

FCC PART 15.231

TEST REPORT

For

Turnils North America

1750 Satellite Blvd, Suite 100, Buford, Georgia, 30518 United States

FCC ID: 2AU29AMPCEL0650

Report Type:		Product Type:	
Original Report		DC Motor for Honeycomb Shades	
Test Engineer:	Stone Zhang	Stone Zhang	
Report Number:	RSHA19112901	6-00A	
Report Date:	2019-12-12		
Reviewed By:	Oscar Ye EMC Manager	Oscar. Ye	
Prepared By:	Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn		

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGY	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	5
External I/O Cable	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC§15.203 - ANTENNA REQUIREMENT	10
APPLICABLE STANDARD	10
ANTENNA CONNECTED CONSTRUCTION	
FCC §15.207 (A) - AC LINE CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	11
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE FACTOR & OVER LIMIT CALCULATION	
TEST RESULTS SUMMARY	
Test Data	
FCC §15.205, §15.209, §15.231 (B) - RADIATED EMISSIONS	15
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.231(A) (1) - DEACTIVATION TESTING	23
APPLICABLE STANDARD	23
TEST PROCEDURE	
TEST DATA	23
FCC §15.231(C) - 20DB EMISSION BANDWIDTH TESTING	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	25

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant:	Turnils North America
Tested Model:	AMPCEL-0.6/50
Product Type:	DC Motor for Honeycomb Shades
Power Supply:	DC 12V
RF Function:	SRD
Operating Band/Frequency:	433.925 MHz
Channel Number:	1
Modulation Type:	GFSK
Antenna Type:	Monopole antenna
Maximum Antenna Gain:	-7.16dBi

Report No.: RSHA191129016-00A

Objective

This test report is prepared on behalf of *Turnils North America* All the test measurements were performed according to the measurement procedure described in ANSI C63.10 - 2013.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209, 15.35(c) and 15.231 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10 - 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.231 Page 3 of 26

^{*}All measurement and test data in this report was gathered from production sample serial number: 20191129016. (Assigned by the BACL. The EUT supplied by the applicant was received on 2019-11-29)

Measurement Uncertainty

Item		Uncertainty	
AC Power Line	es Conducted Emissions	3.19 dB	
RF conducte	ed test with spectrum	0.9dB	
	30MHz~1GHz	6.11dB	
Radiated emission	1GHz~6GHz	4.45dB	
	6GHz ~18GHz	5.23dB	
Оссир	ied Bandwidth	0.5kHz	
Temperature		1.0℃	
Humidity		6%	

Report No.: RSHA191129016-00A

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.231 Page 4 of 26

SYSTEM TEST CONFIGURATION

Justification

Channel List:

Channel	Frequency (MHz)		
1	433.925		

Report No.: RSHA191129016-00A

EUT Exercise Software

For radiated emission testing:

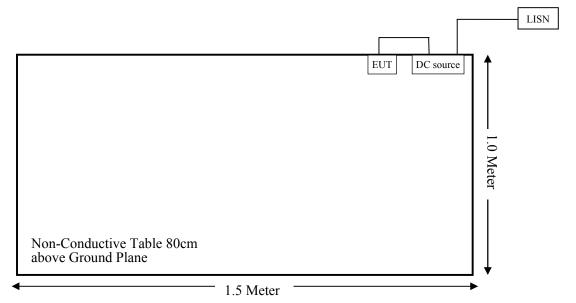
Engineering mode which can continue transmit.

Equipment Modifications

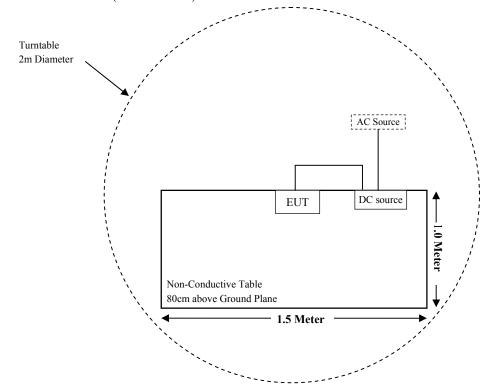
No modification was made to the EUT.

Support Equipment List and Details

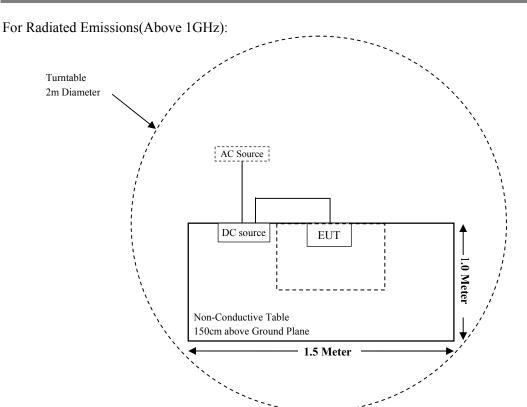
Manufacturer	Description	Model	Serial Number	
/	DC source	/	/	


External I/O Cable

Cable Description	Length (m)	From Port	То
Power Cable	1.0	EUT	DC source
Cable	1.0	DC source	AC Source


FCC Part 15.231 Page 5 of 26

Block Diagram of Test Setup


For Conducted Emissions:

For Radiated Emissions(Below 1GHz):

FCC Part 15.231 Page 6 of 26

FCC Part 15.231 Page 7 of 26

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result	
§15.203	Antenna Requirement	Compliant	
§15.207(a)	Conducted Emissions	Compliant	
§15.205, §15.209, §15.231(b)	Radiated Emissions	Compliant	
§15.231 (a) (1)	Deactivation	Compliant	
§15.231 (c)	20dB Emission Bandwidth	Compliant	

Report No.: RSHA191129016-00A

FCC Part 15.231 Page 8 of 26

TEST EQUIPMENT LIST

Manufacturer	er Description Model Serial Number		Calibration Date	Calibration Due Date				
Radiated Emission Test(Chamber 1#)								
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2019-11-30	2020-11-29			
Rohde & Schwarz	Signal Analyzer	FSV40	101116	2019-07-23	2020-07-22			
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2016-12-26	2019-12-25			
Sonoma Instrunent	Pre-amplifier	310N	171205	2019-08-14	2020-08-13			
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/			
MICRO-COAX	Coaxial Cable	Cable-8	008	2019-08-15	2020-08-14			
MICRO-COAX	Coaxial Cable	Cable-9	009	2019-08-15	2020-08-14			
MICRO-COAX	Coaxial Cable	Cable-10	010	2019-08-15	2020-08-14			
	Radiated Emission Test(Chamber 2#)							
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2019-08-27	2020-08-26			
ETS-LINDGREN	Horn Antenna	3115	9207-3900	2017-07-15	2020-07-14			
A.H.Systems, inc	Amplifier	2641-1	491	2019-02-20	2020-02-19			
Narda	Attenuator	10dB	010	2019-08-15	2020-08-14			
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/			
MICRO-COAX	Coaxial Cable	Cable-6	006	2019-08-15	2020-08-14			
MICRO-COAX	Coaxial Cable	Cable-11	011	2019-08-15	2020-08-14			
MICRO-COAX	Coaxial Cable	Cable-12	012	2019-08-15	2020-08-14			
MICRO-COAX	Coaxial Cable	Cable-13	013	2019-08-15	2020-08-14			
	Conc	lucted Emission T	est					
Rohde & Schwarz	Rohde & Schwarz EMI Test receiver ESR		1316.3003K03- 102454-Qd	2019-06-25	2020-06-24			
Rohde & Schwarz	LISN	ENV216	3560655016	2019-11-30	2020-11-29			
Audix	Test Software	e3	V9	N/A	N/A			
Narda	Attenuator/6dB	10690812-2	26850-6	2019-01-10	2020-01-09			
MICRO-COAX	Coaxial Cable	Cable-15	015	2019-08-15	2020-08-14			

Report No.: RSHA191129016-00A

FCC Part 15.231 Page 9 of 26

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

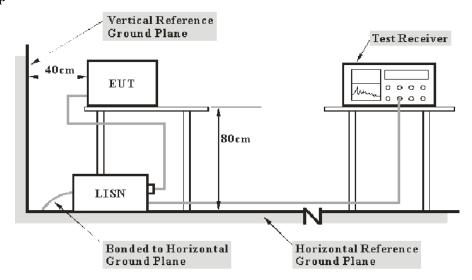
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No.: RSHA191129016-00A

Antenna Connected Construction

The EUT has a Monopole antenna which was permanently attached and the antenna gain is -7.16dBi; fulfill the requirement of this section. Please refer to EUT photos.

Result: Compliant.


FCC Part 15.231 Page 10 of 26

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Report No.: RSHA191129016-00A

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

ANSI C63.10-2013 clause 6.2

During the conducted emission test, the DC Source was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.231 Page 11 of 26

Factor & Over Limit Calculation

The Factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: RSHA191129016-00A

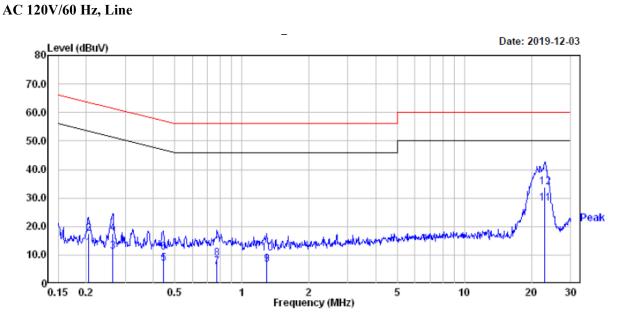
Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7 dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

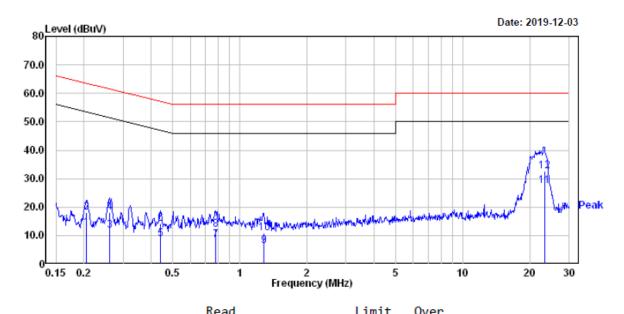

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	50 %
ATM Pressure:	101.1 kPa

The testing was performed by Stone Zhang on 2019-12-03.

FCC Part 15.231 Page 12 of 26



Report No.: RSHA191129016-00A

		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	——dB	
1	0.205	-7.30	19.82	12.52	53.40	-40.88	Average
2	0.205	-2.30	19.82	17.52	63.40	-45.88	QP
3	0.263	-8.70	19.82	11.12	51.34	-40.22	Average
4	0.263	-2.20	19.82	17.62	61.34	-43.72	QP
5	0.444	-12.80	19.75	6.95	46.98	-40.03	Average
6	0.444	-9.00	19.75	10.75	56.98	-46.23	QP
7	0.775	-14.00	19.71	5.71	46.00	-40.29	Average
8	0.775	-10.90	19.71	8.81	56.00	-47.19	QP
9	1.296	-13.10	19.82	6.72	46.00	-39.28	Average
10	1.296	-9.40	19.82	10.42	56.00	-45.58	QP
11	23.018	8.31	19.78	28.09	50.00	-21.91	Average
12	23.018	13.91	19.78	33.69	60.00	-26.31	OP

FCC Part 15.231 Page 13 of 26

AC 120V/60 Hz, Neutral

Report No.: RSHA191129016-00A

		Kead			Limit	over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.205	-7.00	19.82	12.82	53.40	-40.58	Average
2	0.205	-1.80	19.82	18.02	63.40	-45.38	QP
3	0.260	-8.00	19.82	11.82	51.42	-39.60	Average
4	0.260	-1.60	19.82	18.22	61.42	-43.20	QP
5	0.440	-10.90	19.75	8.85	47.07	-38.22	Average
6	0.440	-5.70	19.75	14.05	57.07	-43.02	QP
7	0.779	-11.30	19.71	8.41	46.00	-37.59	Average
8	0.779	-7.60	19.71	12.11	56.00	-43.89	QP
9	1.282	-13.40	19.82	6.42	46.00	-39.58	Average
10	1.282	-8.90	19.82	10.92	56.00	-45.08	QP
11	23.263	7.60	19.78	27.38	50.00	-22.62	Average
12	23.263	12.90	19.78	32.68	60.00	-27.32	QP

Note:

1) Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC Part 15.231 Page 14 of 26

FCC §15.205, §15.209, §15.231 (b) - RADIATED EMISSIONS

Applicable Standard

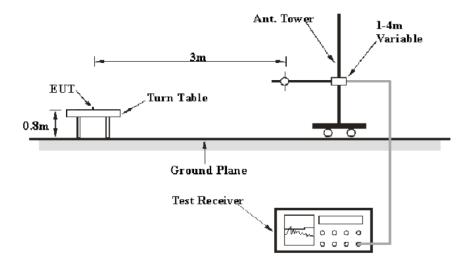
FCC §15.205, §15.209, §15.231 (b)

According to FCC §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

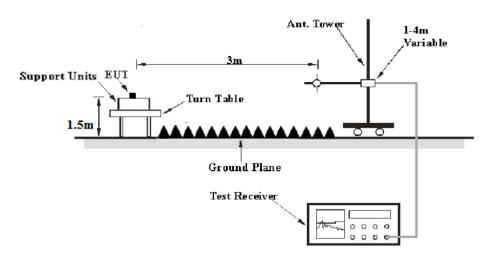
Report No.: RSHA191129016-00A

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750 **	125 to 375 **
174-260	3750	375
260-470	3750 to 12500 **	375 to 1250**
Above 470	12500	1250

Note: ** means Linear interpolations


- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- (3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

FCC Part 15.231 Page 15 of 26


Report No.: RSHA191129016-00A

EUT Setup

Below 1GHz:

Above 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10 - 2013. The specification used was the FCC 15 § 15.209, 15.205 and 15.231.

FCC Part 15.231 Page 16 of 26

EMI Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

Frequency Range	RBW Video B/W		IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	/	PK
1000MHz – 5000MHz	1MHz	3MHz	/	PK

Report No.: RSHA191129016-00A

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude ($dB\mu V/m$) = Meter Reading ($dB\mu V$) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.205, §15.209, §15.231 (b).

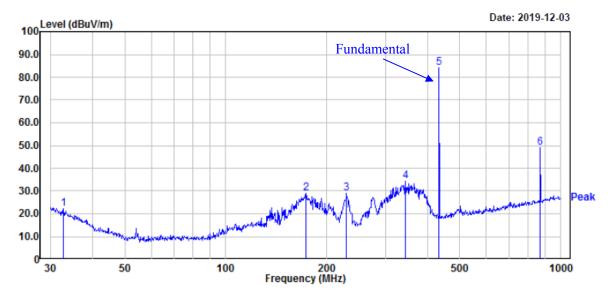
Test Data

Environmental Conditions

Temperature:	24.2 ℃~25.1 ℃
Relative Humidity:	50 % ~51 %
ATM Pressure:	101.0 kPa ~101.1 kPa

The testing was performed by Stone Zhang from 2019-12-03 to 2019-12-10.

Test mode: Transmitting


FCC Part 15.231 Page 17 of 26

Frequency: 433.925MHz

30MHz-1GHz

(Pre-scan in the X,Y and Z axes of orientation, the worst case Y-axis of orientation was recorded.)

Horizontal:

Report No.: RSHA191129016-00A

-	Corrected	Rx Antenna		Tr b.b.	Corrected	.	
Frequency (MHz)	Amplitude Max Peak (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
32.86	22.14	200	Н	225	-5.51	60.83	38.69
173.81	29.00	200	Н	77	-12.72	60.83	31.83
229.29	28.94	200	Н	225	-13.16	60.83	31.89
343.18	34.20	100	Н	98	-9.26	60.83	26.63
433.925	84.01	100	Н	56	-6.93	100.83	16.82
867.85	48.87	100	Н	285	0.40	60.83	11.96

Note: If the spurious emissions maximized peak measured value complies with the QP limit, it is unnecessary to perform an QP measurement.

Field Strength of Average Emission

Frequency	Peak Measurement@3m	Height	Polar	Duty Cycle Corrected	Corrected Ampitude	1 15.251(0)/205/209	
(MHz)	(dBμV/m)	(cm)	(H/V)	Factor (dB)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
433.925	84.01	100	Н	-22.62	61.39	80.83	19.44

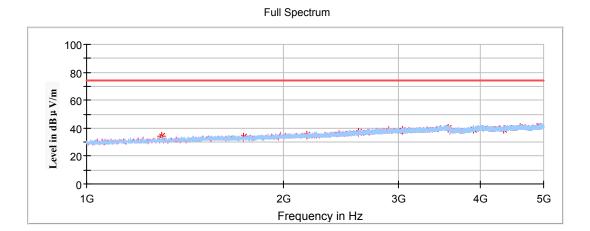
FCC Part 15.231 Page 18 of 26

Vertical:

Report No.: RSHA191129016-00A

F	Corrected	Rx Antenna		Tourstable	Corrected	T * */	Margin (dB)
Frequency (MHz)	Amplitude Max Peak (dBµV/m)	Height (cm)	2 cg. cc		Factor (dB/m)	Limit (dBµV/m)	
34.52	22.82	100	V	2	-6.89	60.83	38.01
54.26	29.19	100	V	0	-17.21	60.83	31.64
166.07	23.70	200	V	116	-12.33	43.50	19.80
227.69	23.10	200	V	270	-13.22	60.83	37.73
433.925	82.61	100	V	108	-6.93	100.83	18.22
867.85	42.32	200	V	264	0.40	60.83	18.51

Note: If the spurious emissions maximized peak measured value complies with the QP limit, it is unnecessary to perform an QP measurement.


Field Strength of Average Emission

Frequency	Peak Measurement@3m	Height	Polar	Duty Cycle Corrected	Corrected	Corrected Ampitude FCC Part 15.231(b)/205/209	
(MHz)	(dBμV/m)	(cm)	(H/V)	Factor (dB)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
433.925	82.61	100	V	-22.62	59.99	80.83	20.84

FCC Part 15.231 Page 19 of 26

1GHz-5 GHz

(Pre-scan in the X,Y and Z axes of orientation, the worst case Y-axis of orientation was recorded.)

Report No.: RSHA191129016-00A

Corrected Rx Antenna Corrected **Frequency** Amplitude Turntable Limit Margin Factor Height Polar (MHz) MaxPeak **Degree** $(dB\mu V/m)$ (dB) (dB/m)(cm) (H/V) $(dB\mu V/m)$ 34.56 19.44 1301.78 200 131 -11.00 54.00 Η 1735.70 100 V 41 -9.10 26.97 33.86 60.83 2169.63 34.73 100 Η 308 -7.80 60.83 26.10 2603.55 36.74 200 Η 198 -6.40 60.83 24.09 3037.48 38.45 150 V 339 -4.30 60.83 22.38 -3.30 3471.40 40.02 150 V 330 60.83 20.81 3905.32 -2.20 39.12 150 Η 212 54.00 14.88 4339.25 39.05 100 V 168 -1.3054.00 21.78

Note: If the spurious emissions maximized peak measured value complies with the average limit, it is unnecessary to perform an Average measurement.

Note 1:

Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) - Amplifier Factor (dB) Margin (dB) = Limit (dB μ V/m) - Corrected Amplitude (dB μ V/m)

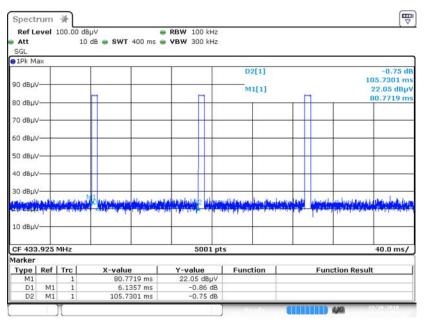
Note 2:

Calculate Average value based on Duty Cycle correction factor:

Tp=100ms

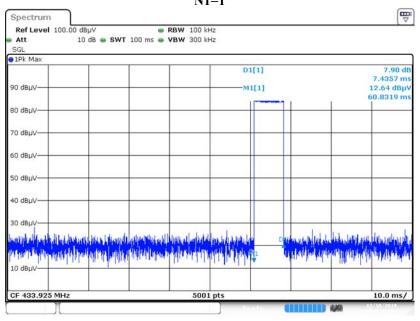
Ton= Burst1*N = 7.38869ms

Duty Cycle Corrected Factor =20*log (Ton/Tp) =20*log (7.38869ms/100ms)=-22.62dB


Average value = Peak value + Duty Cycle Corrected Factor

FCC Part 15.231 Page 20 of 26

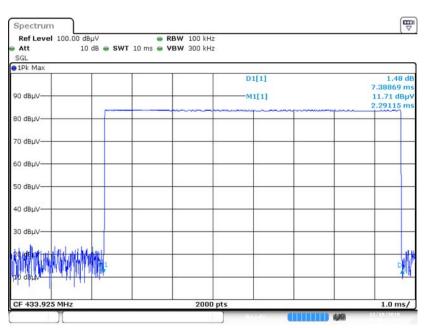
This duty cycle is the worst case for the EUT


Duty Cycle

Report No.: RSHA191129016-00A

Date: 10.DEC.2019 16:43:46

Zoom in Pulse Train N1=1



Date: 10.DEC.2019 16:46:14

FCC Part 15.231 Page 21 of 26

Duty Cycle Burst

Report No.: RSHA191129016-00A

Date: 10.DEC.2019 17:09:13

FCC Part 15.231 Page 22 of 26

FCC §15.231(a) (1) - DEACTIVATION TESTING

Applicable Standard

Per FCC §15.231(a) (1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Report No.: RSHA191129016-00A

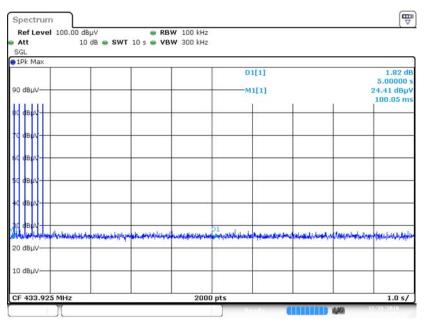
Test Procedure

- 1. With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer.
- 2. Set center frequency of spectrum analyzer=operating frequency.
- 3. Set the spectrum analyzer as RBW=100k VBW=300k Span=0Hz.
- 4. Repeat above procedures until all frequency measured was complete.

Test Data

Environmental Conditions

Temperature:	23.3 ℃
Relative Humidity:	52 %
ATM Pressure:	101.1 kPa


The testing was performed by Stone Zhang on 2019-12-10.

Test mode: Transmitting

FCC Part 15.231 Page 23 of 26

Channel Frequency (MHz)	Limit (s)	Result
433.925	<5	Pass

 $T_{\text{stop}} < 5s$

Date: 10.DEC.2019 17:21:46

FCC Part 15.231 Page 24 of 26

FCC §15.231(c) - 20dB EMISSION BANDWIDTH TESTING

Applicable Standard

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Report No.: RSHA191129016-00A

Test Procedure

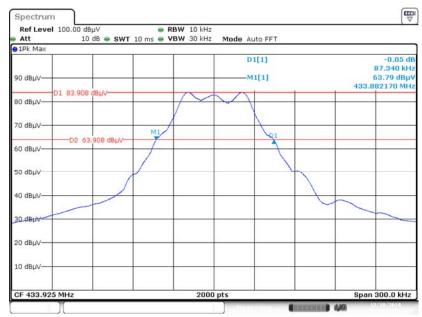
With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer, plot the 20 dB bandwidth.

Test Data

Environmental Conditions

Temperature:	23.3 ℃
Relative Humidity:	52 %
ATM Pressure:	101.1 kPa

The testing was performed by Stone Zhang on 2019-12-10.


Test Mode: Transmitting

FCC Part 15.231 Page 25 of 26

Channel Frequency	20dB Bandwidth	Limit	Result
(MHz)	(kHz)	(kHz)	
433.925	87.34	1084.8125	Pass

Note: Limit = 0.25% * Center Frequency = 0.25% * 433.925 MHz = 1084.8125 kHz

20 dB Emission Bandwidth

Date: 10.DEC.2019 17:11:16

***** END OF REPORT *****

FCC Part 15.231 Page 26 of 26