### Shenzhen Huaxia Testing Technology Co., Ltd.



1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637 Website: www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

# **Test Report**

| Report No. :<br>Applicant:<br>Address of Applicant: | CQASZ20240500975E-01<br>Shenzhen Maxto Technology Co., Ltd.<br>Room 402, (workshop 1)No. 12, Yuzhan 3rd Road, Dashuitian Community,<br>Guanlan Street, Longhua District, Shenzhen |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment Under Test (E                             | :UT):                                                                                                                                                                             |
| Product:                                            | HELMET BLUETOOTH INTERCOM HEADSET                                                                                                                                                 |
| Model No.:                                          | Maxto M2C, Maxto MX1, Maxto X2, Maxto X2S, Maxto M5, Maxto M5S, Maxto M6S, Maxto M6PRO, Maxto T8, Maxto T8S                                                                       |
| Test Model No.:                                     | Maxto MX1                                                                                                                                                                         |
| Brand Name:                                         | ΜΑΧΤΟ                                                                                                                                                                             |
| FCC ID:                                             | 2ATZP-MAXTO-MX1                                                                                                                                                                   |
| Standards:                                          | 47 CFR Part 15, Subpart C                                                                                                                                                         |
| Date of Receipt:                                    | 2024-05-30                                                                                                                                                                        |
| Date of Test:                                       | 2024-05-30 to 2024-06-07                                                                                                                                                          |
| Date of Issue:                                      | 2024-06-20                                                                                                                                                                        |
| Test Result :                                       | PASS*                                                                                                                                                                             |
|                                                     |                                                                                                                                                                                   |

\*In the configuration tested, the EUT complied with the standards specified above.

Tested By: \_\_\_\_\_ (Lewis Zhou)

Reviewed By: \_\_\_\_\_

Timo Lej ( Timo Lei )

Approved By: \_\_\_\_\_A Lex

(Alex Wang)



The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.



# 1 Version

# **Revision History Of Report**

| Report No.           | Version | Description    | Issue Date |
|----------------------|---------|----------------|------------|
| CQASZ20240500975E-01 | Rev.01  | Initial report | 2024-06-20 |



# 2 Test Summary

| Test Item                                                               | Test Requirement                            | Test method      | Result |  |
|-------------------------------------------------------------------------|---------------------------------------------|------------------|--------|--|
| Antenna Requirement                                                     | 47 CFR Part 15.203 /                        |                  | PASS   |  |
| AC Power Line Conducted<br>Emission                                     | 47 CFR Part 15, Subpart C Section<br>15.207 | ANSI C63.10-2013 | PASS   |  |
| Conducted Peak Output<br>Power                                          | 47 CFR Part 15.247                          | ANSI C63.10-2013 | PASS   |  |
| 20dB Occupied Bandwidth                                                 | 47 CFR Part 15.247                          | ANSI C63.10-2013 | PASS   |  |
| Carrier Frequencies<br>Separation                                       | 47 CFR Part 15.247                          | ANSI C63.10-2013 | PASS   |  |
| Hopping Channel Number                                                  | 47 CFR Part 15.247                          | ANSI C63.10-2013 | PASS   |  |
| Dwell Time                                                              | 47 CFR Part 15.247                          | ANSI C63.10-2013 | PASS   |  |
| Pseudorandom Frequency<br>Hopping Sequence                              | 47 CFR Part 15.247                          | ANSI C63.10-2013 | PASS   |  |
| Band-edge for RF<br>Conducted Emissions                                 | 47 CFR Part 15.247                          | ANSI C63.10-2013 | PASS   |  |
| RF Conducted Spurious<br>Emissions                                      | 47 CFR Part 15.247                          | ANSI C63.10-2013 |        |  |
| Radiated Spurious<br>emissions                                          | 47 CFR Part 15.209                          | ANSI C63.10-2013 | PASS   |  |
| Restricted bands around<br>fundamental frequency<br>(Radiated Emission) | 47 CFR Part 15.205/15.209                   | ANSI C63.10-2013 | PASS   |  |

Remark:

The tested sample(s) and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application



# 3 Contents

| 1 VERSION                                                                                                                                                                                        | 2  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2 TEST SUMMARY                                                                                                                                                                                   | 3  |
| 3 CONTENTS                                                                                                                                                                                       | 4  |
| 4 GENERAL INFORMATION                                                                                                                                                                            | 5  |
| 4.1 CLIENT INFORMATION                                                                                                                                                                           | 5  |
| <ul> <li>4.3 Additional Instructions</li> <li>4.4 Test Environment</li> <li>4.5 Description of Support Units</li></ul>                                                                           |    |
| 4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY<br>4.7 TEST LOCATION<br>4.8 TEST FACILITY                                                                                                           |    |
| 4.9 Abnormalities from Standard Conditions<br>4.10 Other Information Requested by the Customer<br>4.11 Equipment List                                                                            | 10 |
| 5 TEST RESULTS AND MEASUREMENT DATA                                                                                                                                                              |    |
| <ul> <li>5.1 ANTENNA REQUIREMENT</li></ul>                                                                                                                                                       |    |
| <ul> <li>5.9 Spurious RF Conducted Emissions</li> <li>5.10 Other Requirements Frequency Hopping Spread Spectrum System</li> <li>5.11 Radiated Spurious Emission &amp; Restricted Bands</li></ul> |    |
| 6 PHOTOGRAPHS - EUT TEST SETUP                                                                                                                                                                   | 72 |
| 6.1 RADIATED EMISSION                                                                                                                                                                            |    |
| 7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS                                                                                                                                                       | 74 |



# 4 General Information

# 4.1 Client Information

| Applicant:               | Shenzhen Maxto Technology Co., Ltd.                                                                                |
|--------------------------|--------------------------------------------------------------------------------------------------------------------|
| Address of Applicant:    | Room 402, (workshop 1)No. 12, Yuzhan 3rd Road, Dashuitian Community, Guanlan Street, Longhua District, Shenzhen    |
| Manufacturer:            | Shenzhen Maxto Technology Co., Ltd.                                                                                |
| Address of Manufacturer: | Room 402, (workshop 1)No. 12, Yuzhan 3rd Road, Dashuitian Community,<br>Guanlan Street, Longhua District, Shenzhen |
| Factory:                 | Shenzhen Maxto Technology Co., Ltd.                                                                                |
| Address of Factory:      | Room 402, (workshop 1)No. 12, Yuzhan 3rd Road, Dashuitian Community,<br>Guanlan Street, Longhua District, Shenzhen |

## 4.2 General Description of EUT

| Product Name:                     | HELMET BLUETOOTH INTERCOM HEADSET                                                                           |  |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Model No.:                        | Maxto M2C, Maxto MX1, Maxto X2, Maxto X2S, Maxto M5, Maxto M5S, Maxto M6S, Maxto M6PRO, Maxto T8, Maxto T8S |  |  |  |  |
| Test Model No.:                   | Maxto MX1                                                                                                   |  |  |  |  |
| Trade Mark:                       | ΜΑΧΤΟ                                                                                                       |  |  |  |  |
| Software Version:                 | V1.0                                                                                                        |  |  |  |  |
| Hardware Version:                 | V1.0                                                                                                        |  |  |  |  |
| Operation Frequency:              | 2402MHz~2480MHz                                                                                             |  |  |  |  |
| Bluetooth Version:                | V5.0                                                                                                        |  |  |  |  |
| Modulation Technique:             | Frequency Hopping Spread Spectrum(FHSS)                                                                     |  |  |  |  |
| Modulation Type:                  | GFSK, π/4DQPSK, 8DPSK                                                                                       |  |  |  |  |
| Transfer Rate:                    | 1Mbps/2Mbps/3Mbps                                                                                           |  |  |  |  |
| Number of Channel:                | 79                                                                                                          |  |  |  |  |
| Hopping Channel Type:             | Adaptive Frequency Hopping systems                                                                          |  |  |  |  |
| Product Type:                     | □ Mobile                                                                                                    |  |  |  |  |
| Test Software of EUT:             | BlueTest3                                                                                                   |  |  |  |  |
| Antenna Type:                     | Chip antenna                                                                                                |  |  |  |  |
| Antenna Gain:                     | 2.66dBi                                                                                                     |  |  |  |  |
| Power Supply:                     | Li-ion battery DC 3.7V 500mAh, Charge by DC 5V for adapter                                                  |  |  |  |  |
| Simultaneous Transmission         | on Simultaneous TX is supported and evaluated in this report.                                               |  |  |  |  |
| Simultaneous TX is not supported. |                                                                                                             |  |  |  |  |



| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 0                                   | 2402MHz   | 20      | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |
| 1                                   | 2403MHz   | 21      | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |
| 2                                   | 2404MHz   | 22      | 2424MHz   | 42      | 2444MHz   | 62      | 2464MHz   |
| 3                                   | 2405MHz   | 23      | 2425MHz   | 43      | 2445MHz   | 63      | 2465MHz   |
| 4                                   | 2406MHz   | 24      | 2426MHz   | 44      | 2446MHz   | 64      | 2466MHz   |
| 5                                   | 2407MHz   | 25      | 2427MHz   | 45      | 2447MHz   | 65      | 2467MHz   |
| 6                                   | 2408MHz   | 26      | 2428MHz   | 46      | 2448MHz   | 66      | 2468MHz   |
| 7                                   | 2409MHz   | 27      | 2429MHz   | 47      | 2449MHz   | 67      | 2469MHz   |
| 8                                   | 2410MHz   | 28      | 2430MHz   | 48      | 2450MHz   | 68      | 2470MHz   |
| 9                                   | 2411MHz   | 29      | 2431MHz   | 49      | 2451MHz   | 69      | 2471MHz   |
| 10                                  | 2412MHz   | 30      | 2432MHz   | 50      | 2452MHz   | 70      | 2472MHz   |
| 11                                  | 2413MHz   | 31      | 2433MHz   | 51      | 2453MHz   | 71      | 2473MHz   |
| 12                                  | 2414MHz   | 32      | 2434MHz   | 52      | 2454MHz   | 72      | 2474MHz   |
| 13                                  | 2415MHz   | 33      | 2435MHz   | 53      | 2455MHz   | 73      | 2475MHz   |
| 14                                  | 2416MHz   | 34      | 2436MHz   | 54      | 2456MHz   | 74      | 2476MHz   |
| 15                                  | 2417MHz   | 35      | 2437MHz   | 55      | 2457MHz   | 75      | 2477MHz   |
| 16                                  | 2418MHz   | 36      | 2438MHz   | 56      | 2458MHz   | 76      | 2478MHz   |
| 17                                  | 2419MHz   | 37      | 2439MHz   | 57      | 2459MHz   | 77      | 2479MHz   |
| 18                                  | 2420MHz   | 38      | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |
| 19                                  | 2421MHz   | 39      | 2441MHz   | 59      | 2461MHz   |         |           |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The Lowest channel  | 2402MHz   |
| The Middle channel  | 2441MHz   |
| The Highest channel | 2480MHz   |



# 4.3 Additional Instructions

| EUT Test Software Settings:     |                                                                                                                                                             |                            |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
| Mode:                           | <ul> <li>Special software is used.</li> <li>Through engineering command into the engineering mode.</li> <li>engineering command: *#*#3646633#*#*</li> </ul> |                            |  |  |  |
| EUT Power level:                | (Power level is built-in set parameters selected)                                                                                                           | and cannot be changed and  |  |  |  |
| Use test software to set the lo | west frequency, the middle frequency and                                                                                                                    | the highest frequency keep |  |  |  |
| transmitting of the EUT.        |                                                                                                                                                             |                            |  |  |  |
| Mode                            | Channel                                                                                                                                                     | Frequency(MHz)             |  |  |  |
|                                 | СНО                                                                                                                                                         | 2402                       |  |  |  |
| DH1/DH3/DH5                     | СН39                                                                                                                                                        | 2441                       |  |  |  |
|                                 | CH78                                                                                                                                                        | 2480                       |  |  |  |
|                                 | СНО                                                                                                                                                         | 2402                       |  |  |  |
| 2DH1/2DH3/2DH5                  | СН39                                                                                                                                                        | 2441                       |  |  |  |
|                                 | CH78                                                                                                                                                        | 2480                       |  |  |  |
|                                 | СНО                                                                                                                                                         | 2402                       |  |  |  |
| 3DH1/3DH3/3DH5                  | СН39                                                                                                                                                        | 2441                       |  |  |  |
| CH78 2480                       |                                                                                                                                                             |                            |  |  |  |

#### Run Software:

| Test Commands ——                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                   | -Test Arguments                                                                                                                     |                                             |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|
| CW TX<br>CONTINUOUS TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ^                                                                                                                                                                                 | Channel (0-78)                                                                                                                      | 78                                          | Close   |
| PACKET TX<br>PACKET RX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                   | Power (0-9)                                                                                                                         | 9                                           | Help    |
| QHS<br>RF TEST STOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                   | Туре                                                                                                                                | BREDR 1-PR9                                 | Execute |
| POWER TABLE GET<br>POWER TABLE SET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   | Pattern bits (1-                                                                                                                    | 2                                           |         |
| ENABLE DUT MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~                                                                                                                                                                                 | Pattern (hex)                                                                                                                       | 00000001                                    | Reset   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rator\Ap;                                                                                                                                                                         | pData\Local\QTIL\Blu                                                                                                                | Display : 🗭 Standar<br>eTest3\testapplog.tx |         |
| Save to file<br>C:\Users\Administ<br>Channel frequency<br>CONTINUOUS TX suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rator\App<br>7 = 2402<br>ccessful                                                                                                                                                 | pData\Local\QTIL\Blu<br>2MHz                                                                                                        |                                             |         |
| Save to file<br>C:\Vsers\Administ<br>Continuous TX suc<br>Continuous TX suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rator\App<br>7 = 2402<br>ccessful<br>ccessful<br>ccessful                                                                                                                         | Data\Local\QTIL\Blu<br>2MHz<br>L<br>LHHz<br>L                                                                                       |                                             |         |
| Save to file<br>C:\Vsers\Administ<br>Channel frequency<br>CONTINUOUS IX suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rator\App<br>ressful<br>r = 2402<br>rcessful<br>r = 2441<br>rcessful<br>r = 2441                                                                                                  | oData\Local\QTIL\Blu<br>2MHz<br>L<br>LMHz<br>L<br>LMHz                                                                              |                                             |         |
| Save to file<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>Continuous TX suc<br>channel frequency<br>CONTINUOUS TX suc<br>channel frequency<br>CONTINUOUS TX suc<br>channel frequency<br>CONTINUOUS TX suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rator $Appcessfulr = 2442cessfulr = 2442cessfulr = 2442cessfulr = 2480$                                                                                                           | pData\Local\QTIL\Blu<br>MHz<br>MHz<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L                                                  |                                             |         |
| Save to file<br>C:\Users\Administ:<br>Channel frequency<br>Channel frequency<br>Channel frequency<br>CONTINUOUS TX suc<br>Channel frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rator $Ap$ ;<br>r = 2402<br>r = 2442<br>r = 2442<br>r = 2442<br>r = 2442<br>r = 2480<br>r = 2480<br>r = 2480                                                                      | oData\Looal\QTIL\Blu<br>20Hz<br>L<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                  |                                             |         |
| Save to file<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ<br>C:\Users\Administ | r ator\App<br>r = 2402<br>ccessful<br>r = 2441<br>ccessful<br>r = 2480<br>ccessful<br>r = 2480<br>ccessful<br>r = 2480<br>ccessful<br>r = 2480                                    | oData\Local\QTIL\Blu<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L<br>MHz         |                                             |         |
| Save to file<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ<br>C:\Vsers\Administ | rator\App<br>r = 2402<br>ccessful<br>r = 2441<br>ccessful<br>r = 2480<br>ccessful<br>r = 2480<br>ccessful<br>r = 2480<br>ccessful<br>r = 2480<br>ccessful<br>r = 2480<br>ccessful | oData\Looal\QTIL\Blu<br>22MHz<br>L<br>LMHz<br>L<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L<br>MHz<br>L |                                             |         |



### 4.4 Test Environment

| Operating Environment | Operating Environment:                                                                                                      |  |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Temperature:          | 25 °C                                                                                                                       |  |  |  |  |
| Humidity:             | 54% RH                                                                                                                      |  |  |  |  |
| Atmospheric Pressure: | 1009mbar                                                                                                                    |  |  |  |  |
| Test Mode:            | Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT. |  |  |  |  |

# 4.5 Description of Support Units

The EUT has been tested with associated equipment below.

| Description | Manufacturer | Model No. | Remark | Supplied |
|-------------|--------------|-----------|--------|----------|
| Adapter     | MI           | 1         | 1      | CQA      |



## 4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

| No. | Item                               | Uncertainty        |
|-----|------------------------------------|--------------------|
| 1   | Radiated Emission (Below 1GHz)     | 5.12dB             |
| 2   | Radiated Emission (Above 1GHz)     | 4.60dB             |
| 3   | Conducted Disturbance (0.15~30MHz) | 3.34dB             |
| 4   | Radio Frequency                    | 3×10 <sup>-8</sup> |
| 5   | Duty cycle                         | 0.6 %              |
| 6   | Occupied Bandwidth                 | 1.1%               |
| 7   | RF conducted power                 | 0.86dB             |
| 8   | RF power density                   | 0.74               |
| 9   | Conducted Spurious emissions       | 0.86dB             |
| 10  | Temperature test                   | 0.8°C              |
| 11  | Humidity test                      | 2.0%               |
| 12  | Supply voltages                    | 0.5 %              |
| 13  | Frequency Error                    | 5.5 Hz             |

Hereafter the best measurement capability for CQA laboratory is reported:



### 4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

### 4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: **IC Registration No.: 22984-1** 

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

#### • A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

#### • FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

#### 4.9 Abnormalities from Standard Conditions

None.

#### 4.10 Other Information Requested by the Customer

None.



# 4.11 Equipment List

|                                                 |              |                            | Instrument | Calibration | Calibration |
|-------------------------------------------------|--------------|----------------------------|------------|-------------|-------------|
| Test Equipment                                  | Manufacturer | Model No.                  | No.        | Date        | Due Date    |
| EMI Test Receiver                               | R&S          | ESR7                       | CQA-005    | 2023/09/08  | 2024/09/07  |
| Spectrum analyzer                               | R&S          | FSU26                      | CQA-038    | 2023/09/08  | 2024/09/07  |
| Spectrum analyzer                               | R&S          | FSU40                      | CQA-075    | 2023/09/08  | 2024/09/07  |
| Preamplifier                                    | MITEQ        | AFS4-00010300-18-<br>10P-4 | CQA-035    | 2023/09/08  | 2024/09/07  |
| Preamplifier                                    | MITEQ        | AMF-6D-02001800-<br>29-20P | CQA-036    | 2023/09/08  | 2024/09/07  |
| Preamplifier                                    | EMCI         | EMC184055SE                | CQA-089    | 2023/09/08  | 2024/09/07  |
| Loop antenna                                    | Schwarzbeck  | FMZB1516                   | CQA-060    | 2021/09/16  | 2024/09/15  |
| Bilog Antenna                                   | R&S          | HL562                      | CQA-011    | 2021/09/16  | 2024/09/15  |
| Horn Antenna                                    | R&S          | HF906                      | CQA-012    | 2021/09/16  | 2024/09/15  |
| Horn Antenna                                    | Schwarzbeck  | BBHA 9170                  | CQA-088    | 2021/09/16  | 2024/09/15  |
| Coaxial Cable<br>(Above 1GHz)                   | CQA          | N/A                        | C007       | 2023/09/08  | 2024/09/07  |
| Coaxial Cable<br>(Below 1GHz)                   | CQA          | N/A                        | C013       | 2023/09/08  | 2024/09/07  |
| RF<br>cable(9KHz~40GHz)                         | CQA          | RF-01                      | CQA-079    | 2023/09/08  | 2024/09/07  |
| Antenna Connector                               | CQA          | RFC-01                     | CQA-080    | 2023/09/08  | 2024/09/07  |
| Power Sensor                                    | KEYSIGHT     | U2021XA                    | CQA-30     | 2023/09/08  | 2024/09/07  |
| N1918A Power<br>Analysis Manager<br>Power Panel | Agilent      | N1918A                     | CQA-074    | 2023/09/08  | 2024/09/07  |
| Power meter                                     | R&S          | NRVD                       | CQA-029    | 2023/09/08  | 2024/09/07  |
| Power divider                                   | MIDWEST      | PWD-2533-02-SMA-<br>79     | CQA-067    | 2023/09/08  | 2024/09/07  |
| EMI Test Receiver                               | R&S          | ESR7                       | CQA-005    | 2023/09/08  | 2024/09/07  |
| LISN                                            | R&S          | ENV216                     | CQA-003    | 2023/09/08  | 2024/09/07  |
| Coaxial cable                                   | CQA          | N/A                        | CQA-C009   | 2023/09/08  | 2024/09/07  |
| DC power                                        | KEYSIGHT     | E3631A                     | CQA-028    | 2023/09/08  | 2024/09/07  |

Note:

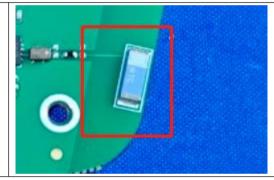
The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.



# 5 Test results and Measurement Data

### 5.1 Antenna Requirement

| Standard requirement: | 47 CFR Part 15C Section 15.203 /247(c) |
|-----------------------|----------------------------------------|
|-----------------------|----------------------------------------|


#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### EUT Antenna:



The antenna is Chip antenna.

The connection/connection type between the antenna to the EUT's antenna port is: permanently attachment.

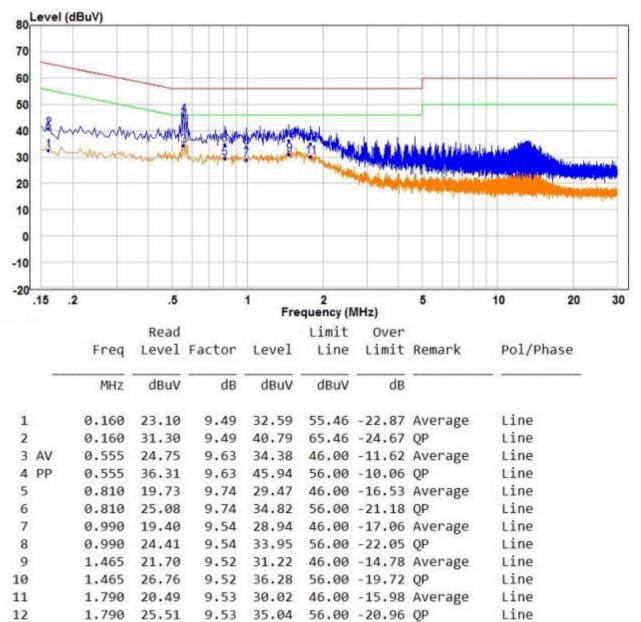
This is either permanently attachment or a unique coupling that satisfies the requirement.





# 5.2 Conducted Emissions

| <br>Conducted Linissio |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:      | 47 CFR Part 15C Section 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Method:           | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Frequency Range:  | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Limit:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limit (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66 to 56*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56 to 46*                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | * Decreases with the logarithn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n of the frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Setup:            | <ol> <li>The mains terminal disturbation of the EUT was connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single Lie exceeded.</li> <li>The tabletop EUT was place ground reference plane. An placed on the horizontal grade on the horizontal grade on the horizontal grade on the tabletop EUT was placed on the horizontal grade on the tell shall be 0.4 m for the EUT shall be 0.4 m for the EUT shall be 0.4 m for the EUT and associated excertises the EUT and all of the in ANSI C63.10: 2013 on control on the terminal shall of the in the ANSI C63.10: 2013 on control on the terminal shall be terminal shall b</li></ol> | b AC power source thro<br>etwork) which provides<br>bles of all other units of<br>SN 2, which was bonde<br>he way as the LISN 1 for<br>set outlet strip was used<br>ISN provided the rating<br>ced upon a non-metalling<br>of floor-standing ar<br>round reference plane,<br>th a vertical ground ref<br>from the vertical ground ref<br>from the vertical ground<br>blane was bonded to the<br>1 was placed 0.8 m fro<br>to a ground reference<br>and reference plane. The<br>s of the LISN 1 and the<br>quipment was at least 0<br>im emission, the relative<br>terface cables must be | bugh a LISN 1 (Line<br>a $50\Omega/50\mu$ H + $5\Omega$ line<br>f the EUT were<br>d to the ground<br>or the unit being<br>d to connect multiple<br>g of the LISN was not<br>c table 0.8m above the<br>rangement, the EUT we<br>derence plane. The read<br>d reference plane. The read<br>d reference plane. The read<br>d reference plane. The read<br>d reference plane for LISNs<br>his distance was<br>EUT. All other units of<br>0.8 m from the LISN 2<br>we positions of |
| Test Setup:            | Shielding Room                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AE<br>USN2 + AC Ma<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test Receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

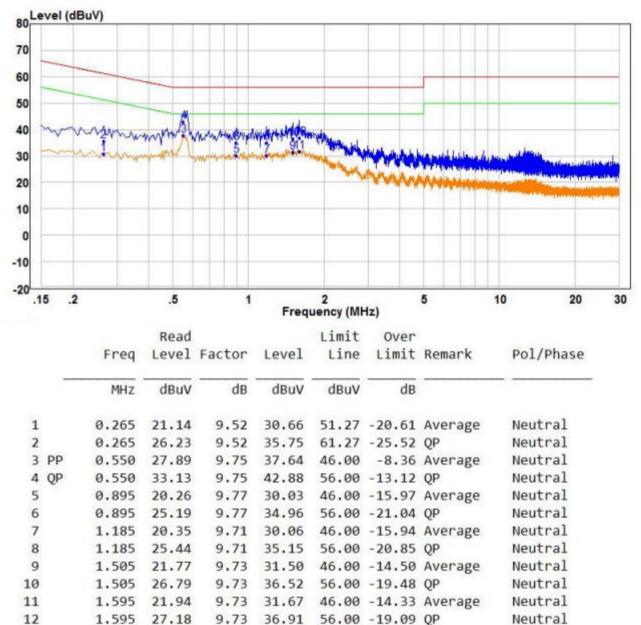



| Exploratory Test Mode: | Non-hopping transmitting mode with all kind of modulation and all kind of                                                                                  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | data type at the lowest, middle, high channel.                                                                                                             |
| Final Test Mode:       | Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case.<br>Only the worst case is recorded in the report. |
| Test Voltage:          | AC 120V/60Hz                                                                                                                                               |
| Test Results:          | Pass                                                                                                                                                       |



#### Measurement Data

Live line:




Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Neutral line:



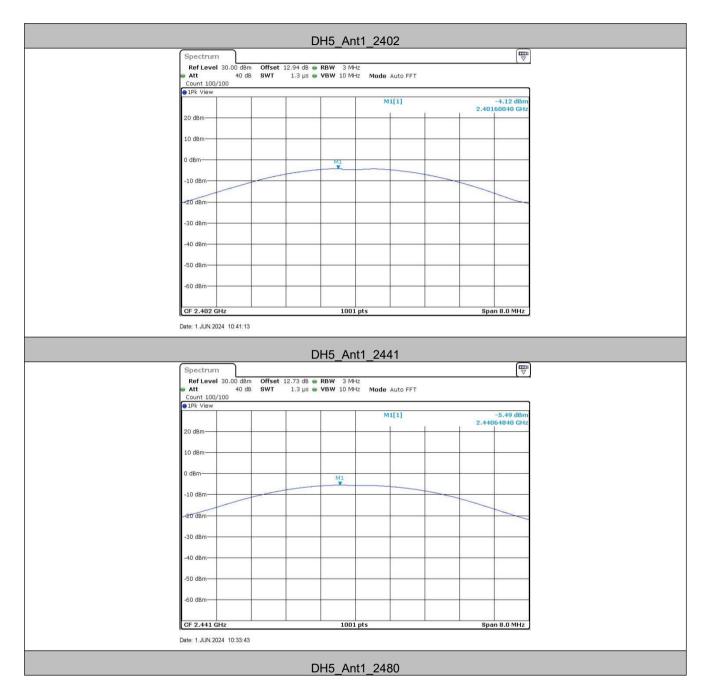
#### Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



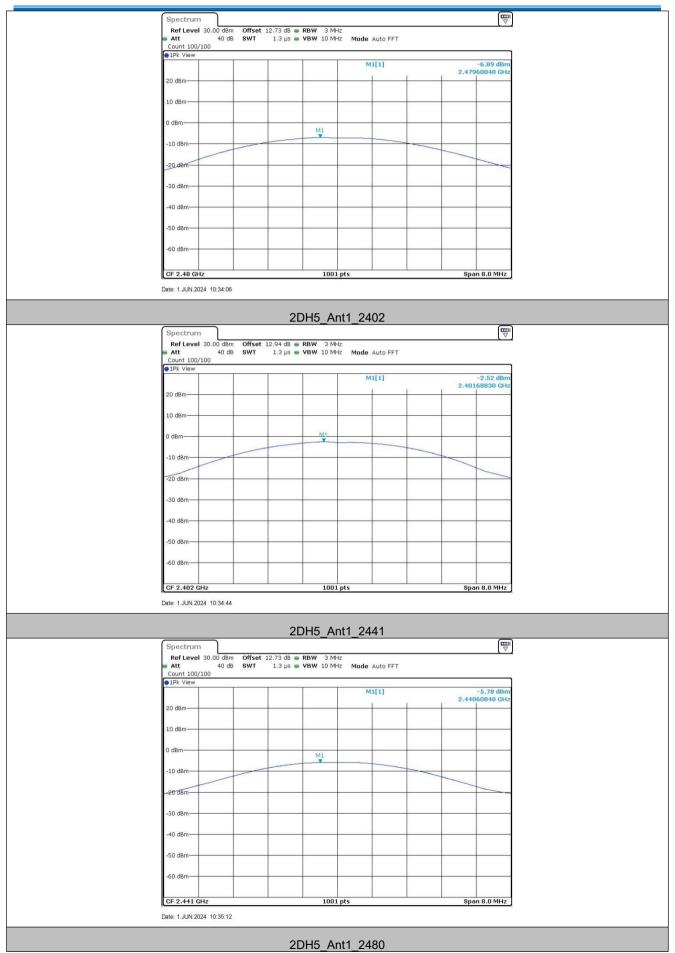
# 5.3 Conducted Peak Output Power

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (b)(1)                                          |
|------------------------|--------------------------------------------------------------------------------|
| Test Method:           | ANSI C63.10:2013                                                               |
| Test Setup:            | Setup for Power meter measurement method                                       |
|                        | EUT Power<br>Meter                                                             |
|                        | Setup for Spectrum analyser measurement method                                 |
|                        | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane    |
|                        | Remark: Offset=Cable loss+ attenuation factor.                                 |
| Limit:                 | 21dBm                                                                          |
| Exploratory Test Mode: | Non-hopping transmitting with all kind of modulation and all kind of data type |
| Final Test Mode:       | Only the worst case is recorded in the report.                                 |
| Test Results:          | Pass                                                                           |



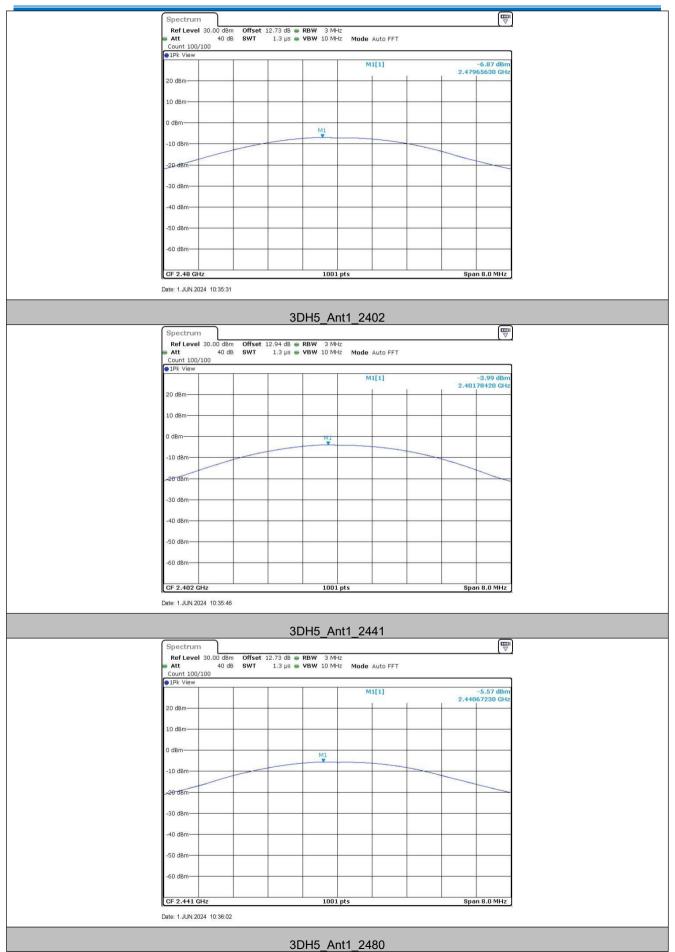

### Measurement Data

|              | GFSK mode               |             |        |
|--------------|-------------------------|-------------|--------|
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |
| Lowest       | -4.12                   | 21.00       | Pass   |
| Middle       | -5.49                   | 21.00       | Pass   |
| Highest      | -6.89                   | 21.00       | Pass   |
|              | π/4DQPSK m              | ode         |        |
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |
| Lowest       | -2.52                   | 21.00       | Pass   |
| Middle       | -5.78                   | 21.00       | Pass   |
| Highest      | -6.87                   | 21.00       | Pass   |
|              | 8DPSK mod               | e           |        |
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |
| Lowest       | -3.99                   | 21.00       | Pass   |
| Middle       | -5.57                   | 21.00       | Pass   |
| Highest      | -6.76                   | 21.00       | Pass   |




#### Test plot as follows:




# Shenzhen Huaxia Testing Technology Co., Ltd.

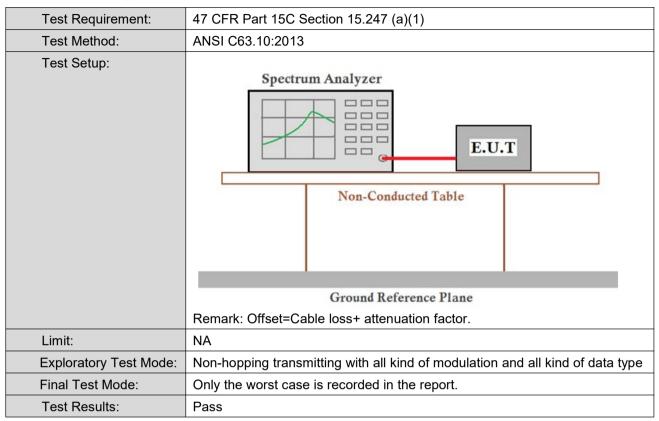










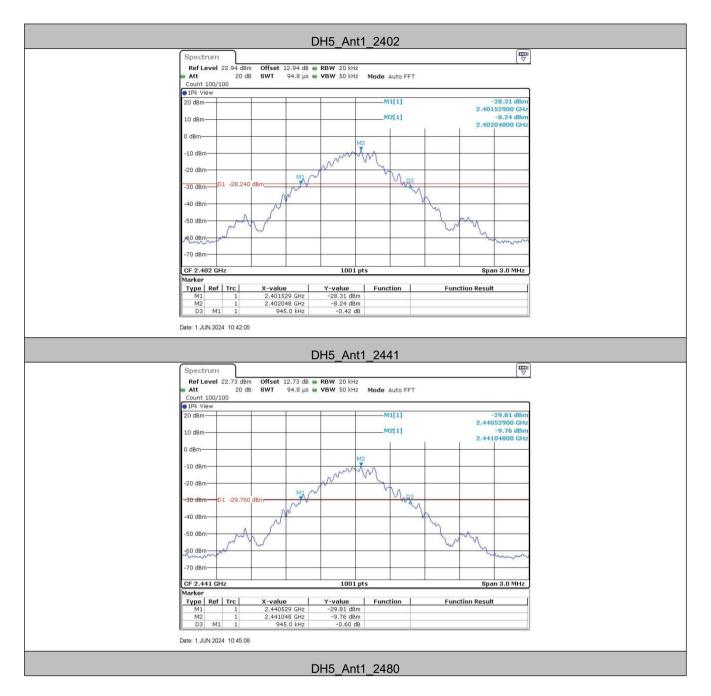

# Shenzhen Huaxia Testing Technology Co., Ltd.



|               | dB SWT |       |       | Auto FFT |      |                        |     |
|---------------|--------|-------|-------|----------|------|------------------------|-----|
| Count 100/100 |        |       |       |          |      |                        | í . |
| The Alem      |        |       | М     | 1[1]     |      | -6.76 dBm<br>24780 GHz |     |
| 20 dBm        |        | 2     |       |          |      |                        |     |
| 10 dBm        | -      |       |       | -        |      |                        |     |
| 0 dBm         |        |       | M1    |          | <br> | <u> </u>               |     |
| -10 dBm       | -      |       | *     |          |      | ee                     |     |
| -20.dBm       |        |       |       |          |      | -                      |     |
| -30 dBm       | -      |       |       |          |      | 0                      |     |
| -40 dBm       | _      | <br>- |       |          | <br> |                        |     |
| -50 dBm       |        |       |       |          |      | <u></u>                |     |
| -60 dBm       |        |       |       |          | <br> |                        |     |
| CF 2.48 GHz   |        | 100:  | L pts |          | Spar | n 8.0 MHz              |     |

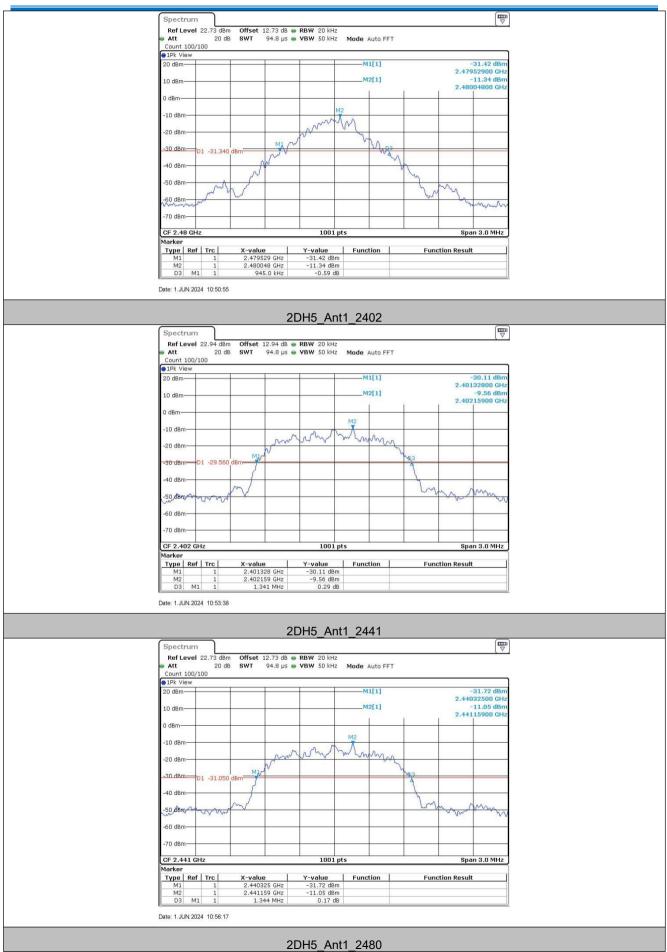


### 5.4 20dB Occupied Bandwidth



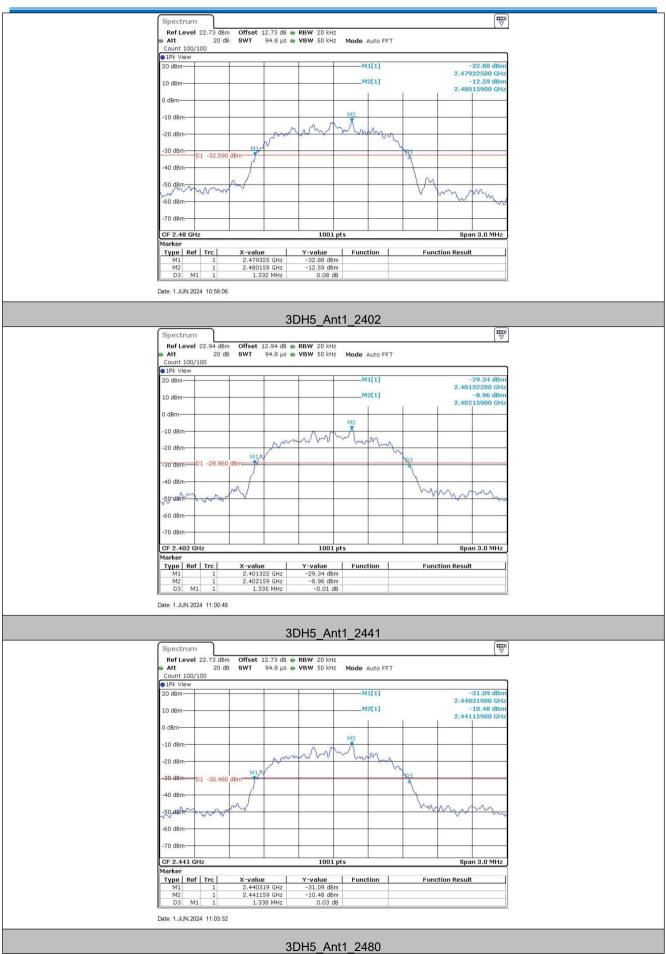

#### Measurement Data

| Test channel | 20dB Occupy Bandwidth (MHz) |          |       |  |  |  |  |  |
|--------------|-----------------------------|----------|-------|--|--|--|--|--|
| rest channel | GFSK                        | π/4DQPSK | 8DPSK |  |  |  |  |  |
| Lowest       | 0.95                        | 1.34     | 1.34  |  |  |  |  |  |
| Middle       | 0.95                        | 1.34     | 1.34  |  |  |  |  |  |
| Highest      | 0.95                        | 1.33     | 1.32  |  |  |  |  |  |




#### Test plot as follows:





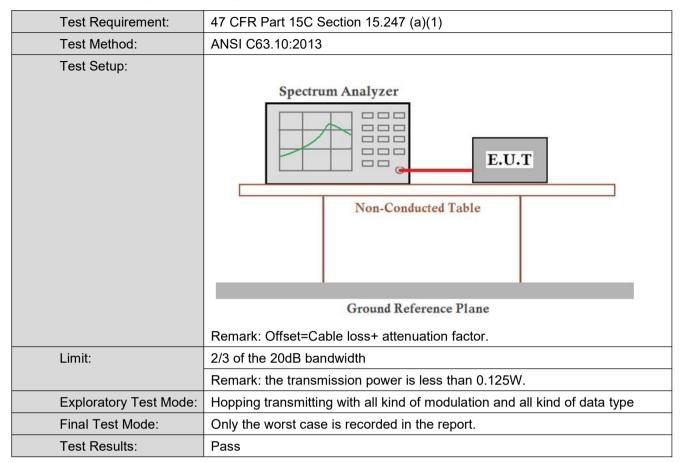

# Shenzhen Huaxia Testing Technology Co., Ltd.





# Shenzhen Huaxia Testing Technology Co., Ltd.












### 5.5 Carrier Frequencies Separation





#### **Measurement Data**

| TestMode | Freq(MHz) | Result[MHz] | Limit[MHz] | Verdict |
|----------|-----------|-------------|------------|---------|
| DH5      | Нор       | 1           | ≥0.633     | PASS    |
| 2DH5     | Нор       | 1.003       | ≥0.893     | PASS    |
| 3DH5     | Нор       | 0.997       | ≥0.893     | PASS    |

| Mode     | 20dB bandwidth (MHz)<br>(worse case) | Limit (MHz)<br>(Carrier Frequencies Separation) |
|----------|--------------------------------------|-------------------------------------------------|
| GFSK     | 0.95                                 | ≥0.633                                          |
| π/4DQPSK | 1.34                                 | ≥0.893                                          |
| 8DPSK    | 1.34                                 | ≥0.893                                          |



#### Test plot as follows:



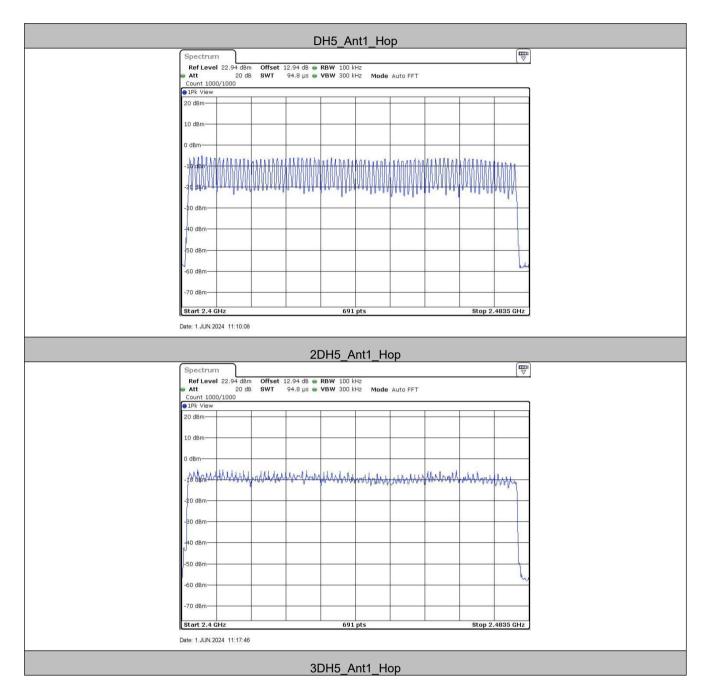




| Att<br>Count 100/ |       | SWT | 6.2 µs 🖷 | VBW 300 | Hz Mode | Auto FFT |            |         |
|-------------------|-------|-----|----------|---------|---------|----------|------------|---------|
| 1Pk View          |       |     |          |         |         |          |            |         |
| 20 dBm            |       |     |          |         | M       | [1]      | -6.3       | 1 dBm   |
|                   |       |     |          |         | D2      | [1]      |            | 0.07 dB |
| 10 dBm            |       |     |          |         |         |          |            | 10 kHz  |
|                   |       |     |          |         |         |          |            |         |
| 0 dBm             | 1.517 |     |          |         |         |          |            |         |
|                   | M1    |     |          |         |         | D2       | _          |         |
| -10 dBm-          |       |     |          |         |         | -        |            |         |
|                   |       |     |          |         |         |          |            |         |
| -20 dBm           |       |     | +        | 1       |         |          |            |         |
| ~                 |       |     |          |         |         |          |            |         |
| -30 dBm           |       |     | 1        | 1       |         |          |            |         |
|                   |       |     |          |         |         |          |            |         |
| -40 dBm           |       |     | 1        | 1       |         |          |            |         |
|                   |       |     |          |         |         |          |            |         |
| -50 dBm           |       |     |          |         |         |          |            |         |
|                   |       |     |          |         |         |          |            |         |
| -60 dBm           |       |     |          |         |         |          |            |         |
| 70 40             |       |     |          |         |         |          |            |         |
| -70 dBm-          |       |     |          |         |         |          |            |         |
| Start 2.440       | E CUR |     |          | 601     | pts     |          | Stop 2.442 | E CLIP  |



# 5.6 Hopping Channel Number


| Test Requirement:      | 47 CFR Part 15C Section 15.247 (a)(1)                                                                                         |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:           | ANSI C63.10:2013                                                                                                              |  |  |
| Test Setup:            | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane<br>Remark: Offset=Cable loss+ attenuation factor. |  |  |
| Limit:                 | At least 15 channels                                                                                                          |  |  |
| Exploratory Test Mode: | hopping transmitting with all kind of modulation and all kind of data type                                                    |  |  |
| Final Test Mode:       | Only the worst case is recorded in the report.                                                                                |  |  |
| Test Results:          | Pass                                                                                                                          |  |  |

#### Measurement Data

| Mode     | Hopping channel numbers | Limit |
|----------|-------------------------|-------|
| GFSK     | 79                      | ≥15   |
| π/4DQPSK | 79                      | ≥15   |
| 8DPSK    | 79                      | ≥15   |



#### Test plot as follows:





# Shenzhen Huaxia Testing Technology Co., Ltd.

| Spectrum 🕎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RefLevel 22.94 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IPk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 d8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - to person and the property of the second o |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 140 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Start 2.4 GHz 691 pts Stop 2.4935 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

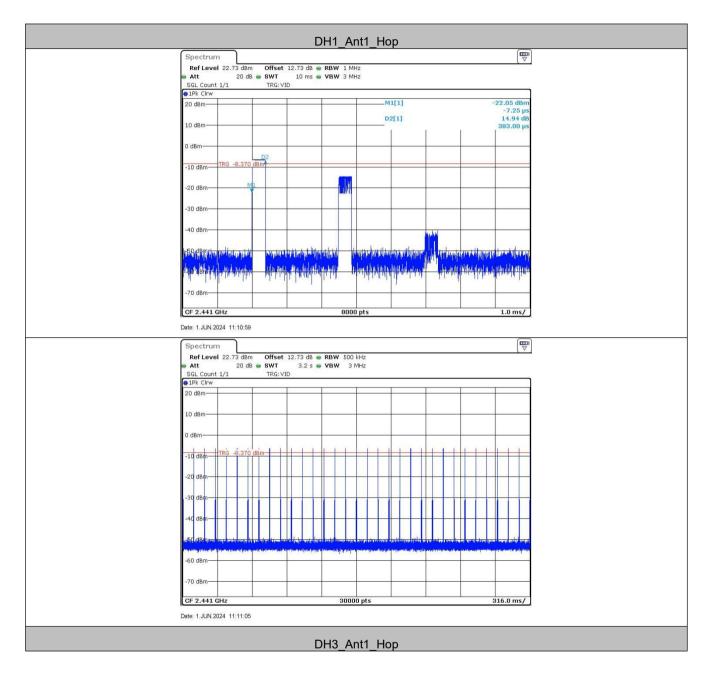


# 5.7 Dwell Time

| Test Requirement: | 47 CFR Part 15C Section 15.247 (a)(1)                                       |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2013                                                            |  |  |  |  |
| Test Setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table                           |  |  |  |  |
|                   | Ground Reference Plane                                                      |  |  |  |  |
|                   | Remark: Offset=Cable loss+ attenuation factor.                              |  |  |  |  |
| Test Mode:        | Hopping transmitting with all kind of modulation and all kind of data type. |  |  |  |  |
| Limit:            | 0.4 Second                                                                  |  |  |  |  |
| Test Results:     | Pass                                                                        |  |  |  |  |

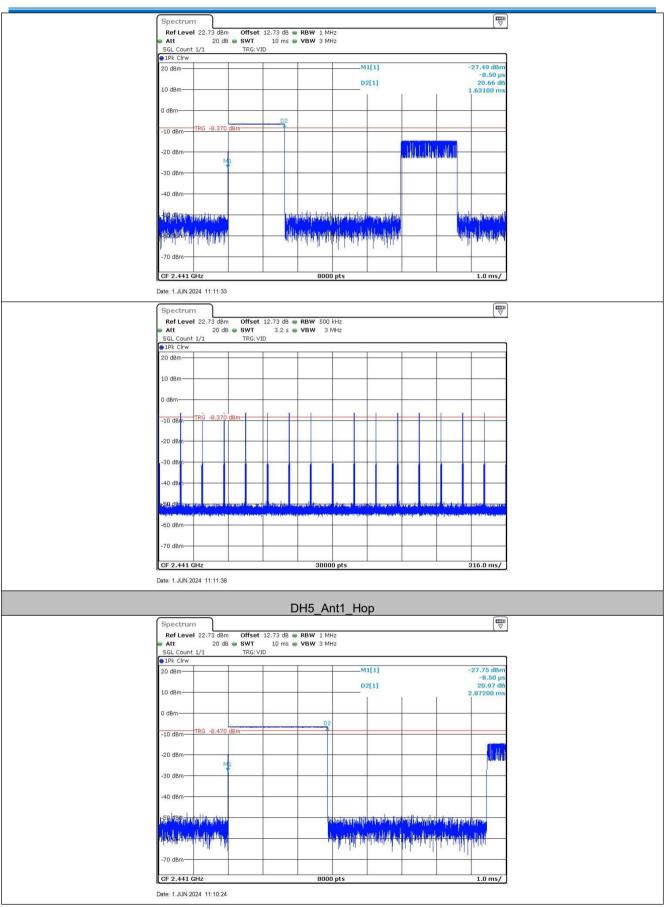


#### Measurement Data


| TestMode | Freq(MHz) | BurstWidth<br>[ms] | TotalHops<br>[Num] | Result[s] | Limit[s] | Verdict |
|----------|-----------|--------------------|--------------------|-----------|----------|---------|
| DH1      | Нор       | 0.383              | 320                | 0.123     | ≤0.4     | PASS    |
| DH3      | Нор       | 1.631              | 160                | 0.261     | ≤0.4     | PASS    |
| DH5      | Нор       | 2.872              | 110                | 0.316     | ≤0.4     | PASS    |
| 2DH1     | Нор       | 0.394              | 320                | 0.126     | ≤0.4     | PASS    |
| 2DH3     | Нор       | 1.638              | 160                | 0.262     | ≤0.4     | PASS    |
| 2DH5     | Нор       | 2.878              | 110                | 0.317     | ≤0.4     | PASS    |
| 3DH1     | Нор       | 0.393              | 320                | 0.126     | ≤0.4     | PASS    |
| 3DH3     | Нор       | 1.636              | 160                | 0.262     | ≤0.4     | PASS    |
| 3DH5     | Нор       | 2.879              | 110                | 0.317     | ≤0.4     | PASS    |

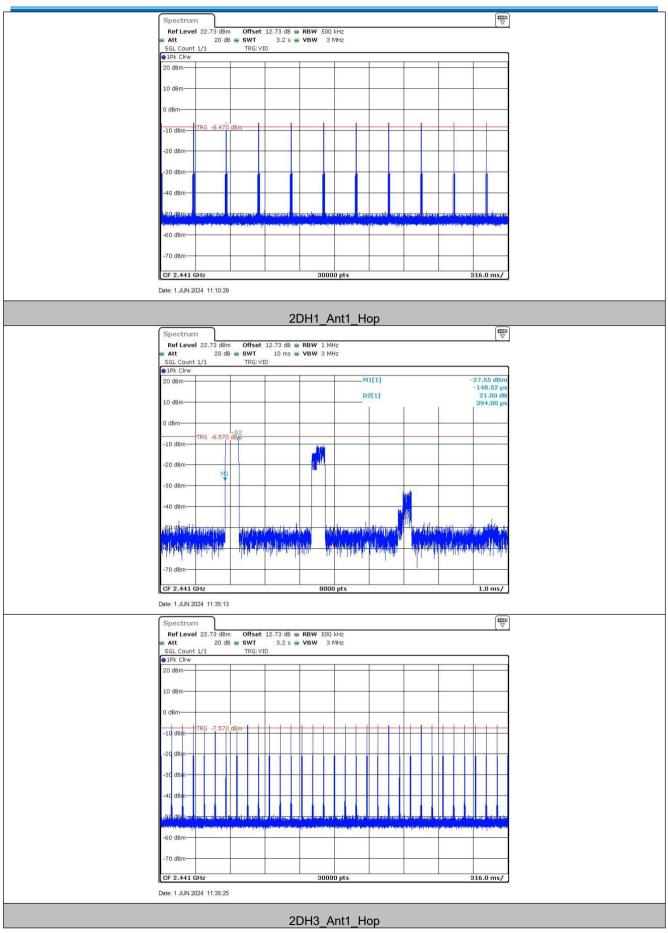
#### Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

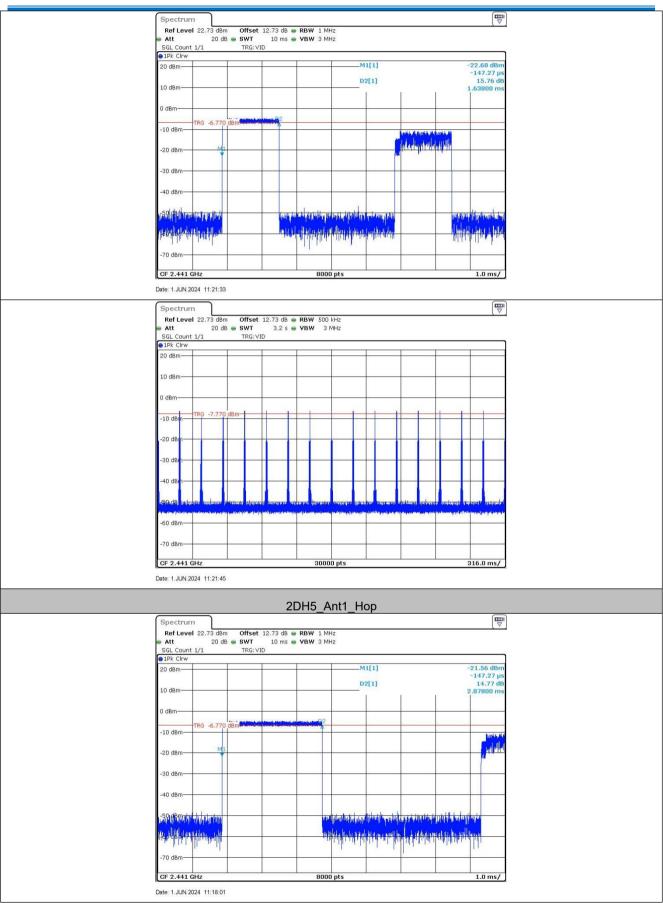



#### Test plot as follows:



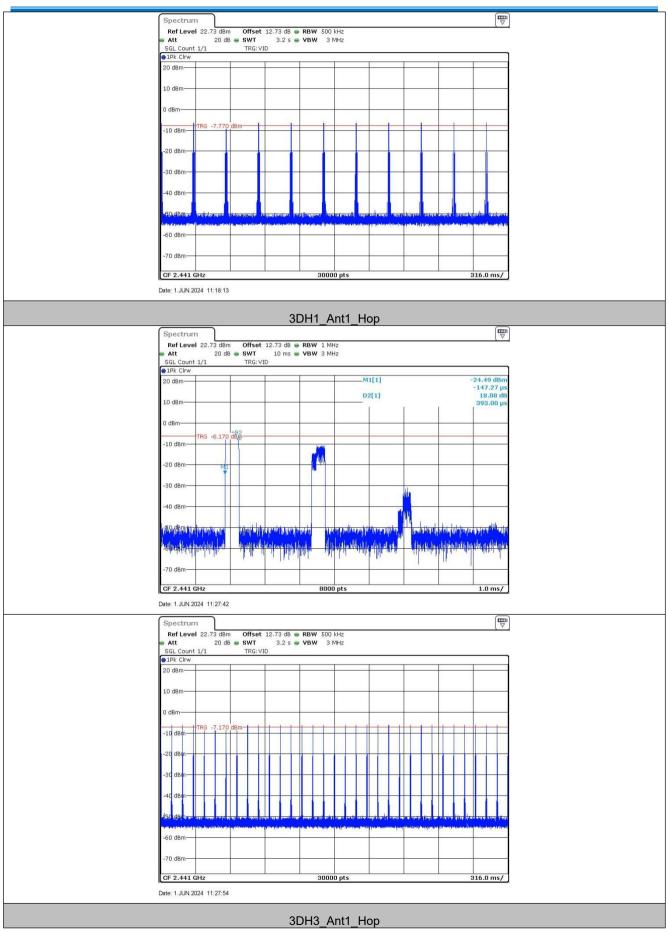






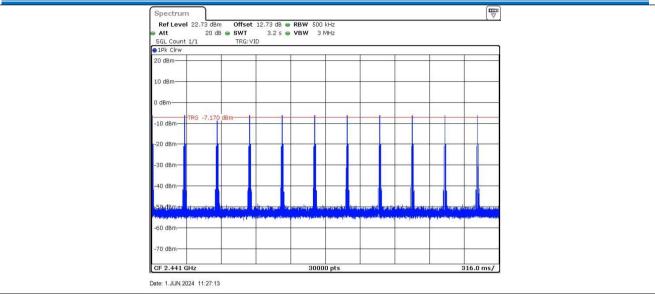














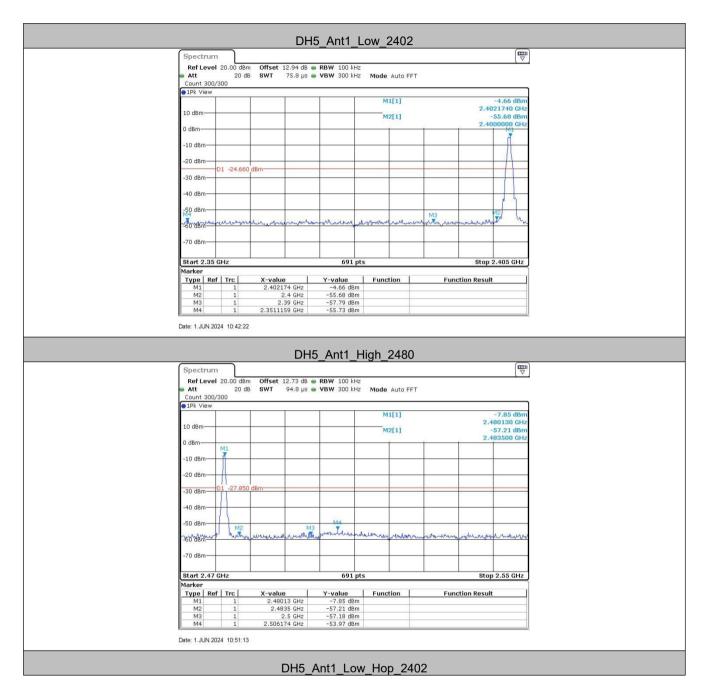







# 5.8 Band-edge for RF Conducted Emissions

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:           | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                        |
| Test Setup:            | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane<br>Remark: Offset=cable loss+ attenuation factor.                                                                                                                                                                                                                                                           |
| Limit:                 | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |
| Exploratory Test Mode: | Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type                                                                                                                                                                                                                                                                                              |
| Final Test Mode:       | Only the worst case is recorded in the report.                                                                                                                                                                                                                                                                                                                                          |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                    |



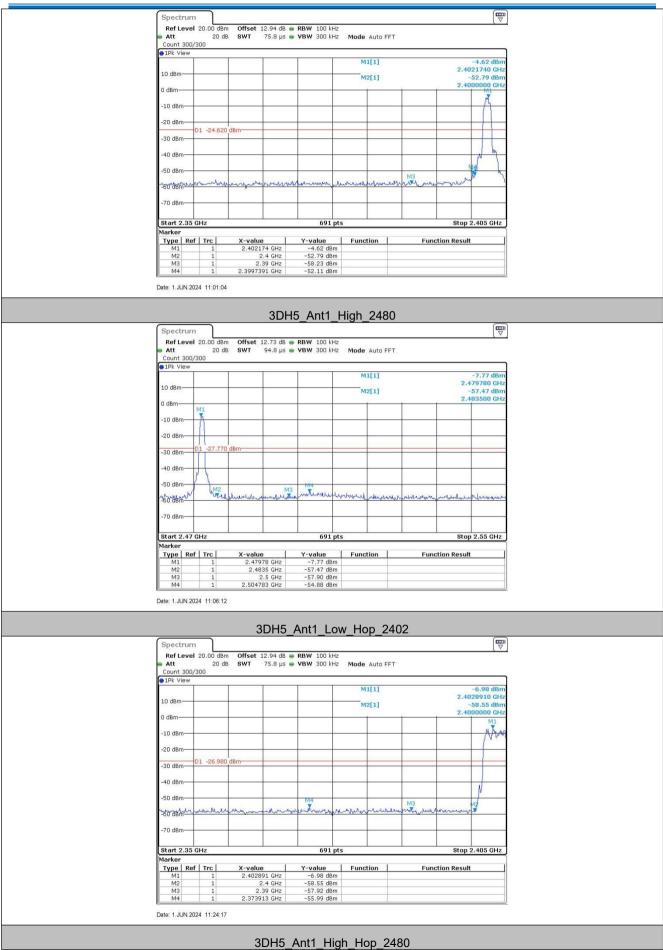

#### Measurement Data

| TestMode | ChName | Freq(MHz) | RefLevel<br>[dBm] | Result<br>[dBm] | Limit<br>[dBm] | Verdict |
|----------|--------|-----------|-------------------|-----------------|----------------|---------|
|          | Low    | 2402      | -4.66             | -55.73          | ≤-24.66        | PASS    |
|          | High   | 2480      | -7.85             | -53.97          | ≤-27.85        | PASS    |
| DH5      | Low    | Hop_2402  | -5.66             | -56.06          | ≤-25.66        | PASS    |
|          | High   | Hop_2480  | -7.21             | -54.33          | ≤-27.21        | PASS    |
|          | Low    | 2402      | -4.85             | -53.72          | ≤-24.85        | PASS    |
| 00115    | High   | 2480      | -8.00             | -55.16          | ≤-28           | PASS    |
| 2DH5     | Low    | Hop_2402  | -5.48             | -55.41          | ≤-25.48        | PASS    |
|          | High   | Hop_2480  | -7.02             | -54.82          | ≤-27.02        | PASS    |
|          | Low    | 2402      | -4.62             | -52.11          | ≤-24.62        | PASS    |
| 0.0115   | High   | 2480      | -7.77             | -54.88          | ≤-27.77        | PASS    |
| 3DH5     | Low    | Hop_2402  | -6.98             | -55.99          | ≤-26.98        | PASS    |
|          | High   | Hop_2480  | -9.22             | -55.49          | ≤-29.22        | PASS    |




#### Test plot as follows:









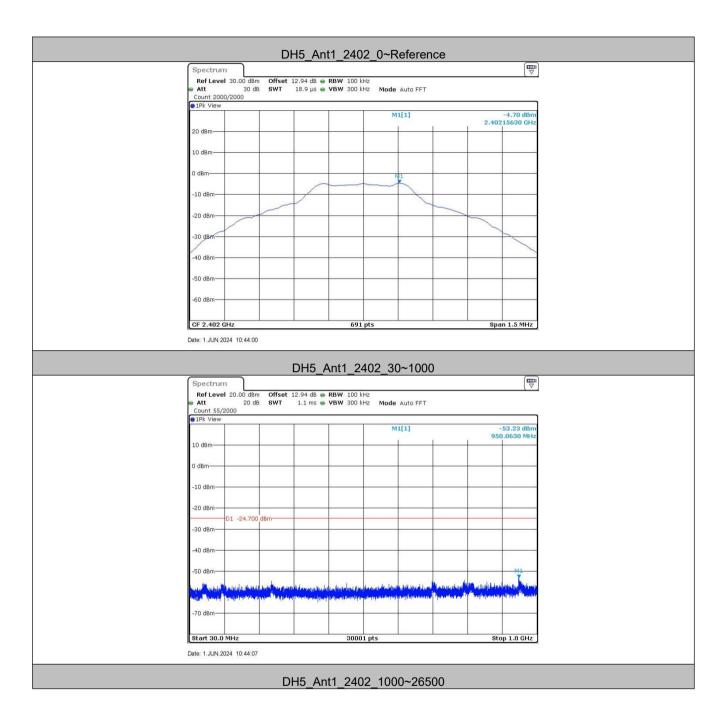






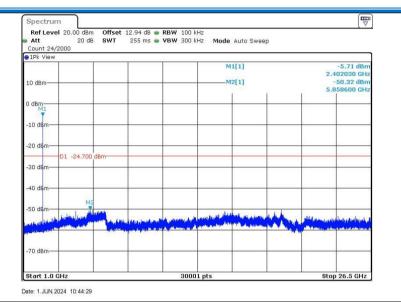






| Spect   |         |         | Offeet    | 10 70 dB a | RBW 100 k          | L la         |          |         |           |              |
|---------|---------|---------|-----------|------------|--------------------|--------------|----------|---------|-----------|--------------|
| Att     | ever 2  |         |           |            | VBW 300 ki         |              | Auto FET |         |           |              |
|         | 300/30  |         | 5 541     | 94.0 µ3    | <b>1011</b> 300 Ki | nz moue      | AULO FFT |         |           |              |
| O 1Pk V |         | -       |           |            |                    |              |          |         |           |              |
|         |         |         |           |            |                    | M            | 1[1]     |         |           | -9.22 dBm    |
| 10 10-  |         |         |           |            |                    |              |          |         | 2         | .472840 GHz  |
| 10 dBm  |         |         |           |            |                    | M            | 2[1]     |         |           | -57.55 dBm   |
| 0 dBm-  |         |         |           |            |                    | _            |          |         | 2         | .483500 GHz  |
| M1      |         |         |           |            |                    |              |          |         |           |              |
|         | m       |         |           |            | -                  |              |          |         |           |              |
| MAN     | white   |         |           |            |                    |              |          |         |           |              |
| -20 dBr | m       | 1       |           |            | +                  |              |          | -       |           |              |
|         |         | 1       |           |            |                    |              |          |         |           |              |
| -30 dBr | m01     | -29.220 | ) dBm=    |            |                    |              |          |         |           |              |
| 10 10   |         |         |           |            |                    |              |          |         |           |              |
| -40 dBr | n       | 1       |           |            |                    |              |          |         |           |              |
| -50 dBr |         |         |           |            |                    |              |          |         |           |              |
| -30 061 |         | M2      |           | MB         |                    | Nave the set |          |         | M4        | -            |
| -60 dBr | n       | harm    | perminent | month      | Monterno           | hallowedge   | mussin   | medhamy | monor     | worknownedge |
|         |         |         |           |            |                    |              |          |         |           |              |
| -70 dBr | m-+-    |         | +         |            | -                  |              |          | +       | -         |              |
|         |         |         |           |            |                    |              |          |         |           |              |
| Start 2 | 2.47 GH | łz      | 1         | -          | 691                | pts          |          |         | Ste       | op 2.55 GHz  |
| Marker  |         |         |           |            |                    |              |          |         |           |              |
| Туре    | Ref     | Trc     | X-valu    | e          | Y-value            | Funct        | tion     | Fund    | tion Resu | ult          |
| M1      |         | 1       |           | 284 GHz    | -9.22 dB           |              |          |         |           | 1            |
| M2      |         | 1       |           | 335 GHz    | -57.55 dB          |              |          |         |           |              |
| M3      |         | 1       |           | 2.5 GHz    | -57.13 dB          |              |          |         |           |              |
| M4      |         | 1       | 2.5355    | 71 GHz     | -55.49 dB          | m            |          |         |           |              |



# 5.9 Spurious RF Conducted Emissions


| Test Requirement:      | 47 CFR Part 15C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:           | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                        |
| Test Setup:            | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                             |
|                        | Remark: Offset=cable loss+ attenuation factor.                                                                                                                                                                                                                                                                                                                                          |
| Limit:                 | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |
| Exploratory Test Mode: | Non-hopping transmitting with all kind of modulation and all kind of data type                                                                                                                                                                                                                                                                                                          |
| Final Test Mode:       | Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi$ /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.                                                                                                                                                            |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                    |

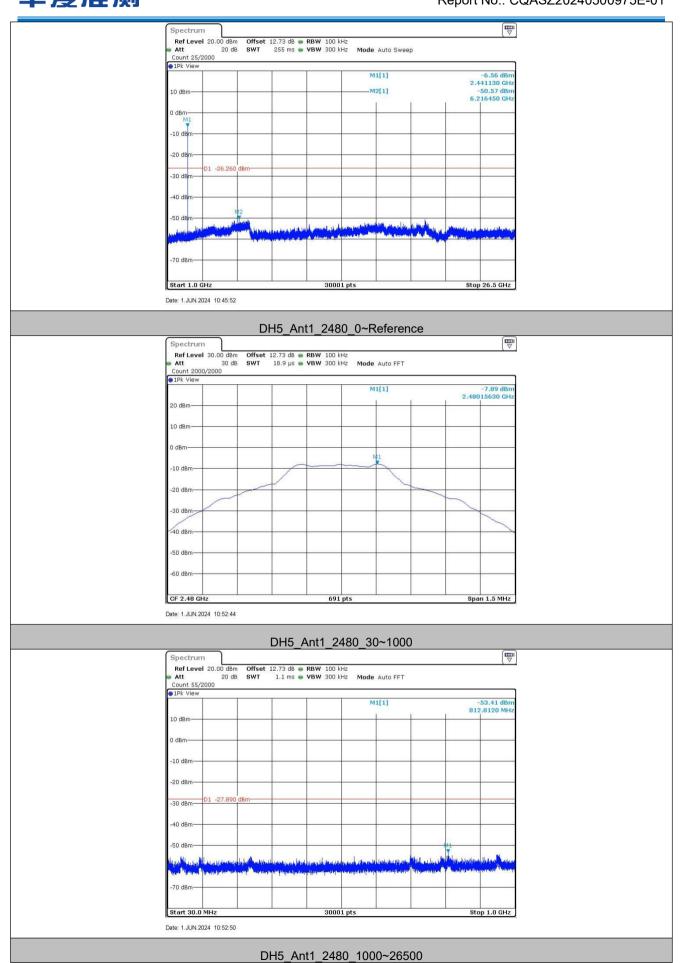






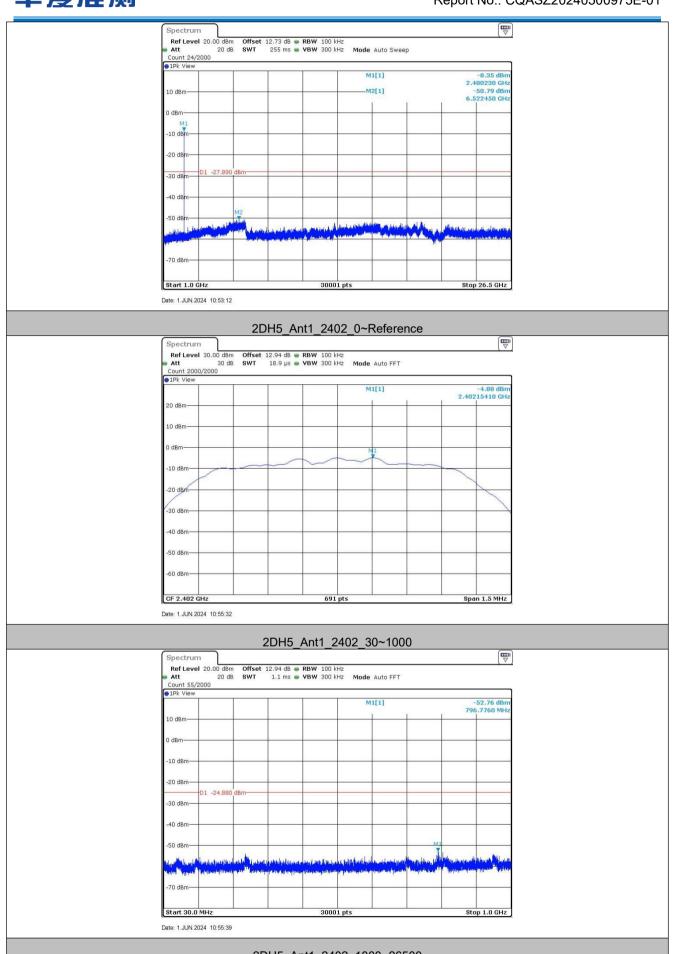





#### DH5\_Ant1\_2441\_0~Reference

| Att 30 dB SW<br>Count 2000/2000 | /Τ 18.9 μs 👄 VBW 300 | kHz Mode Auto FFT |                          |
|---------------------------------|----------------------|-------------------|--------------------------|
| ●1Pk View                       | 1 I                  |                   |                          |
|                                 |                      | M1[1]             | -6.26 dE<br>2.44115630 G |
| 20 dBm                          |                      |                   |                          |
| 10 dBm                          |                      |                   |                          |
| 0 dBm                           |                      | N#1               |                          |
| -10 dBm                         |                      |                   |                          |
| -20 dBm                         |                      |                   |                          |
|                                 |                      |                   |                          |
| -30 dBm                         |                      |                   |                          |
| -40 dBm                         |                      |                   |                          |
| -50 dBm                         |                      |                   |                          |
| -60 dBm                         |                      |                   |                          |
| CF 2.441 GHz                    | 691                  | L pts             | Span 1.5 MH              |

DH5 Ant1 2441 30~1000


| LPk View                                                                                                        |                                              |                                  |                              |                            |                  |  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|------------------------------|----------------------------|------------------|--|
|                                                                                                                 |                                              | M1[1] -53.94 dBm<br>815.6580 MHz |                              |                            |                  |  |
| 10 dBm-                                                                                                         |                                              |                                  |                              |                            |                  |  |
| 0 dBm                                                                                                           |                                              | -                                |                              |                            |                  |  |
| -10 dBm                                                                                                         |                                              |                                  |                              |                            | ·                |  |
| -20 dBm                                                                                                         |                                              |                                  |                              |                            | s                |  |
| -30 dBm                                                                                                         |                                              |                                  |                              |                            |                  |  |
| -40 dBm                                                                                                         | _                                            |                                  |                              |                            |                  |  |
| -50 dBm                                                                                                         |                                              | _                                |                              | Mil                        | 2                |  |
|                                                                                                                 | ومالعمال فالمعاد والعمار والمعالية والمعالية | WARDIN AND LAND                  | and the states               | ala the hereaster the file | - series Handler |  |
| lan and set and set of a set o | ule se   | and an almost which are pe       | ass. pdf (finauls) pars. par | ANNIA                      | weekle Alered    |  |
| -70 dBm                                                                                                         |                                              |                                  |                              |                            |                  |  |
| Start 30.0 MHz                                                                                                  | 3                                            | 0001 pts                         |                              | Sto                        | p 1.0 GHz        |  |







Report No.: CQASZ20240500975E-01



2DH5\_Ant1\_2402\_1000~26500