

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZE201011702

FCC REPORT

Applicant: Shenzhen Youmi Intelligent Technology Co., Ltd.

Address of Applicant: 406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan

District, Shenzhen City, China.

Equipment Under Test (EUT)

Product Name: Smart phone

Model No.: A9 Pro, A9, A9S, A11 Pro, A11 Pro Max

Trade mark: UMIDIGI

FCC ID: 2ATZ4A9P11PM

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Oct., 2020

Date of Test: 31 Oct., to 26 Nov., 2020

Date of report issued: 01 Dec., 2020

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	01 Dec., 2020	Original

Tested by:	Mike ou	Date:	01 Dec., 2020	
	Test Engineer			

Reviewed by:

| Winner Thang | Date: 01 Dec., 2020

Project Engineer

3 Contents

Page
3
4
5
5
5
6
6
6
6
6
8
8
g
12
13
14
15
15
16
21
21
22
27
28

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Shenzhen Youmi Intelligent Technology Co., Ltd.	
Address:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China.	
Manufacturer:	Shenzhen Youmi Intelligent Technology Co., Ltd.	
Address:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China.	
Factory:	Shenzhen Ying Keda Technology Co. Ltd.	
Address:	3rd and 4th floors, No. 88 Silian Xingwang Road Henggang street, Longgang District, Shenzhen China	

5.2 General Description of E.U.T.

Draduat Name	
Product Name:	Smart phone
Model No.:	A9 Pro, A9, A9S, A11 Pro, A11 Pro Max
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.80 dBi
Power supply:	Rechargeable Li-polymer Battery DC3.85V-4150mAh
AC adapter:	Model: HJ-0502000W2-US
	Input: AC100-240V, 50/60Hz, 0.3A
	Output: DC 5.0V, 2.0A
Remark:	Model No.: A9 Pro, A9, A9S, A11 Pro, A11 Pro Max were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
Hom Antenna	SCHWARZBECK	DDITA 9170	DDI IA9 170302	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	\	ersion: 6.110919t/)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Con a star una son all mare	Rohde & Schwarz	ECD40	400000	11-18-2019	11-17-2020
Spectrum analyzer	Ronde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

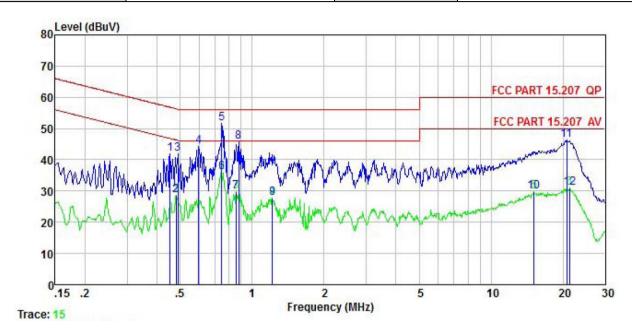
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

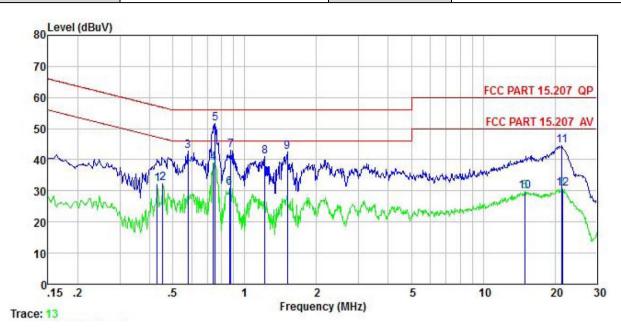
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.8 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:		Limit (dBuV)			
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	·			
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 				
Test setup:	Reference 40cm 40cm Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m	80cm Filter Filter Receiver	– AC power		
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test mode. Test results:					
rest results.	Passed				

Measurement Data:

Product name:	Smart phone	Product model:	A9 Pro		
Test by:	Mike	Test mode:	BLE Tx mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line		
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%		

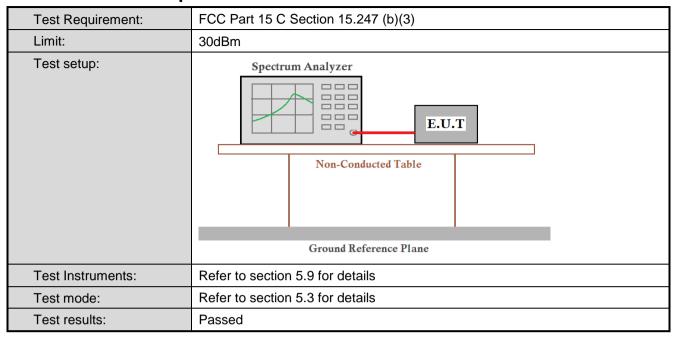

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>d</u> B	<u>ā</u> B	dB	dBu₹	dBu₹	<u>d</u> B	
1	0.454	31.53		-0.01	10.74	41.81		-14.99	15 THE R. P. LEWIS CO., LANSING, MICH.
2	0.481	18.58	-0.44	-0.24	10.75	28.65	46.32	-17.67	Average
3	0.489	31.90	-0.44	-0.26	10.76	41.96	56.19	-14.23	QP
4	0.598	34.35	-0.48	-0.38	10.77	44.26	56.00	-11.74	QP
5	0.747	41.68	-0.55	-0.24	10.79	51.68	56.00	-4.32	QP
2 3 4 5 6 7	0.747	25.88	-0.55	-0.24	10.79	35.88	46.00	-10.12	Average
7	0.857	19.57	-0.58	0.09	10.83	29.91			Average
8	0.880	35.48	-0.59	0.15	10.83	45.87	56.00	-10.13	QP
8	1.216	17.08	-0.59	0.24	10.90	27.63	46.00	-18.37	Average
10	15.146	15.96	-0.70	3.53	10.90	29.69			Average
11	20.704	35.47	-0.90	0.90	10.92	46.39		-13.61	
12	21.260	20.14	-0.93	0.92	10.91	31.04			Average

Notes:

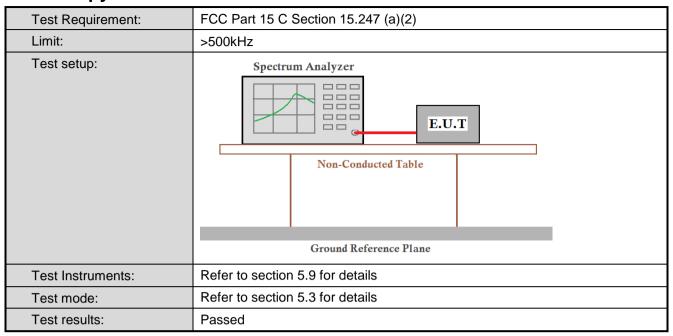
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Smart phone	Product model:	A9 Pro
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB	dB	₫B	dBu₹	dBu∀	<u>d</u> B	
1	0.431 0.454	21.99 22.30	-0.64 -0.64	-0.03 -0.01	10.73 10.74	32.05 32.39			Average Average
3	0.579	32.72	-0.65	0.03	10.76	42.86	56.00	-13.14	QP
1 2 3 4 5 6 7	0.739 0.751	28.74 41.33	-0.65 -0.65	0.05 0.05	10.79 10.79	38.93 51.52	46.00 56.00		Average QP
6	0.862 0.876	20.65 32.76	-0.66 -0.66	0.06	10.83 10.83	30.88 42.99			Average
8	1.216	30.76	-0.69	0.11	10.90	41.08	56.00	-14.92	QP
9 10	1.511 14.986	32.17 16.50	-0.70 -0.81	0.13 3.09	10.92 10.90	42.52 29.68		-13.48 -20.32	QP Average
11 12	21.373 21.486	34.61 20.63	-1.29 -1.30	0.37 0.39	10.91 10.91	44.60 30.63	60.00	-15.40	

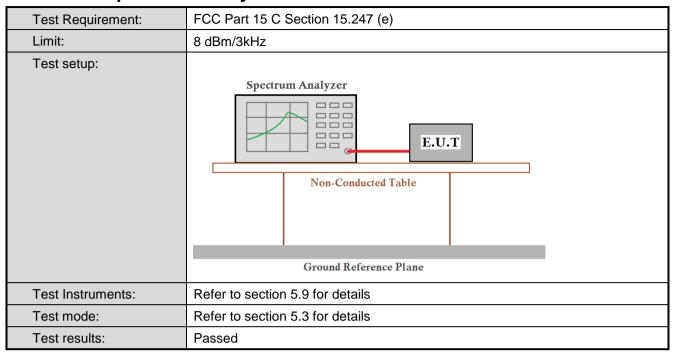

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.


6.3 Conducted Output Power

Measurement Data: Refer to Appendix A - BLE

6.4 Occupy Bandwidth



Measurement Data: Refer to Appendix A - BLE

6.5 Power Spectral Density

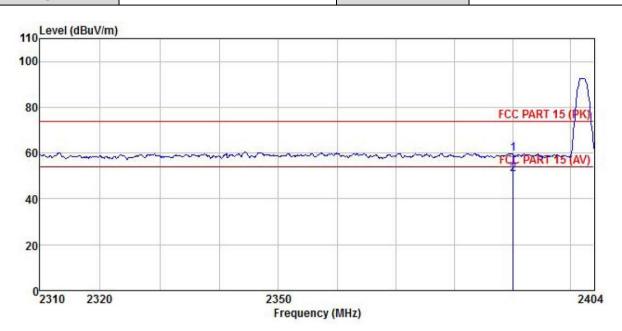
Measurement Data: Refer to Appendix A - BLE

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

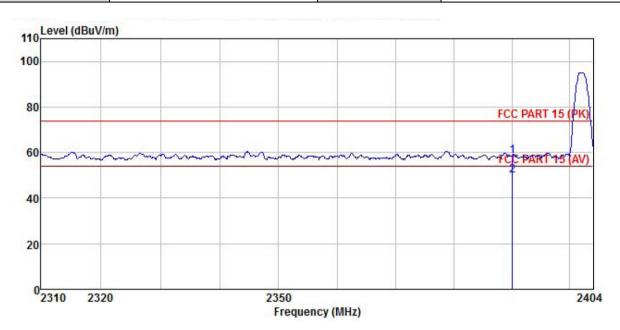
Measurement Data: Refer to Appendix A - BLE



6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.	205 and 15.209			
Test Frequency Range:	2310 MHz to 2	2390 MHz an	d 2483.5MHz to	2500	MHz	
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW		/BW	Remark
Receiver Setup.	, ,	Peak	1MHz		MHz	Peak Value
	Above 1GHz	RMS	1MHz	3	MHz	Average Value
Limit:	Frequer	ncy I	Limit (dBuV/m @	23m)	_	Remark
	Above 10	GHz —	54.00 74.00			verage Value Peak Value
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antentower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower tha the limit specified, then testing could be stopped and the peak valu of the EUT would be reported. Otherwise the emissions that did no have 10 dB margin would be re-tested one by one using peak, qua peak or average method as specified and then reported in a data sheet. 					
Test setup:	AE (T	Test Receive	Horn Antenna 3m Free Amplifier	Antenna T	Tower State of the Control of the Co	
Test Instruments:	Refer to section	on 5.9 for det	ails			
Test mode:	Refer to section	on 5.3 for det	ails			
Test results:	Passed					

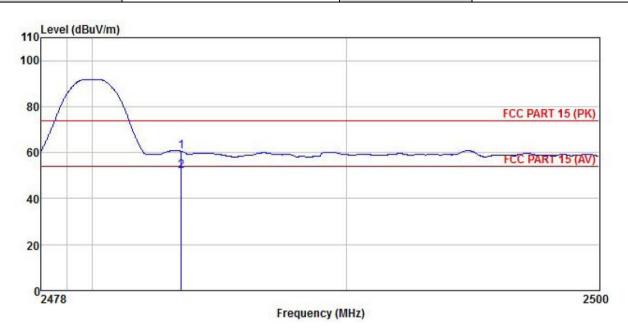
Product Name:	Smart phone	Product Model:	A9 Pro
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor						Remark	
	MHz	dBu∇		 <u>ab</u>	<u>ab</u>	dBu∀/m	dBuV/m	<u>dB</u>		
1 2	2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

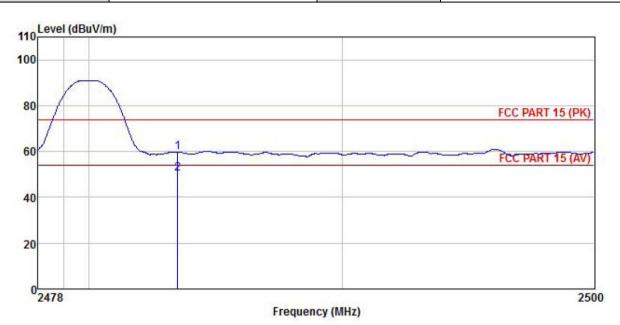
Product Name:	Smart phone	Product Model:	A9 Pro
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor					Limit Line	
	MHz	dBu₹	$\overline{-}\overline{dB}/\overline{m}$	<u>d</u> B	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	
1 2	2390,000 2390,000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart phone	Product Model:	A9 Pro
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu₹	dB/m	 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart phone	Product Model:	A9 Pro
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

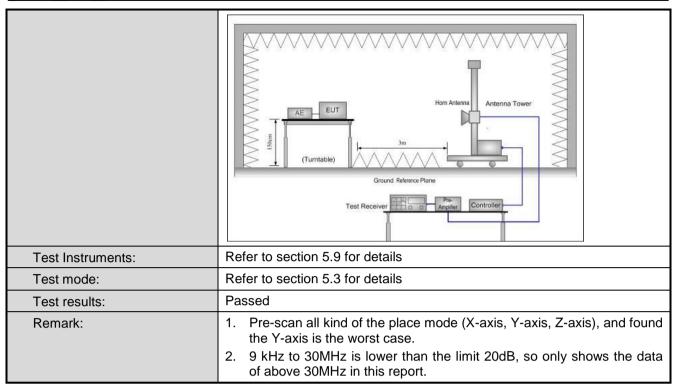
	Freq		Antenna Factor					Limit Line		
	MHz	dBu∜	─dB/m	dB	<u>d</u> B	dB	dBu√/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.6.3 Spurious Emission

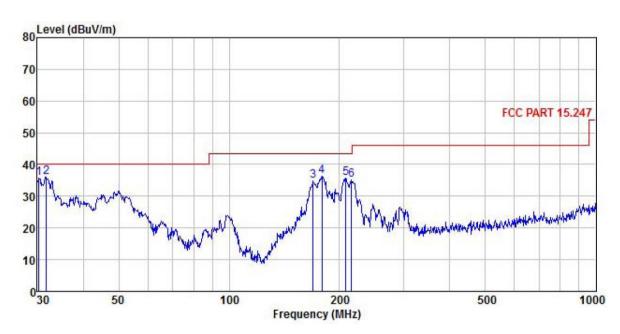
6.6.4 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Limit:	n any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							


Measurement Data: Refer to Appendix A - BLE

6.6.5 Radiated Emission Method

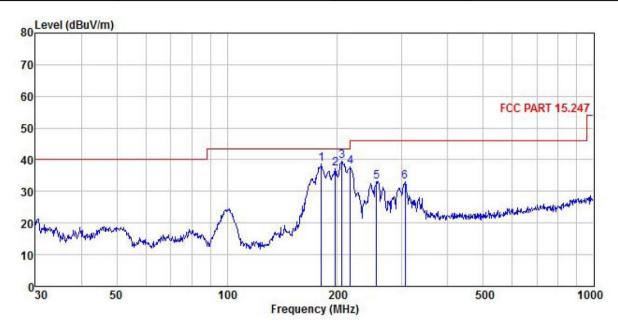
Test Requirement:	FCC Part 15 C	Section 15.20	05 and 15.209			
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VB	sW	Remark
110001101 00104P1	30MHz-1GHz	Quasi-peak	120KHz	300KHz		Quasi-peak Value
	A	Peak	1MHz	3M	Hz	Peak Value
	Above 1GHz	RMS	1MHz	3M	Hz	Average Value
Limit:	Frequency	/ L	imit (dBuV/m @	3m)		Remark
	30MHz-88M	Hz	40.0		C	Quasi-peak Value
	88MHz-216M	1Hz	43.5		C	Quasi-peak Value
	216MHz-960N		46.0			Quasi-peak Value
	960MHz-1G	Hz	54.0		C	Quasi-peak Value
	Above 1GF	lz 🗀	54.0			Average Value
			74.0		L	Peak Value table 0.8m(below
	highest rad The EUT antenna, w tower. The antenn the ground Both horize make the n For each s case and t meters and to find the n The test-re Specified E If the emiss the limit sp of the EUT have 10 dE	liation. was set 3 r rhich was mo na height is to determine ontal and veneasurement suspected er hen the antel the rota tab maximum rea eceiver syste Bandwidth with sion level of ecified, then would be rea margin wou	neters away unted on the to varied from one the maximitical polarization. The enna was tuned ading. The was turned ading. The was turned to the EUT in petesting could be ported. Other ld be re-tested	from the top of a me met um valutions of EUT was do not be from 0 to Pea old Mo ak more stop wise the done be	ne intervariant of the areas arranged and the control of the arranged and the control of the con	the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and is 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data
Test setup:	EUT	3m < 4m 4m 0.8m			Antenna Search Antenn Test reiver —	1



Measurement Data (worst case):

Below 1GHz:

Product Name:	Smart phone	Product Model:	A9 Pro
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
-	MHz	dBu₹	dB/m	dB	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	30.317	53.36	11.85	0.40	0.00	29.98	35.63	40.00	-4.37	QP
2	31.731	53.46	12.09	0.38	0.00	29.97	35.96	40.00	-4.04	QP
1 2 3	169.599	46.71	16.40	0.65	0.00	29.05	34.71	43.50	-8.79	QP
4	179.386	47.69	16.89	0.68	0.00	28.98	36.28	43.50	-7.22	QP
4	207.850	45.33	18.33	0.73	0.00	28.78	35.61	43.50	-7.89	QP
6	215.268	44.87	18.37	0.74					-8.25	

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Smart phone	Product Model:	A9 Pro
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m		<u>d</u> B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	180.649	49.89	16.94	0.68	0.00	28.97	38.54	43.50	-4.96	QP
2	197.200	47.41	18.01	0.71	0.00	28.85	37.28	43.50	-6.22	QP
2	205.675	49.18	18.32	0.73	0.00	28.79	39.44	43.50	-4.06	QP
4	216.783	47.45	18.37	0.74	0.00	28.73	37.83	46.00	-8.17	QP
5	255.623	42.31	18.52	0.79	0.00	28.53	33.09	46.00	-12.91	QP
4 5 6	305.680	41.80	18.71	0.87	0.00		32.92			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

	Test channel: Lowest channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4804.00	48.85	30.78	6.80	2.44	41.81	47.06	74.00	-26.94	Vertical				
4804.00	48.36	30.78	6.80	2.44	41.81	46.57	74.00	-27.43	Horizontal				
				Detector:	Average Va	alue							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4804.00	42.79	30.78	6.80	2.44	41.81	41.00	54.00	-13.00	Vertical				
4804.00	42.50	30.78	6.80	2.44	41.81	40.71	54.00	-13.29	Horizontal				

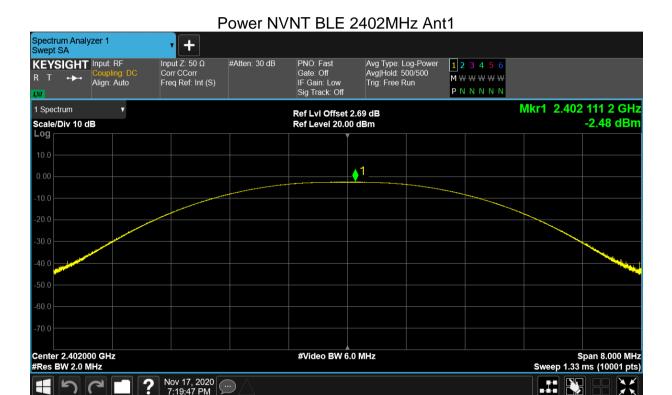
Test channel: Middle channel												
Detector: Peak Value												
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
48.74	30.96	6.86	2.47	41.84	47.19	74.00	-26.81	Vertical				
48.32	30.96	6.86	2.47	41.84	46.77	74.00	-27.23	Horizontal				
			Detector:	Average Va	alue							
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
42.68	30.96	6.86	2.47	41.84	41.13	54.00	-12.87	Vertical				
42.46	30.96	6.86	2.47	41.84	40.91	54.00	-13.09	Horizontal				
	Level (dBuV) 48.74 48.32 Read Level (dBuV) 42.68	Level (dB/m) 48.74 30.96 48.32 30.96 Read Antenna Level (dB/m) (dB/m) 42.68 30.96	Read Level (dBuV) Antenna (dB/m) Cable Loss (dB) 48.74 30.96 6.86 48.32 30.96 6.86 Read Level (dBuV) Antenna Loss (dB/m) Cable Loss (dB) 42.68 30.96 6.86	Detector Read Level (dBuV) Antenna (dB/m) Cable (dB) Aux Factor (dB) 48.74 30.96 6.86 2.47 48.32 30.96 6.86 2.47 Detector: Read Level Factor (dBuV) Cable Loss Factor (dB) Factor (dB) (dB/m) (dB) (dB) 42.68 30.96 6.86 2.47	Detector: Peak Value Read	Detector: Peak Value Read Level (dBuV) Antenna (dB/m) Cable Loss (dB) Aux Factor (dB) Preamp Factor (dB) Level (dBuV/m) 48.74 30.96 6.86 2.47 41.84 47.19 48.32 30.96 6.86 2.47 41.84 46.77 Detector: Average Value Read Level (dBuV) Antenna Loss (dB) Aux Factor (dB) Factor (dB) Level (dBuV/m) (dBuV) (dB/m) (dB) (dB) 41.84 41.13	Detector: Peak Value	Detector: Peak Value Read Antenna Cable Loss Factor Factor (dBuV) (dB/m) (dB) (dB)				

	Test channel: Highest channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4960.00	48.63	31.11	6.91	2.49	41.87	47.27	74.00	-26.73	Vertical				
4960.00	48.25	31.11	6.91	2.49	41.87	46.89	74.00	-27.11	Horizontal				
				Detector:	Average Va	alue							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4960.00	42.51	31.11	6.91	2.49	41.87	41.15	54.00	-12.85	Vertical				
4960.00	42.33	31.11	6.91	2.49	41.87	40.97	54.00	-13.03	Horizontal				

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

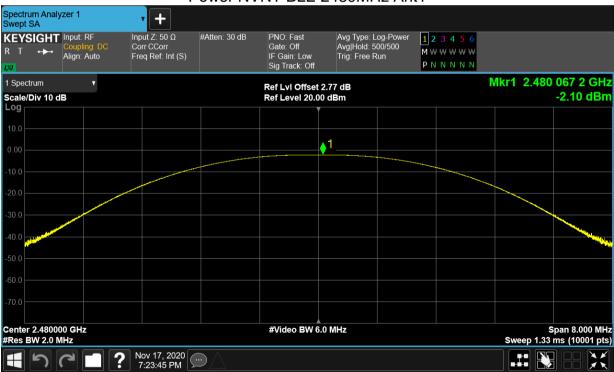
^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



Appendix A - BLE Test Data

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-2.481	0	-2.481	30	Pass
NVNT	BLE	2442	Ant1	-2.223	0	-2.223	30	Pass
NVNT	BLE	2480	Ant1	-2.096	0	-2.096	30	Pass



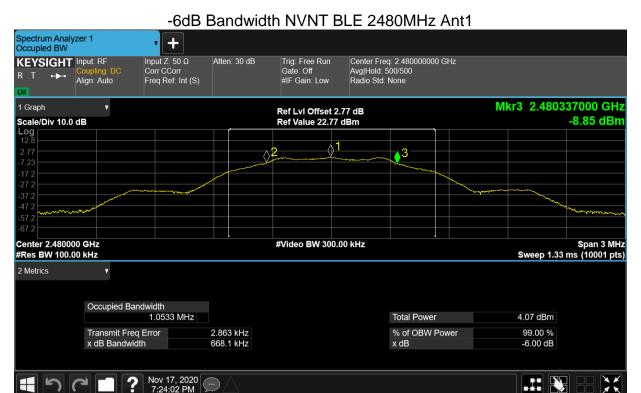
Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1



-6dB Bandwidth


	oub build						
	Condition	on Mode Frequency (MHz)		Antenna -6 dB Bandwidth (MHz)		Limit -6 dB Bandwidth (MHz)	Verdict
(IVITZ)			(IVITIZ)	(IVII IZ)			
	NVNT	BLE	2402	Ant1	0.667	0.5	Pass
	NVNT	BLE	2442	Ant1	0.666	0.5	Pass
	NVNT	BLE	2480	Ant1	0.668	0.5	Pass

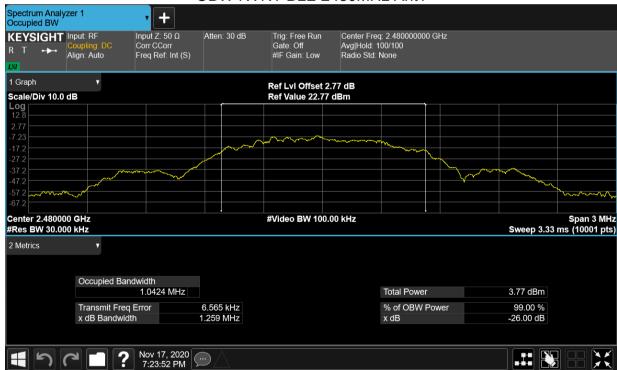

-6dB Bandwidth NVNT BLE 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2442MHz Ant1

Occupied Channel Bandwidth

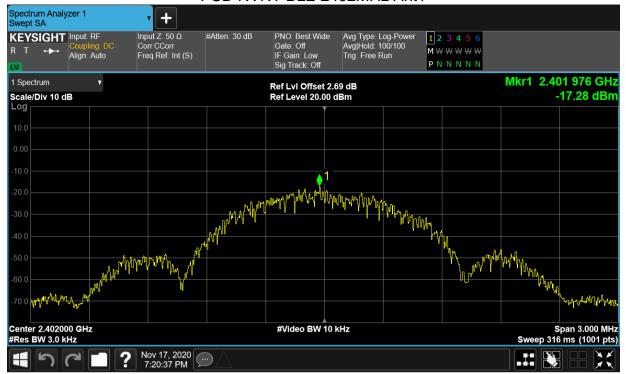
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)		
NVNT	BLE	2402	Ant1	1.042819645		
NVNT	BLE	2442	Ant1	1.039953687		
NVNT	BLE	2480	Ant1	1.042369748		

OBW NVNT BLE 2402MHz Ant1

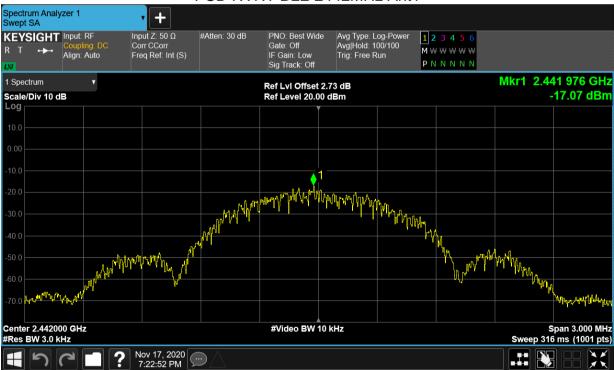


OBW NVNT BLE 2442MHz Ant1

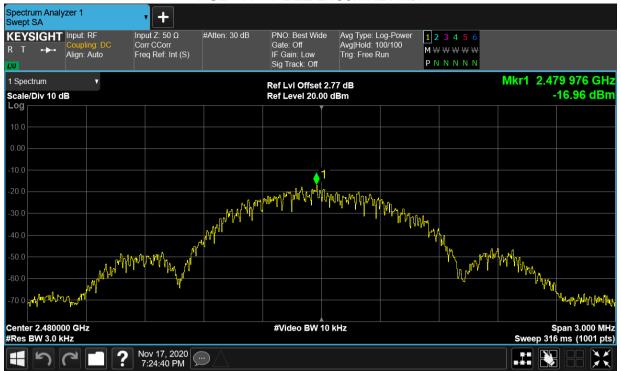
OBW NVNT BLE 2480MHz Ant1



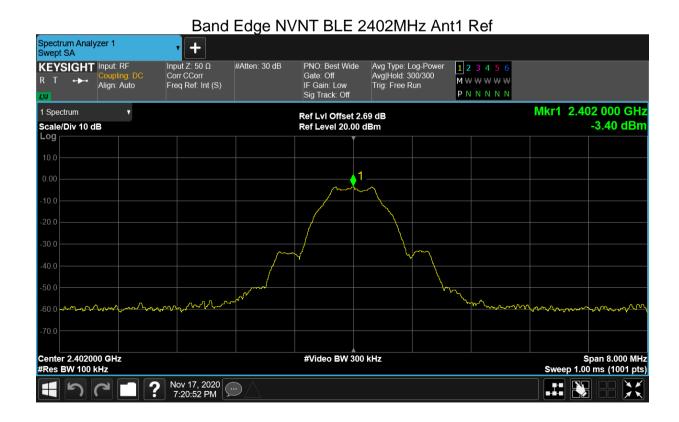
Maximum Power Spectral Density Level


Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-17.283	8	Pass
NVNT	BLE	2442	Ant1	-17.073	8	Pass
NVNT	BLE	2480	Ant1	-16.956	8	Pass

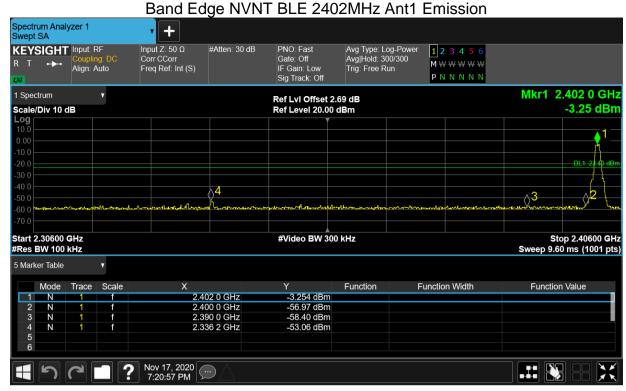
PSD NVNT BLE 2402MHz Ant1

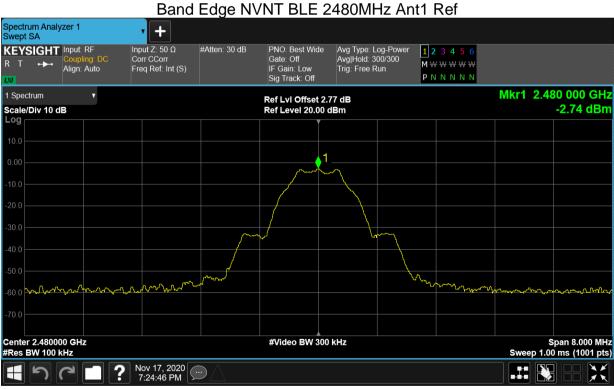


PSD NVNT BLE 2442MHz Ant1

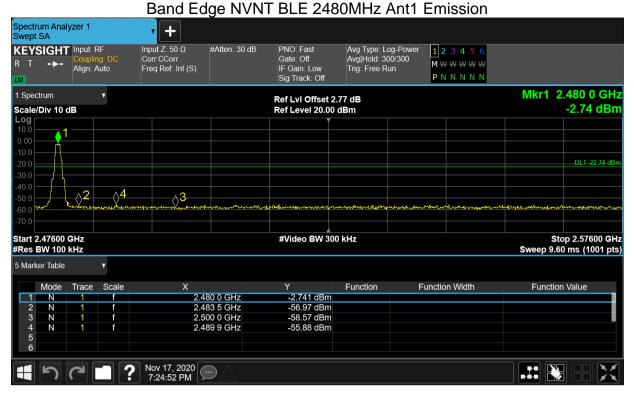


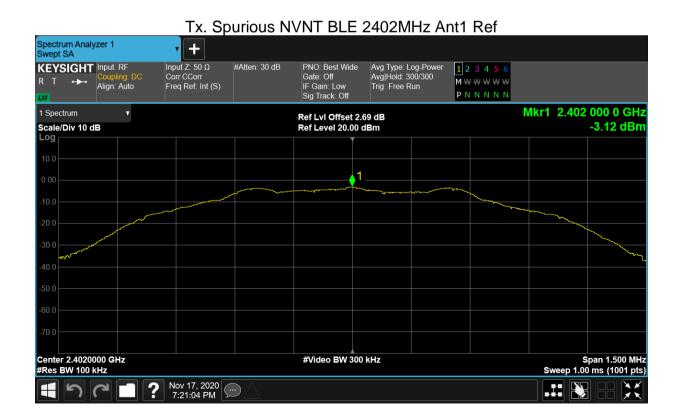
PSD NVNT BLE 2480MHz Ant1

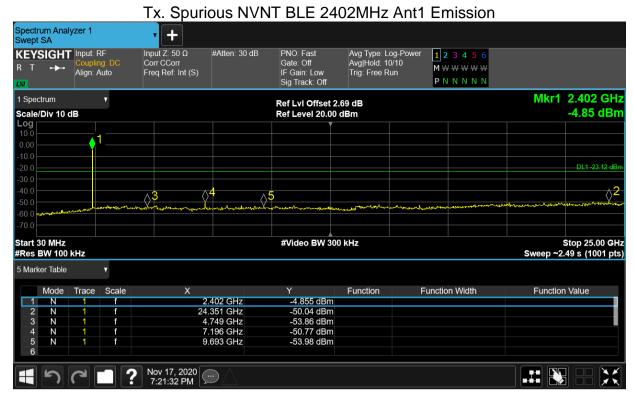



Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-49.65	-20	Pass
NVNT	BLE	2480	Ant1	-53.13	-20	Pass

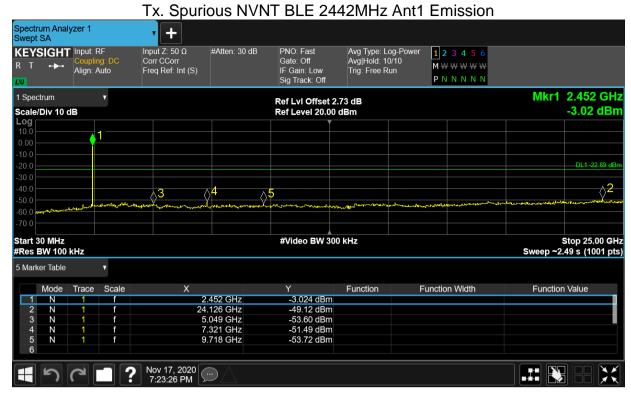


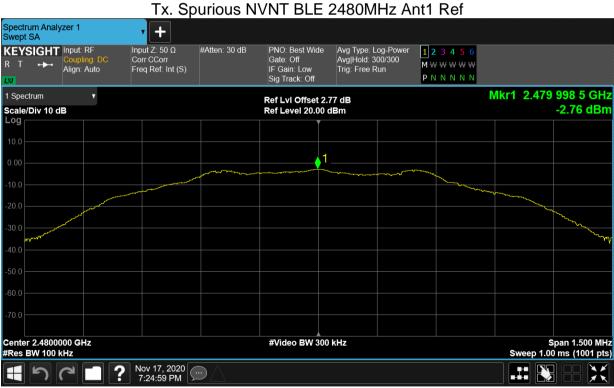


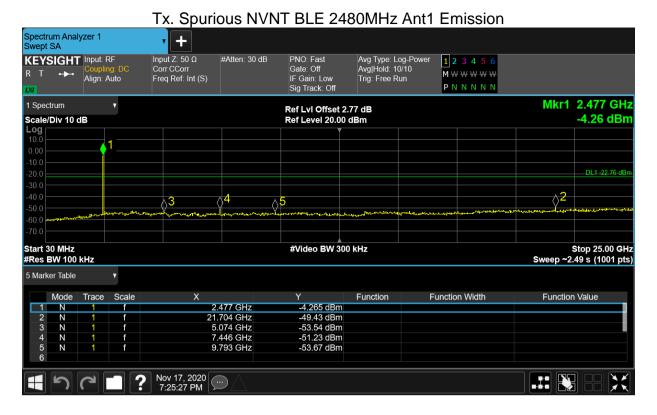


Conducted RF Spurious Emission

Conducted to openious Ennocion							
	Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
	NVNT	BLE	2402	Ant1	-46.91	-20	Pass
	NVNT	BLE	2442	Ant1	-46.23	-20	Pass
	NVNT	BLE	2480	Ant1	-46.66	-20	Pass







----End of report-----