

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

> Dates of Tests: Oct 01,2021 ~ Oct 15,2021 Test Report S/N: LR500112110I Test Site: LTA CO., LTD.

## CERTIFICATION OF COMPLIANCE

FCC ID

2ATZYSDK-0412

**APPLICANT** 

SONIC DUTCH KOREA Co.,Ltd.

Equipment Class : Part 15 Spread Spectrum Transmitter (DSS)

Manufacturing Description : Cold Brew Coffe Machine

Manufacturer : SONIC DUTCH KOREA Co.,Ltd.

Model name : SDK-0412

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C ; ANSI C63.10 - 2013

Frequency Range : BDR,EDR (2402 ~ 2480 MHz)

RF power : Max 9.643 dBm - Conducted

Data of issue : Oct 18, 2021

This test report is issued under the authority of:

The test was supervised by:

Jabeom. Koo

Ja-Beom Koo, Manager

Gyeong hun KO, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.



NVLAP LAB Code.: 200723-0

# TABLE OF CONTENTS

| 1. GENERAL INFORMATION                    | 3  |
|-------------------------------------------|----|
| 2. INFORMATION ABOUT TEST ITEM            | 4  |
| 3. TEST REPORT                            | 5  |
| 3.1 SUMMARY OF TESTS                      | 5  |
| 3.2 FREQUENCY HOPPING SYSTEM REQUIREMENTS | 6  |
| 3.3 TECHNICAL CHARACTERISTICS TEST        | 7  |
| 3.3.1 RADIATED SPURIOUS EMISSIONS         | 7  |
| 3.3.2 AC Conducted Emissions              | 13 |
|                                           |    |
|                                           |    |
|                                           |    |
| APPENDIX                                  |    |
| APPENDIX TEST EQUIPMENT USED FOR TESTS    | 15 |

## 1. General information

## 1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : <a href="http://www.ltalab.com">http://www.ltalab.com</a>

E-mail : <a href="mailto:chahn@ltalab.com">chahn@ltalab.com</a>
Telephone : +82-31-323-6008
Facsimile : +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

## 1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

| Agency | Country | Accreditation No. | Validity                  | Reference           |
|--------|---------|-------------------|---------------------------|---------------------|
| NVLAP  | U.S.A   | 200723-0          | 2021-09-30                | ECT accredited Lab. |
|        | KOREA   |                   | -                         |                     |
| RRA    | U.S.A   | KR0049            | 2023-04-08                | RRA accredited Lab. |
|        | CANADA  |                   | 2022-10-18                |                     |
| VCCI   | JAPAN   | C-14948           | 2023-09-10                |                     |
|        |         | T-12416           | 2023-09-10                | VCCI registration   |
|        |         | R-14483           | 2023-10-15                | VCCI registration   |
|        |         | G-10847           | 2021-12-13                |                     |
| KOLAS  | KOREA   | KT551             | Updataing KOLAS accredite |                     |

## 2. Information about test item

## 2-1 Client & Manufacturer

Client Company name : SONIC DUTCH KOREA Co.,Ltd

Address : 410, 160, Hyanggyo-ro, Paldal-gu, Suwon-si, Gyeonggi-do, Korea.

Tel / Fax : +82-31-247-3999 / +82-31-247-3999

Manufacturer SONIC DUTCH KOREA Co.,Ltd

Address 410, 160, Hyanggyo-ro, Paldal-gu, Suwon-si, Gyeonggi-do, Korea.

Tel / Fax +82-31-247-3999 / +82-31-247-3999

## 2-2 Equipment Under Test (EUT)

Model name : SDK-0412

Serial number : Identical prototype

Date of receipt : Oct 18, 2021

EUT condition : Pre-production, not damaged

Antenna type : Pattern Antenna (Max Gain : 2 dBi)

Frequency Range : 2402 ~ 2480MHz

RF output power : Max 9.643 dBm – Conducted

Type of Modulation : GFSK,  $\pi/4$ -DQPSK, 8DPSK

Power Source : AC 110 V

Firmware Version : V0.1

## **2-3 Tested frequency**

| Bluetooth         | LOW  | MID  | HIGH |  |
|-------------------|------|------|------|--|
| Frequency (MHz) – | 2402 | 2442 | 2480 |  |

## **2-4 Ancillary Equipment**

| Equipment | Equipment Model No. |         | nt Model No. Serial No. |  | Manufacturer |  |
|-----------|---------------------|---------|-------------------------|--|--------------|--|
| Notebook  | -                   | MS-1736 | MSI                     |  |              |  |

# 3. Test Report

## 3.1 Summary of tests

| FCC Part Section(s)                                                | Parameter                     | Limit                                 | Test<br>Condition | Status (note 1) |  |  |
|--------------------------------------------------------------------|-------------------------------|---------------------------------------|-------------------|-----------------|--|--|
| 15.247(a)                                                          | Carrier Frequency Separation  | ≥ 2/3 of 20dB BW                      |                   | N/A             |  |  |
| 15.247(a)                                                          | Number of Hopping Frequencies | ≥ 15 channels                         |                   | N/A             |  |  |
| 15.247(a)                                                          | 20 dB Bandwidth 99% Bandwidth | -                                     |                   | N/A             |  |  |
| 15.247(a)                                                          | Dwell Time                    | ≤ 0.4 seconds                         | Conducted         | N/A             |  |  |
| 15.247(b)                                                          | Transmitter Output Power      | ≤ 1W for 1Mbps<br>≤ 125mW for 2,3Mbps |                   | N/A             |  |  |
| 15.247(d)                                                          | Conducted Spurious emission   | > 20 dBc                              |                   | N/A             |  |  |
| 15.247(d)                                                          | Band Edge                     | > 20 dBc                              |                   | N/A             |  |  |
| 15.249 / 15.209                                                    | Field Strength of Harmonics   | < 54 dBuV (at 3m)                     | D. II. d.         | С               |  |  |
| 15.109                                                             | Field Strength                | -                                     | Radiated          | С               |  |  |
| 15.207 /15.107                                                     | AC Conducted Emissions        | EN 55022                              | Line<br>Conducted | С               |  |  |
| 15.203 Antenna requirement –                                       |                               | _                                     | С                 |                 |  |  |
| Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable |                               |                                       |                   |                 |  |  |

 $\underline{N/A}$ : The product replaces this test with a certificate using an authenticated module.

## Note 1: Antenna Requirement

Alien Technology Asia. FCC ID: 2ATZYSDK-0412 unit complies with the requirement of §15.203.

The antenna type is Pattern Antenna

The sample was tested according to the following specification:

\*FCC Parts 15.247; ANSI C-63.4-2014; ANSI C-63.10-2013

\*FCC KDB Publication No. 558074 D01 v03r05

\*FCC TCB Workshop 2012, April

Certified modules: 2ATZY-FSCBT1026

Certified modules application dated: 10/22/2021

## 3.2 Frequency Hopping System Requirements

## 3.2.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

- (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.
- (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

#### 3.3 TECHNICAL CHARACTERISTIC TEST

## 3.3.1 Radiated Spurious Emissions

#### **Procedure:**

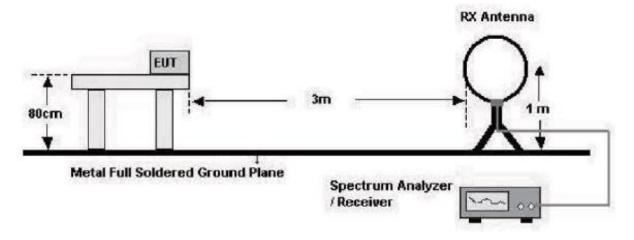
Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10. The EUT was placed on a 0.8 m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

- (a) In the frequency range of 9 kHz to 30 MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 3 m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30 MHz, Bi-Log Test Antenna (30 MHz to 1 GHz) and Horn Test Antenna (above 1 GHz) are used. Test Antenna is 3 m away from the EUT. Test Antenna height is carried from 1 m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

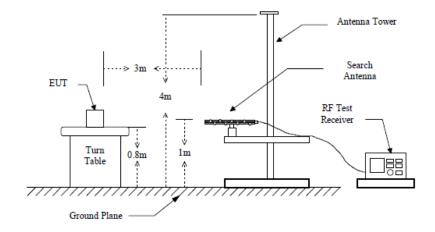
## The spectrum analyzer is set to:

Center frequency = the worst channel

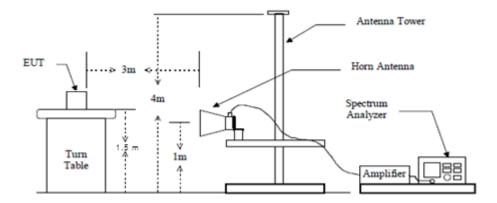
Frequency Range = 9 kHz ~ 10<sup>th</sup> harmonic.


 $RBW = 120 \text{ kHz} (30 \text{ MHz} \sim 1 \text{ GHz})$   $VBW \geq RBW$ 

= 1 MHz  $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$ 


Span = 100 MHz Detector function = peak

Trace =  $\max$  hold Sweep = auto


#### below 30 MHz



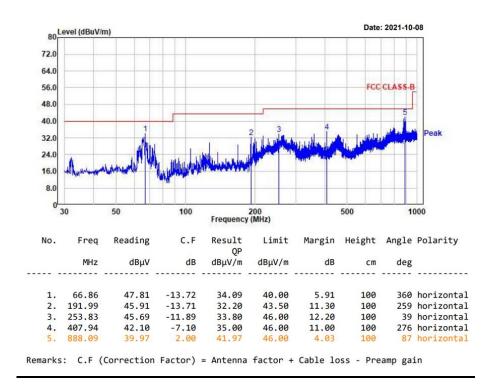
## below 1 GHz (30 MHz to 1 GHz)

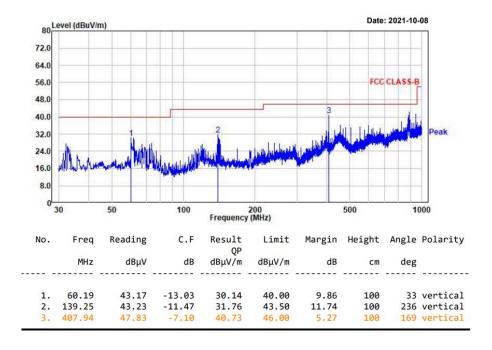


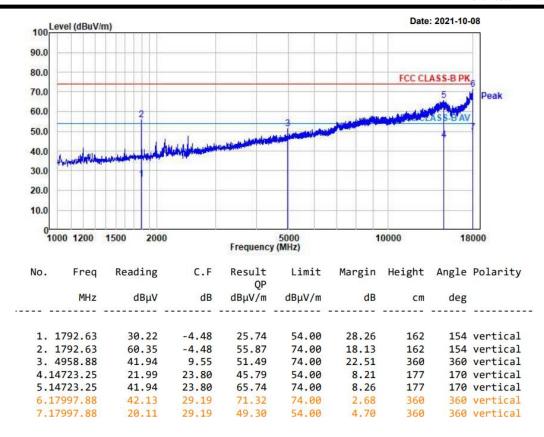
#### above 1 GHz

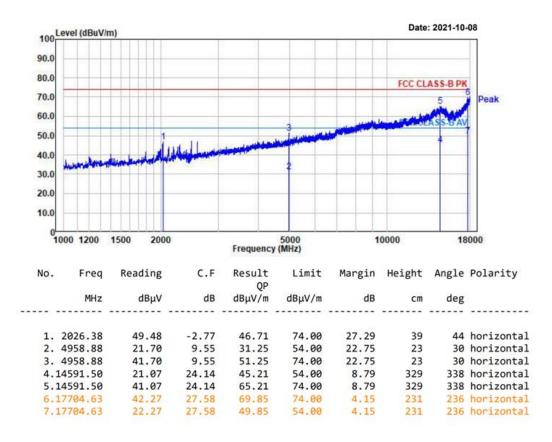


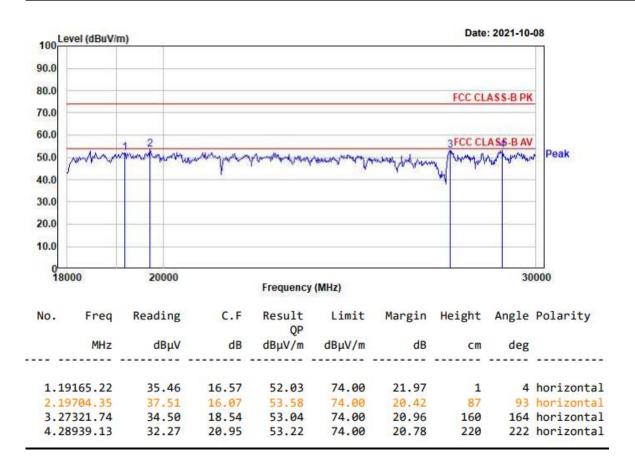
## **Measurement Data: Complies**

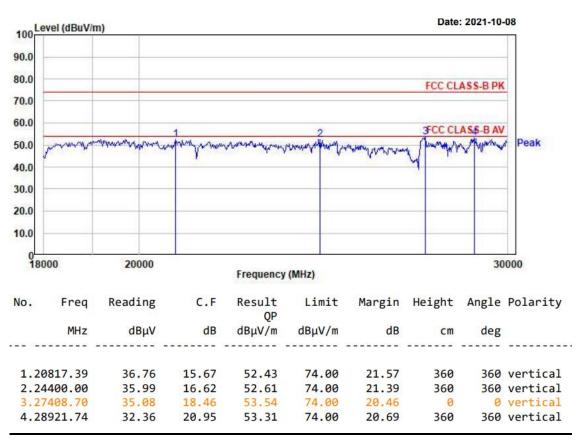

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20 dB below limit include from 9 kHz to 30 MHz.
- The test results for the worst of the various operating modes are presented in accordance with 6.3.4 of ANSI C63.10.
- Checked with a red circle is the fundamental frequency.


| Minimum           | Standard:  | <b>FCC Part</b> | 15.209(a) |
|-------------------|------------|-----------------|-----------|
| 17111111111111111 | Dianuai u. | T C L al t      | 13.407(a) |


| Frequency (MHz) | Limit (uV/m) @ 3m            |
|-----------------|------------------------------|
| 0.009 ~ 0.490   | 2400/F(kHz) (@ <b>300m</b> ) |
| 0.490 ~ 1.705   | 24000/F(kHz) (@ <b>30m</b> ) |
| 1.705 ~ 30      | 30(@ <b>30m</b> )            |
| 30 ~ 88         | 100 **                       |
| 88 ~ 216        | 150 **                       |
| 216 ~ 960       | 200 **                       |
| Above 960       | 500                          |


<sup>\*\*</sup> Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.


## **Radiated Emissions**











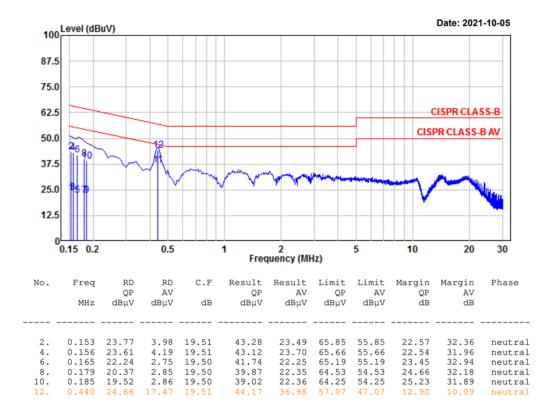



## 3.3.2 AC Conducted Emissions

#### **Procedure:**

AC power line conducted emissions from the EUT were measured according to the dictates of ANSI C63.4:2003.

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.


**Measurement Data:: Complies** 

Minimum Standard: FCC Part 15.207(a)/EN 55022

| Frequency Range | Quasi-Peak | Average    |
|-----------------|------------|------------|
| 0.15 ~ 0.5      | 66 to 56 * | 56 to 46 * |
| 0.5 ~ 5         | 56         | 46         |
| 5 ~ 30          | 60         | 50         |



Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter



## **APPENDIX**

# TEST EQUIPMENT USED FOR TESTS

|    | Use | Description                             | Model No.        | Serial No.  | Manufacturer           | Interval | Next Cal. Date |
|----|-----|-----------------------------------------|------------------|-------------|------------------------|----------|----------------|
| 1  |     | Signal Analyzer (9 kHz ~ 30 GHz)        | FSV30            | 100757      | R&S                    | 1 year   | 2022-09-06     |
| 2  |     | Signal Generator (~3.2 GHz)             | 8648C            | 3623A02597  | HP                     | 1 year   | 2022-03-20     |
| 3  |     | SYNTHESIZED CW GENERATOR                | 83711B           | US34490456  | HP                     | 1 year   | 2022-03-20     |
| 4  |     | Attenuator (3 dB)                       | 8491A            | 37822       | НР                     | 1 year   | 2022-09-06     |
| 5  |     | Attenuator (10 dB)                      | 8491A            | 63196       | НР                     | 1 year   | 2022-09-06     |
| 6  |     | EMI Test Receiver (~7 GHz)              | ESCI7            | 100722      | R&S                    | 1 year   | 2022-09-06     |
| 7  |     | RF Amplifier (~1.3 GHz)                 | 8447D OPT 010    | 2944A07684  | НР                     | 1 year   | 2022-09-06     |
| 8  |     | RF Amplifier (1~26.5 GHz)               | 8449B            | 3008A02126  | НР                     | 1 year   | 2022-03-20     |
| 9  |     | Horn Antenna (1~18 GHz)                 | 3115             | 00114105    | ETS                    | 2 year   | 2024-08-04     |
| 10 |     | DRG Horn (Small)                        | 3116B            | 81109       | ETS-Lindgren           | 2 year   | 2024-03-18     |
| 11 |     | DRG Horn (Small)                        | 3116B            | 133350      | ETS-Lindgren           | 2 year   | 2024-03-18     |
| 12 |     | TRILOG Antenna                          | VULB 9160        | 9160-3237   | SCHWARZBECK            | 2 year   | 2023-03-20     |
| 13 |     | Temp.Humidity Data Logger               | SK-L200TH II A   | 00801       | SATO                   | 1 year   | 2022-03-20     |
| 14 |     | Splitter (SMA)                          | ZFSC-2-2500      | SF617800326 | Mini-Circuits          | -        | -              |
| 15 |     | DC Power Supply                         | 6674A            | 3637A01657  | Agilent                | -        | -              |
| 17 |     | Power Meter                             | EPM-441A         | GB32481702  | НР                     | 1 year   | 2022-03-20     |
| 18 |     | Power Sensor                            | 8481A            | 3318A94972  | НР                     | 1 year   | 2022-09-06     |
| 19 |     | Audio Analyzer                          | 8903B            | 3729A18901  | НР                     | 1 year   | 2022-09-06     |
| 20 |     | Moduleation Analyzer                    | 8901B            | 3749A05878  | НР                     | 1 year   | 2022-09-06     |
| 21 |     | TEMP & HUMIDITY Chamber                 | YJ-500           | LTAS06041   | JinYoung Tech          | 1 year   | 2022-09-06     |
| 22 |     | Stop Watch                              | HS-3             | 812Q08R     | CASIO                  | 2 year   | 2023-03-18     |
| 23 |     | LISN                                    | KNW-407          | 8-1430-1    | Kyoritsu               | 1 year   | 2022-09-06     |
| 24 |     | Two-Lime V-Network                      | ESH3-Z5          | 893045/017  | R&S                    | 1 year   | 2022-03-18     |
| 25 |     | UNIVERSAL RADIO<br>COMMUNICATION TESTER | CMU200           | 106243      | R&S                    | 1 year   | 2022-03-18     |
| 26 |     | Highpass Filter                         | WHKX1.5/15G-10SS | 74          | Wainwright Instruments | 1 year   | 2022-03-18     |
| 27 |     | Highpass Filter                         | WHKX3.0/18G-10SS | 118         | Wainwright Instruments | 1 year   | 2022-03-18     |
| 28 |     | OSP120 BASE UNIT                        | OSP120           | 101230      | R&S                    | 1 year   | 2022-03-18     |
| 29 |     | Signal Generator(100 kHz ~ 40 GHz)      | SMB100A03        | 177621      | R&S                    | 1 year   | 2022-03-18     |
| 30 |     | Signal Analyzer (10 Hz ~ 40 GHz)        | FSV40            | 101367      | R&S                    | 1 year   | 2022-03-18     |
| 31 |     | Active Loop Antenna                     | FMZB 1519        | 1519-031    | SCHWARZBECK            | 2 year   | 2024-02-26     |
|    |     |                                         |                  |             |                        |          |                |