According to 447498 D04 Interim General RF Exposure Guidance v01

$$P_{\rm th} (\rm mW) = \begin{cases} ERP_{20 \,\rm cm} (d/20 \,\rm cm)^{\times} & d \le 20 \,\rm cm \\ \\ ERP_{20 \,\rm cm} & 20 \,\rm cm < d \le 40 \,\rm cm \end{cases} \tag{B.2}$$

where

$$x = -\log_{10}\left(\frac{\epsilon 0}{\epsilon R P_{10} \operatorname{cm} \sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20m} is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

$$P_{\text{th}} (\text{mW}) = ERP_{20 \text{ cm}} (\text{mW}) = \begin{cases} 2040f & 0.3 \text{ GHz} \le f < 1.5 \text{ GHz} \\ \\ 3060 & 1.5 \text{ GHz} \le f \le 6 \text{ GHz} \end{cases}$$
(B. 1)

	Distance (mm)										
		5	10	15	20	- 25	- 30	3.5	40	45	50
Frequency (MHz)	300	- 39 -	65	88	110	129	1.48	166	184	201	217
	450	22	-44	-67	-89	112	135	158	180	203	226
	835	9	- 25	44	66	- 90	116	145	175	207	_240
	1900	3	12	26	-44	66	- 92	122	157	195	236
	2450	3	10	22	38	- 59 -	83	111	143	179	219
	3600	2	8	18	32	49	71	96	125	158	195
	5800	1	6	14	2.5	40	58	80	106	136	169
			100	-					1. C		

Table B.2-Example Power Thresholds (mW)

eirp = pt x gt = $(EXd)^2/30$ where: pt = transmitter output power in watts, gt = numeric gain of the transmitting antenna (unitless), E = electric field strength in V/m, --- $10^{((dBuV/m)/20)}/10^6$ d = measurement distance in meters (m)---3m Sopt = $(EXd)^2/30$ x gt

Ant gain = 0 dBi so Ant numeric gain= 1

Field strength = 56.12 dB μ V/m @3m @27.145MHz

So $Pt=\{ [10^{(56.12/20)}/10^6 \times 3]^2/30\}\times 1000 \text{ mW} = 0.0005 \text{mW} \}$

< 39 mW

Then SAR evaluation is not required