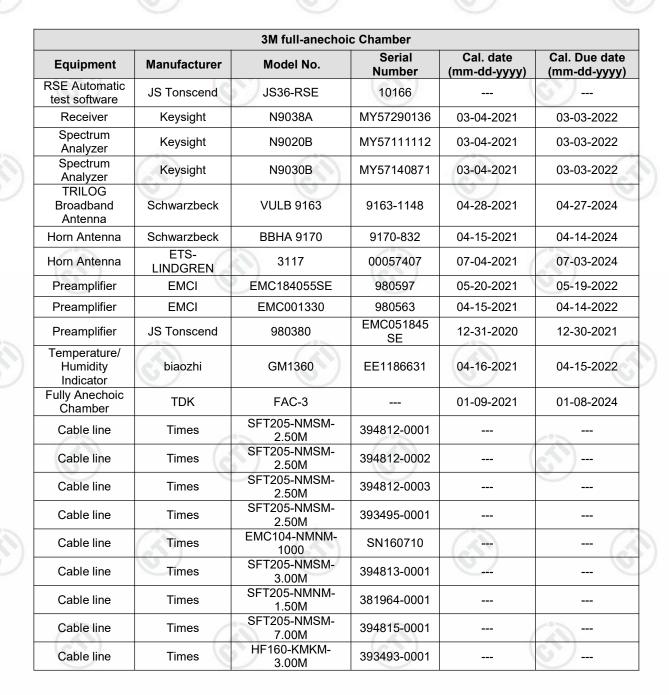
No tests were sub-contracted. FCC Designation No.: CN1164

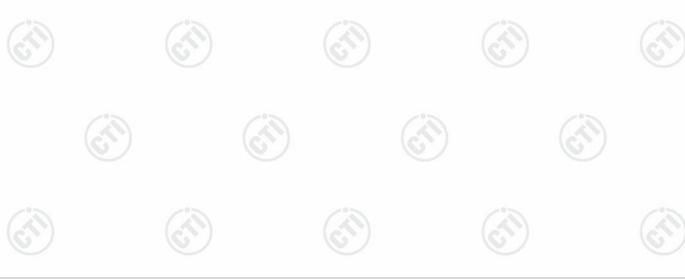
4.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item Measurement Uncerta	
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
(2)	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Padiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
	(0,)	3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	R&S	FSV40	101200	09-02-2020	09-01-2021	
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(3)			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		(<u>(i)</u>	
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021	
PC-1	Lenovo	R4960d				
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3				

	3M Semi/full-anechoic Chamber									
Equipment	Manufacturer	Manufacturer Model No. Serial Number		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022					
TRILOG Broadband Antenna	Broadband Schwarzbeck		9163-618	05-16-2021	05-15-2022					
Loop Antenna	Loop Antenna Schwarzbeck		1519B-076	04-15-2021	04-14-2024					
Receiver	Receiver R&S		100938-003	10-16-2020	10-15-2021					
Multi device Controller	maturo	NCD/070/10711 112	(4)	(<u>())</u>					
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022					
Cable line	Fulai(7M)	SF106	5219/6A							
Cable line	Fulai(6M)	SF106	5220/6A	(3)	/3					
Cable line	Fulai(3M)	SF106	5216/6A	(6,7)	(63)					
Cable line	Fulai(3M)	SF106	5217/6A							





6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

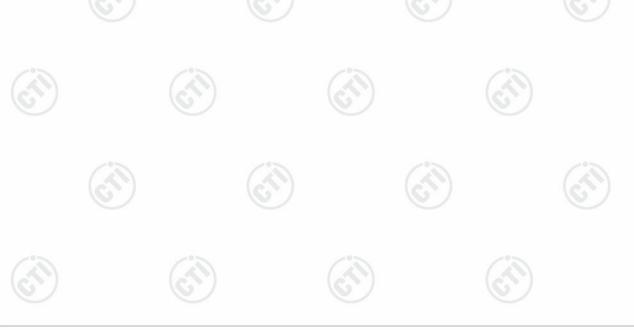
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

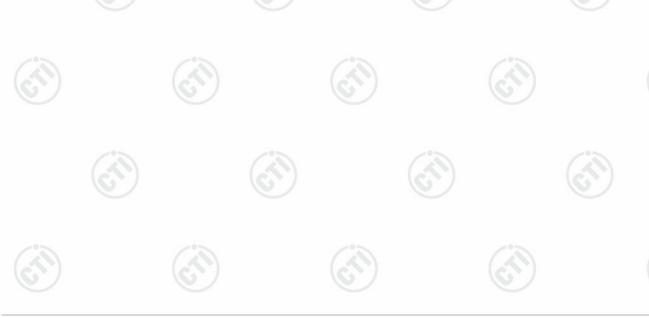
EUT Antenna: Please see Internal photos


The antenna is Chip antenna. The best case gain of the antenna is 0.8dBi.

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)				
Test Method:	ANSI C63.10:2013				
Test Setup:	RF test Control Control Power Supply RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.				
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.				
Limit:	21dBm				
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type				
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.				
Test Results:	Refer to Appendix A				

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Test Setup: Test Procedure:	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit					
	continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.					
Limit:	NA					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
Test Results:	Refer to Appendix A					

Test Requirement:	47 CFR Part 15C Section	n 15.247 (a)	(1)			
Test Method:	ANSI C63.10:2013	(0,0)		(6,)		
Test Setup:	Control Computer Power Supply TEMPERATURE CABNET Table	Attenuator	RF test System Instrument			
	Remark: Offset=Cable lo					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 					
Limit:	Frequency hopping syst have hopping channel catwo-thirds of the 20 dB greater.	arrier frequer	ncies that are sepa	rated by 25 kHz or		
Exploratory Test Mode:	Hopping transmitting with	n all kind of r	modulation and all	kind of data type		
Final Test Mode:	Through Pre-scan, find modulation type, 2-DH5 modulation type, 3-DH5 type.	of data t	ype is the worst	case of $\pi/4DQPSK$		
Test Results:	Refer to Appendix A		(:2)	(3)		
	7 251					


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	RF test Control Computer Power Supply RF test System Instrument Table Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Mode:	Hopping transmitting with all kind of modulation
Test Results:	Refer to Appendix A

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Adenona Power Supply Power Supply Table RF test System Instrument Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix A

=	47 050 D 4 450 D 45 45 047 410					
Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Test Setup:	Control Computer Power Supply Power Foot Table RF test System Attenuator Instrument					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
Test Results:	Refer to Appendix A					

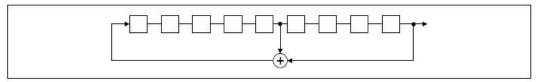
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Power Supply Power Soft Table RF test System Instrument Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.

6.9 **Pseudorandom Frequency Hopping Sequence**

47 CFR Part 15C Section 15.247 (a)(1), (h) requirement: Test Requirement:

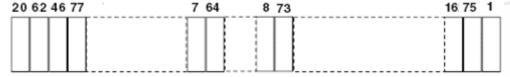
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage


outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

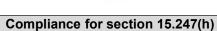
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

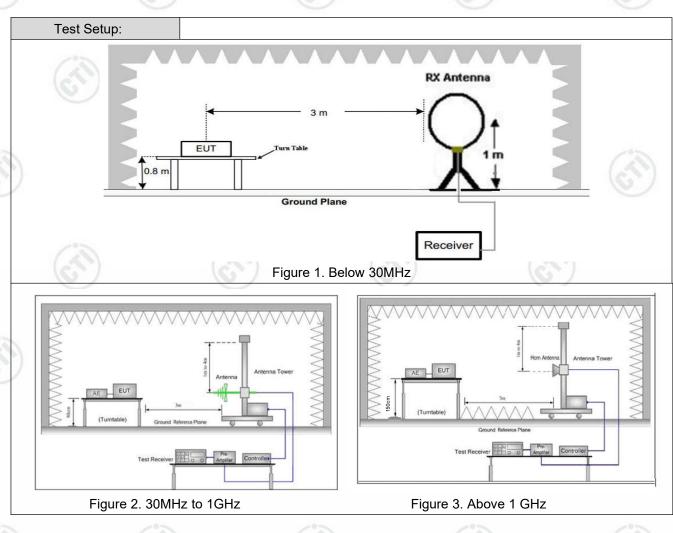
Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.



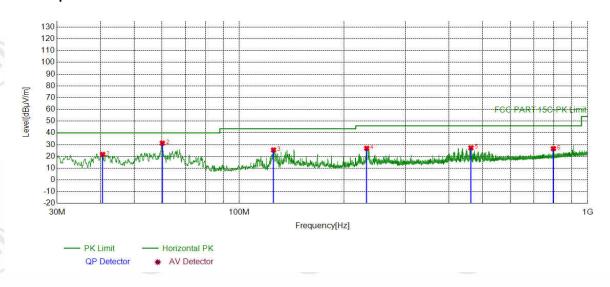
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

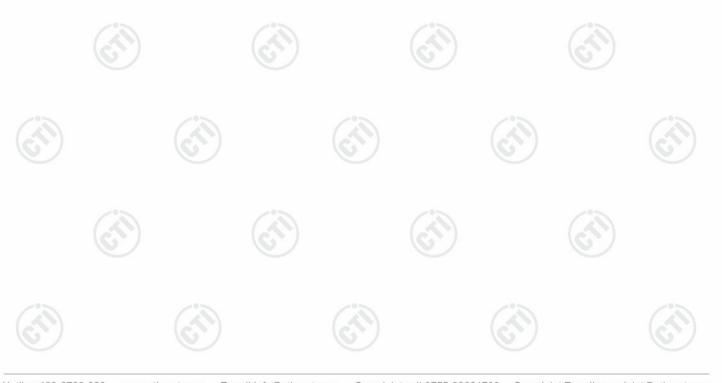
According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



Test Requirement:	47 CFR Part 15C Section	7 CFR Part 15C Section 15.209 and 15.205									
Test Method:	ANSI C63.10: 2013	NSI C63.10: 2013 Measurement Distance: 3m (Semi-Anechoic Chamber)									
Test Site:	Measurement Distance	: 3m (Semi-Anech	noic Cham	ber)							
	Frequency	Detector	RBW	VBW	Remark						
	0.009MHz-0.090MHz	z Peak	10kHz	30kHz	Peak						
	0.009MHz-0.090MHz	z Average	10kHz	30kHz	Average						
	0.090MHz-0.110MH	z Quasi-peak	10kHz	30kHz	Quasi-peak						
Desciver Cetury	0.110MHz-0.490MH	z Peak	10kHz	30kHz	Peak						
Receiver Setup:	0.110MHz-0.490MH	z Average	10kHz	30kHz	Average						
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak						
	30MHz-1GHz	Peak	100 kH	z 300kHz	Peak						
	Above 1CHz	Peak	1MHz	3MHz	Peak						
	Above 1GHz	Peak	1MHz	10kHz	Average						
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)						
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300						
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30						
	1.705MHz-30MHz	30	-	-/3	30						
	30MHz-88MHz	100	40.0	Quasi-peak	3						
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3						
	216MHz-960MHz	200	46.0	Quasi-peak	3						
	960MHz-1GHz	500	54.0	Quasi-peak	3						
	Above 1GHz	500	54.0	Average	3						
	Note: 15.35(b), Unless of emissions is 20dB applicable to the expeak emission lev	above the maxirequipment under	num permi test. This p	tted average	emission limit						

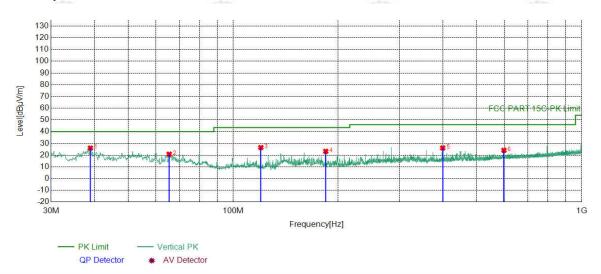
Test Procedure:	n m m m m m m m m m m m m m m m m m m m	neters above the gras rotated 360 degradiation. Above 1G: The Enters above the gras rotated 360 degradiation. Active For the radiation and the retermined to be a sistance, while keep of emissions at each riented for maximum of the higher or lower the emission and structure and the EUT was set 3 antenna, which was lower. The antenna height round to determine orizontal and vertical and then the antenna the test frequency of the emission level and the rotation a	round at a 3 meter grees to determine dut was placed on round at a 3 meter grees to determine dut was placed on round at a 3 meter grees to determine ded emission test at ment antenna away source of emission ong the measurement frequency of signing response. The right of the final measurement of the emissions of the meters away from the emissions. The meters away from the meters away from the emission of the maximum value of the maximum value of the maximum reading. The maximum reading of the EUT in peal testing could be stated. Otherwise the tested one by one specified and then lowest channel (2480 durements are perforded, and found the 20 designed of the EUT in peal testing could be stated. Otherwise the dest channel (2480 durements are perforded, and found the 20 designed of the EUT in peal testing could be stated. Otherwise the dest channel (2480 durements are perforded, and found the 20 designed of the country and found the 20 designed of the 20 designed of the 20 designed of the 20 designed of the 20	r from each area of the sat the specified me ent antenna aimed a ifficant emissions, with measurement antenna pending on the radial emission source for lent antenna elevation measurement antennacted to a range of heimode ground plane. The interference-receip of a variable-heigh meter to four meters ue of the field strength the antenna are set to a manage of the field strength antenna was tuned and from 0 degrees to eak Detect Function are set to eather the antenna was tuned and from 0 degrees to eak Detect Function are set to eather the field strength and the peak of the field strength and the fi	er. The table ghest table 1.5 er. The table ghest ter. The table ghest ter. The table ghest tere. The table ghest tere EUT assurement to the source the polarization a may have tion pattern of receiving the shall be that a elevation ghts of from iving to antenna tabove the table worst case 4 meters (for to heights 1 to 360 and Specified to have 10dB and specified teres as a source to have 10dB and specified to the table table to the table table to solitioning the tist the table table to solitioning the table table table to solitioning the table ta
Exploratory Tes	Non I	nopping transmittin		uencies measured ward of modulation and	
Final Test Mode	Throu worst e: Prete scan,	ugh Pre-scan, find case. st the EUT at Tra the worst case is			
Test Results:	Pass	40			
(0.)	16	5 /	(0,)	(6)	





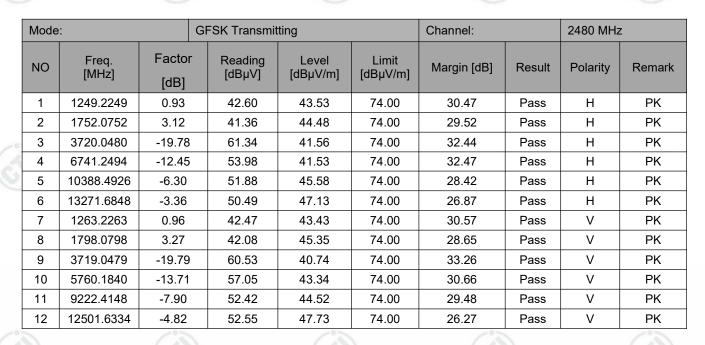
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 3DH5 for 8DPSK was recorded in the report.

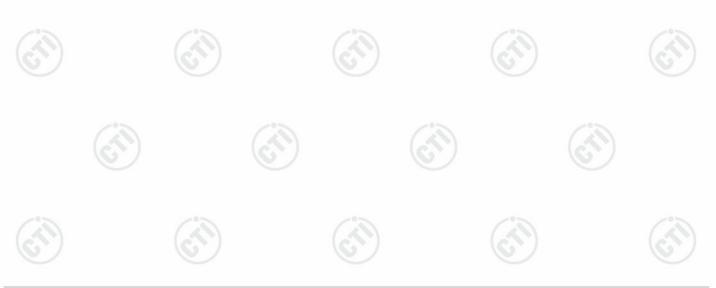


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	40.5741	-17.93	39.65	21.72	40.00	18.28	PASS	Horizontal	Peak
2	60.1700	-18.53	49.82	31.29	40.00	8.71	PASS	Horizontal	Peak
3	125.4575	-20.89	46.42	25.53	43.50	17.97	PASS	Horizontal	Peak
4	232.2652	-16.94	43.86	26.92	46.00	19.08	PASS	Horizontal	Peak
5	462.5663	-11.48	38.77	27.29	46.00	18.71	PASS	Horizontal	Peak
6	797.5408	-6.64	33.25	26.61	46.00	19.39	PASS	Horizontal	Peak

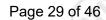
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level	Limit	Margin [dB]	Result	Polarity	Remark
1	38.9249	-18.37	44.43	26.06	40.00	13.94	PASS	Vertical	Peak
2	65.5056	-19.76	40.58	20.82	40.00	19.18	PASS	Vertical	Peak
3	120.0250	-20.08	46.56	26.48	43.50	17.02	PASS	Vertical	Peak
4	184.3424	-19.36	42.62	23.26	43.50	20.24	PASS	Vertical	Peak
5	399.2189	-12.95	39.04	26.09	46.00	19.91	PASS	Vertical	Peak
6	598.4768	-8.67	32.79	24.12	46.00	21.88	PASS	Vertical	Peak


Mode	:		GFSK Transmi	tting		Channel:		2402 MHz	2
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1293.2293	1.04	42.69	43.73	74.00	30.27	Pass	Н	PK
2	1982.0982	4.46	41.90	46.36	74.00	27.64	Pass	Н	PK
3	3603.0402	-20.36	60.72	40.36	74.00	33.64	Pass	Н	PK
4	5931.1954	-13.41	55.02	41.61	74.00	32.39	Pass	Н	PK
5	9250.4167	-7.92	52.06	44.14	74.00	29.86	Pass	Н	PK
6	13267.6845	-3.35	51.42	48.07	74.00	25.93	Pass	Н	PK
7	1298.8299	1.06	45.10	46.16	74.00	27.84	Pass	V	PK
8	1990.6991	4.50	42.84	47.34	74.00	26.66	Pass	V	PK
9	4194.0796	-18.03	61.69	43.66	74.00	30.34	Pass	V	PK
10	5760.1840	-13.71	57.03	43.32	74.00	30.68	Pass	V	PK
11	8498.3666	-10.56	52.80	42.24	74.00	31.76	Pass	V	PK
12	13290.6860	-3.43	51.36	47.93	74.00	26.07	Pass	V	PK

Mode):		GFSK Transmi	tting		Channel:		2441 MHz	
NO	Freq. [MHz]	Facto	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1337.6338	1.18	43.12	44.30	74.00	29.70	Pass	Н	PK
2	2000.5001	4.55	41.49	46.04	74.00	27.96	Pass	Н	PK
3	3661.0441	-20.10	61.68	41.58	74.00	32.42	Pass	Н	PK
4	5998.1999	-12.97	54.67	41.70	74.00	32.30	Pass	Н	PK
5	8896.3931	-9.22	54.78	45.56	74.00	28.44	Pass	Н	PK
6	13734.7156	-1.72	50.01	48.29	74.00	25.71	Pass	Н	PK
7	1321.8322	1.13	42.21	43.34	74.00	30.66	Pass	V	PK
8	1957.4958	4.33	41.41	45.74	74.00	28.26	Pass	V	PK
9	3662.0441	-20.09	60.79	40.70	74.00	33.30	Pass	V	PK
10	5760.1840	-13.71	57.12	43.41	74.00	30.59	Pass	V	PK
11	8284.3523	-10.96	53.38	42.42	74.00	31.58	Pass	V	PK
12	12530.6354	-4.61	51.90	47.29	74.00	26.71	Pass	V	PK

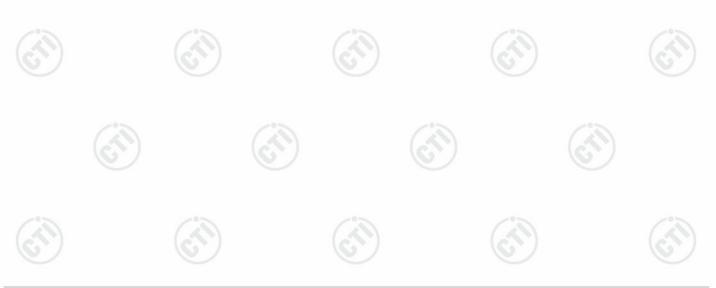


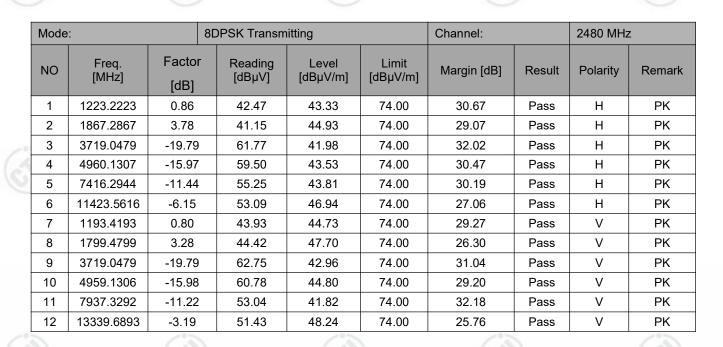
Mode) :		π/4DQPSK Tra	nsmitting		Channel:	7.1	2402 MHz	
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1267.8268	0.98	42.36	43.34	74.00	30.66	Pass	Н	PK
2	1842.4842	3.60	41.49	45.09	74.00	28.91	Pass	Н	PK
3	3603.0402	-20.36	61.60	41.24	74.00	32.76	Pass	Н	PK
4	5855.1903	-13.59	55.48	41.89	74.00	32.11	Pass	Н	PK
5	7870.3247	-11.05	53.01	41.96	74.00	32.04	Pass	Н	PK
6	12563.6376	-4.37	52.03	47.66	74.00	26.34	Pass	Н	PK
7	1249.8250	0.93	43.09	44.02	74.00	29.98	Pass	V	PK
8	1791.6792	3.25	43.03	46.28	74.00	27.72	Pass	V	PK
9	3603.0402	-20.36	62.45	42.09	74.00	31.91	Pass	V	PK
10	5760.1840	-13.71	57.52	43.81	74.00	30.19	Pass	V	PK
11	9247.4165	-7.91	52.95	45.04	74.00	28.96	Pass	V	PK
12	12465.6310	-4.78	52.35	47.57	74.00	26.43	Pass	V	PK



Mode	:		π/4DQPSK Tra	nsmitting		Channel:		2441 MHz	7
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1310.6311	1.10	43.09	44.19	74.00	29.81	Pass	Н	PK
2	1933.2933	4.20	41.11	45.31	74.00	28.69	Pass	Н	PK
3	3662.0441	-20.09	61.92	41.83	74.00	32.17	Pass	Н	PK
4	6871.2581	-12.00	54.33	42.33	74.00	31.67	Pass	Н	PK
5	10998.5332	-6.16	54.17	48.01	74.00	25.99	Pass	Н	PK
6	13854.7236	-1.82	49.97	48.15	74.00	25.85	Pass	Н	PK
7	1198.8199	0.80	43.10	43.90	74.00	30.10	Pass	V	PK
8	1811.8812	3.37	41.78	45.15	74.00	28.85	Pass	V	PK
9	3662.0441	-20.09	61.93	41.84	74.00	32.16	Pass	V	PK
10	5760.1840	-13.71	57.35	43.64	74.00	30.36	Pass	V	PK
11	8715.3810	-10.04	52.63	42.59	74.00	31.41	Pass	V	PK
12	12959.6640	-4.17	51.58	47.41	74.00	26.59	Pass	V	PK

9	Mode	:		π/4DQPSK Tra	ansmitting		Channel:		2480 MHz	Z
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1236.0236	0.89	42.63	43.52	74.00	30.48	Pass	Н	PK
Ī	2	1795.6796	3.27	42.24	45.51	74.00	28.49	Pass	Н	PK
	3	3720.0480	-19.78	62.23	42.45	74.00	31.55	Pass	Н	PK
Ī	4	5213.1475	-14.53	55.44	40.91	74.00	33.09	Pass	Н	PK
	5	7439.2960	-11.34	55.19	43.85	74.00	30.15	Pass	Н	PK
4	6	12528.6352	-4.62	52.38	47.76	74.00	26.24	Pass	Н	PK
9	7	1237.0237	0.90	42.50	43.40	74.00	30.60	Pass	V	PK
	8	1870.6871	3.81	42.44	46.25	74.00	27.75	Pass	V	PK
	9	3720.0480	-19.78	60.87	41.09	74.00	32.91	Pass	V	PK
Ī	10	5760.1840	-13.71	57.58	43.87	74.00	30.13	Pass	V	PK
Ī	11	8879.3920	-9.26	52.55	43.29	74.00	30.71	Pass	V	PK
Ī	12	12032.6022	-5.45	53.61	48.16	74.00	25.84	Pass	V	PK



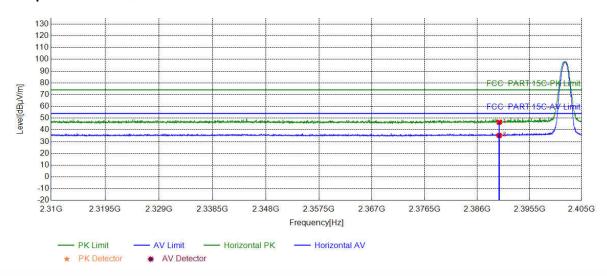


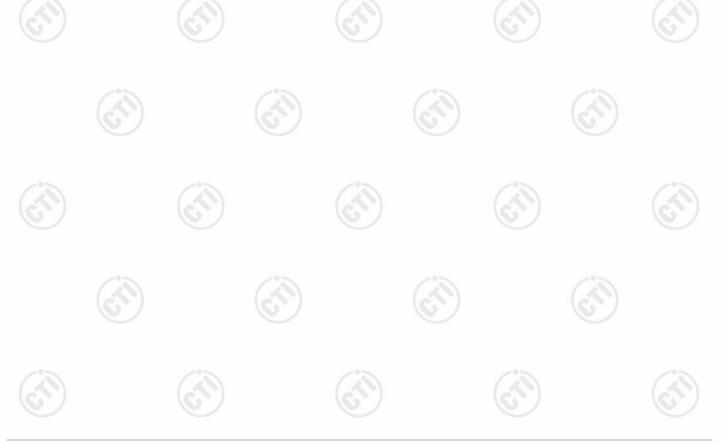
Mode):		8DPSK Transm	nitting		Channel:		2402 MHz	7
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1291.2291	1.04	42.91	43.95	74.00	30.05	Pass	Н	PK
2	1870.8871	3.81	41.35	45.16	74.00	28.84	Pass	Н	PK
3	4279.0853	-17.40	55.75	38.35	74.00	35.65	Pass	Н	PK
4	6099.2066	-13.15	54.54	41.39	74.00	32.61	Pass	Н	PK
5	8937.3958	-8.93	53.50	44.57	74.00	29.43	Pass	Н	PK
6	14402.7602	1.18	48.13	49.31	74.00	24.69	Pass	Н	PK
7	1248.2248	0.93	43.23	44.16	74.00	29.84	Pass	V	PK
8	1991.8992	4.51	44.62	49.13	74.00	24.87	Pass	V	PK
9	3191.0127	-20.37	62.42	42.05	74.00	31.95	Pass	V	PK
10	5760.1840	-13.71	57.25	43.54	74.00	30.46	Pass	V	PK
11	9281.4188	-7.94	52.96	45.02	74.00	28.98	Pass	V	PK
12	13925.7284	-1.82	49.63	47.81	74.00	26.19	Pass	V	PK

ı	Mode	:		8DPSK Transm	nitting		Channel:		2441 MHz	
	NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1191.4191	0.80	43.42	44.22	74.00	29.78	Pass	Н	PK
	2	1824.0824	3.46	41.88	45.34	74.00	28.66	Pass	Н	PK
	3	3661.0441	-20.10	60.58	40.48	74.00	33.52	Pass	Н	PK
	4	4882.1255	-16.21	59.63	43.42	74.00	30.58	Pass	Н	PK
	5	7805.3204	-11.35	53.33	41.98	74.00	32.02	Pass	Н	PK
Ġ	6	12526.6351	-4.64	52.29	47.65	74.00	26.35	Pass	Н	PK
	7	1223.6224	0.86	43.14	44.00	74.00	30.00	Pass	V	PK
	8	1658.6659	2.67	43.32	45.99	74.00	28.01	Pass	V	PK
	9	3662.0441	-20.09	62.27	42.18	74.00	31.82	Pass	V	PK
	10	4882.1255	-16.21	60.38	44.17	74.00	29.83	Pass	V	PK
	11	7985.3324	-11.62	53.86	42.24	74.00	31.76	Pass	V	PK
	12	12800.6534	-4.17	51.85	47.68	74.00	26.32	Pass	V	PK

Remark:

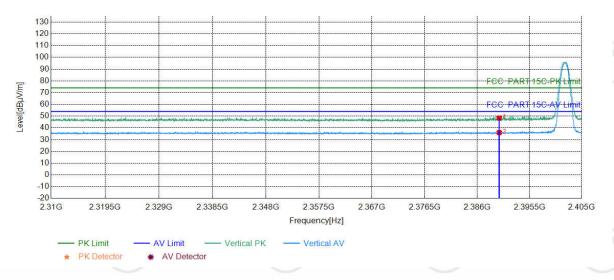
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



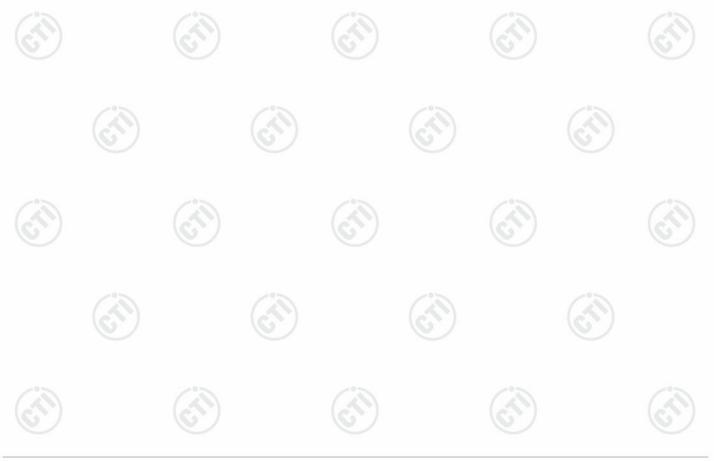

Restricted bands:

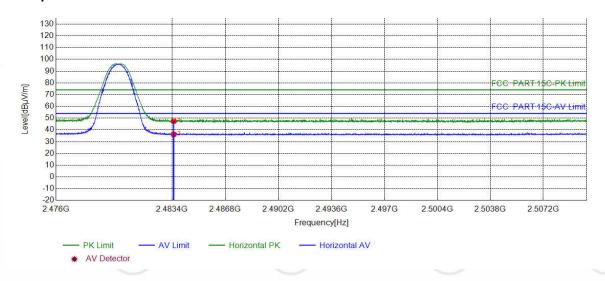
Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402 MHz
Remark:			

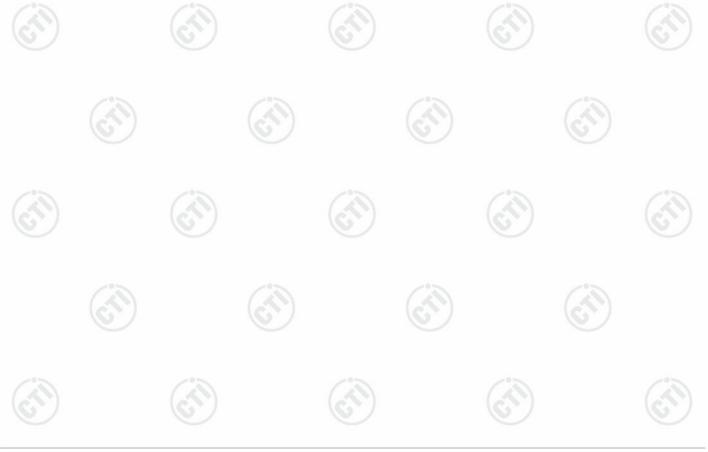


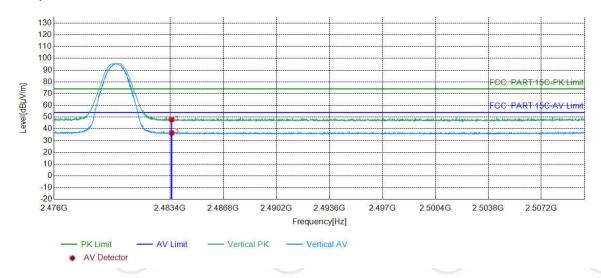
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.74	46.51	74.00	27.49	PASS	Horizontal	PK
2	2390.0000	5.77	29.50	35.27	54.00	18.73	PASS	Horizontal	AV



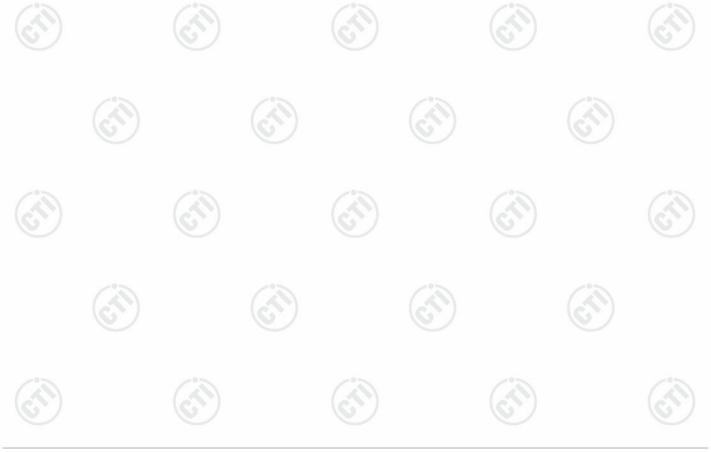


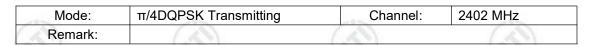
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	42.64	48.41	74.00	25.59	PASS	Vertical	PK
	2	2390.0000	5.77	30.26	36.03	54.00	17.97	PASS	Vertical	AV



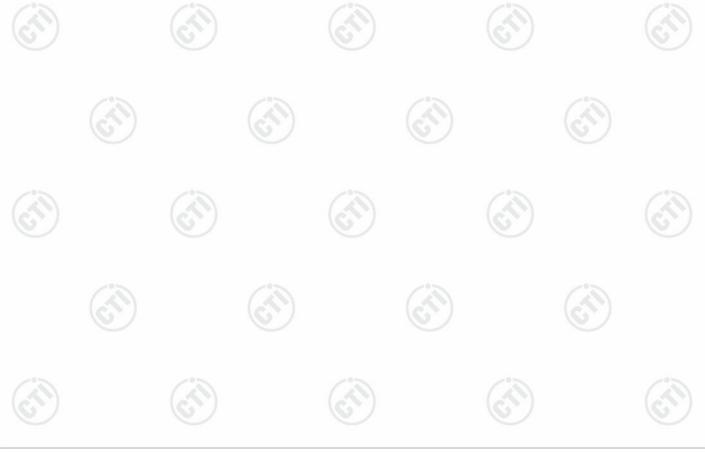


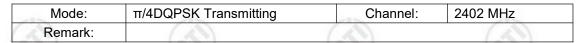
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.85	47.42	74.00	26.58	PASS	Horizontal	PK
2	2483.5000	6.57	29.62	36.19	54.00	17.81	PASS	Horizontal	AV

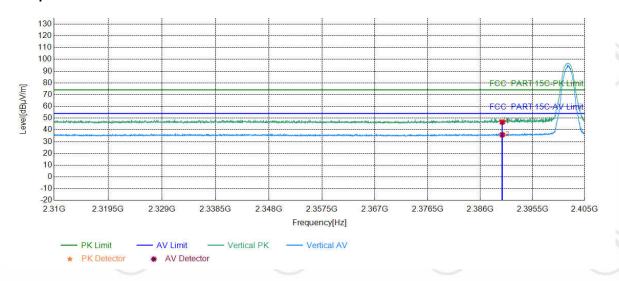




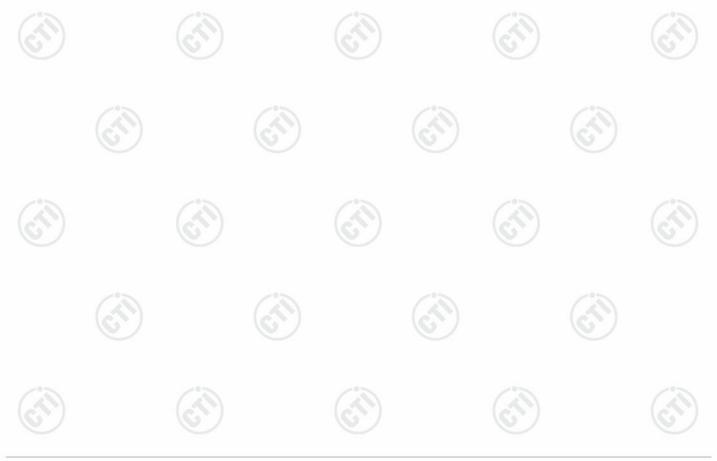
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	41.32	47.89	74.00	26.11	PASS	Vertical	PK
2	2483.5000	6.57	29.96	36.53	54.00	17.47	PASS	Vertical	AV

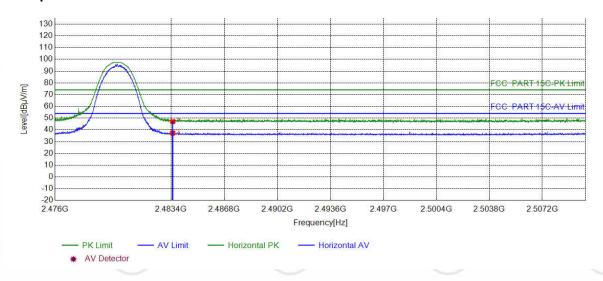




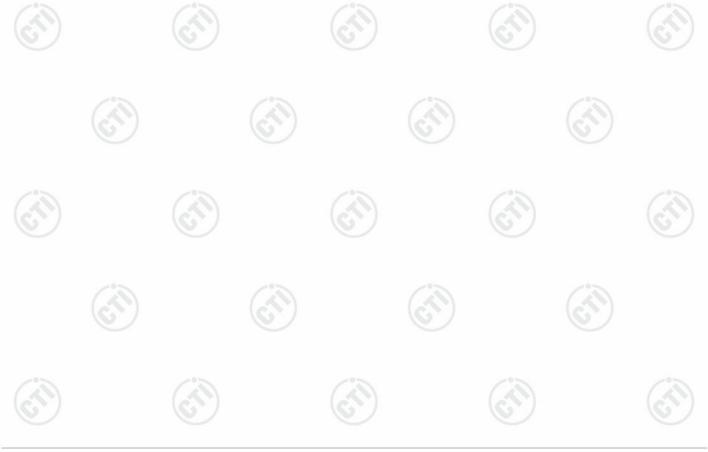


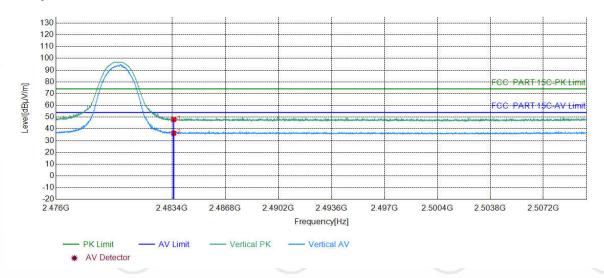
١	10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	41.53	47.30	74.00	26.70	PASS	Horizontal	PK
	2	2390.0000	5.77	30.22	35.99	54.00	18.01	PASS	Horizontal	AV



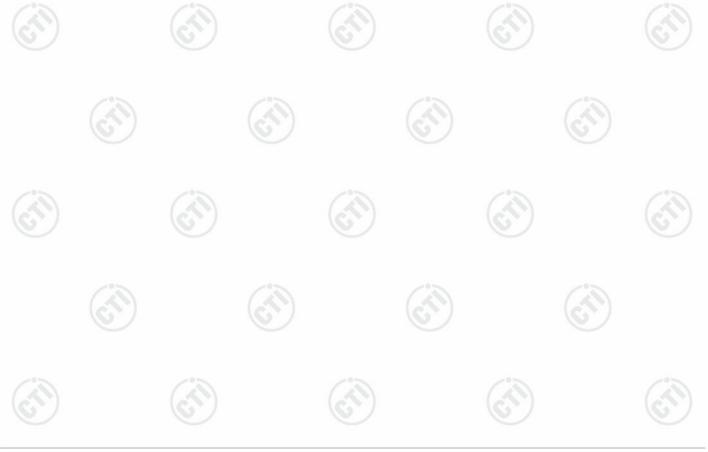


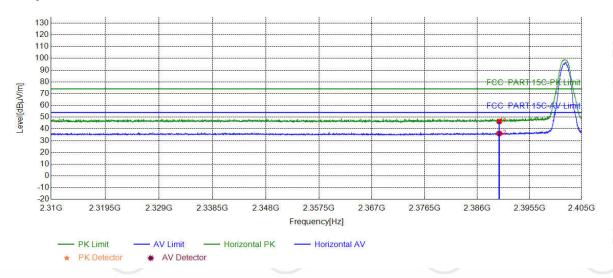
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.88	46.65	74.00	27.35	PASS	Vertical	PK
2	2390.0000	5.77	30.08	35.85	54.00	18.15	PASS	Vertical	AV



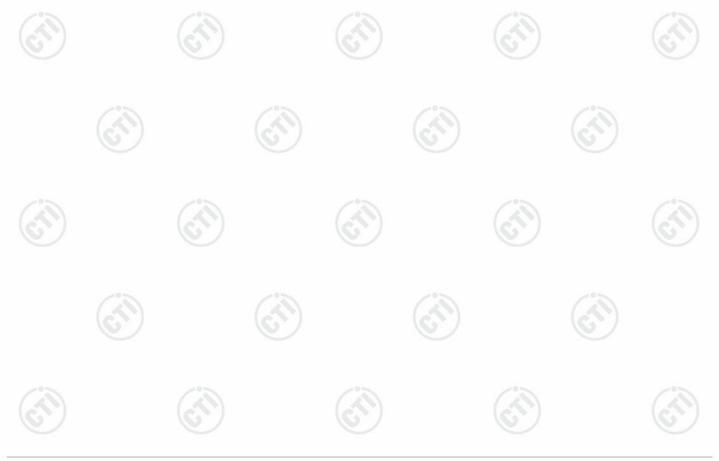


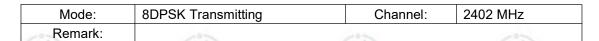
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.51	47.08	74.00	26.92	PASS	Horizontal	PK
2	2483.5000	6.57	30.75	37.32	54.00	16.68	PASS	Horizontal	AV



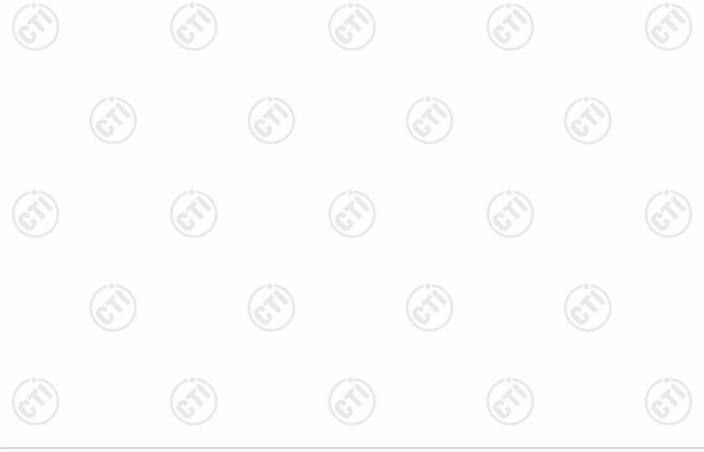


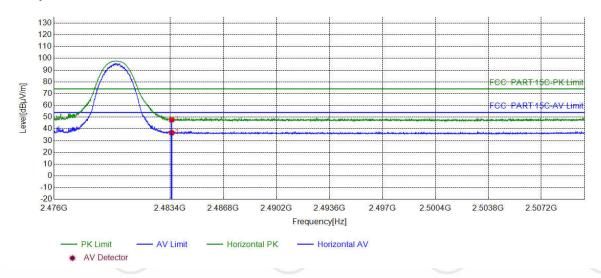
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	41.42	47.99	74.00	26.01	PASS	Vertical	PK
2	2483.5000	6.57	29.76	36.33	54.00	17.67	PASS	Vertical	AV



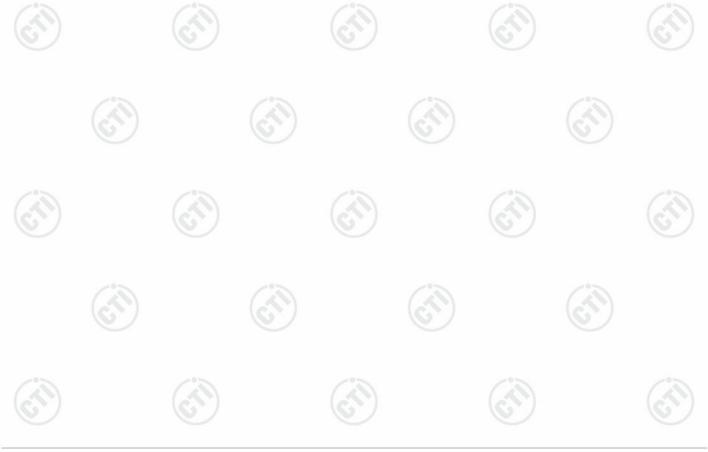


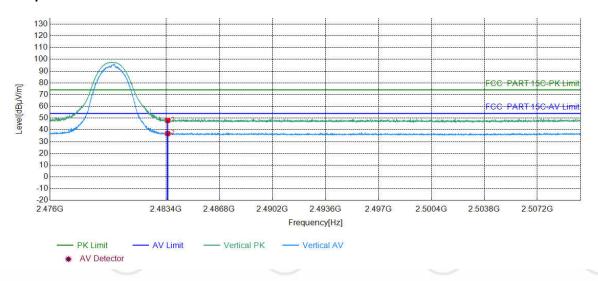
NC	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.60	46.37	74.00	27.63	PASS	Horizontal	PK
2	2390.0000	5.77	30.36	36.13	54.00	17.87	PASS	Horizontal	AV





NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	41.64	47.41	74.00	26.59	PASS	Vertical	PK
2	2390.0000	5.77	30.09	35.86	54.00	18.14	PASS	Vertical	AV





NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	41.16	47.73	74.00	26.27	PASS	Horizontal	PK
2	2483.5000	6.57	30.13	36.70	54.00	17.30	PASS	Horizontal	AV

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	41.44	48.01	74.00	25.99	PASS	Vertical	PK
2	2483.5000	6.57	30.30	36.87	54.00	17.13	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

7 Appendix A

Refer to Appendix: Bluetooth Classic of EED32N80687202.

