

E-mail: cttl@chinattl.com http://www.chinattl.cn
nt TUV-CN

May 17, 2021

Certificate No: Z21-60194

CALIBRATION CERTIFICATE

Object

D750V3 - SN: 1109

Calibration Procedure(s)

Client

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Reference Probe EX3DV4	SN 3617	27-Jan-21(SPEAG,No.EX3-3617_Jan21)	Jan-22
DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	是艺
Reviewed by:	Lin Hao	SAR Test Engineer	## 76
Approved by:	Qi Dianyuan	SAR Project Leader	402
		Issued	: May 24, 2021
This calibration certific	cate shall not be reprodu	ced except in full without written app	roval of the laboratory.

Certificate No: Z21-60194

Add: No.52 HuanYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60194

Add: No.52 HuanYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

q

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	42.0	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.2 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.39 W/kg ± 18.8 % (<i>k</i> =2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.50 W/kg ± 18.7 % (<i>k</i> =2)

Add: No.52 HuanYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0Ω- 1.63jΩ		
Return Loss	- 26.1dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	0.940 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semiligid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

CALIBRATION LABORATORY

e

Add: No.52 Huan Yuan Bei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

In Collaboration with

Date: 05.17.2021

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1109 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.876 \text{ S/m}$; $\varepsilon_r = 42.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Center Section **DASY5** Configuration:

- Probe: EX3DV4 SN3617; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: • 2021-01-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08 •
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 ٠
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 55.06 V/m; Power Drift = -0.03 dBPeak SAR (extrapolated) = 3.19 W/kgSAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.36 W/kgSmallest distance from peaks to all points 3 dB below = 18.6 mm Ratio of SAR at M2 to SAR at M1 = 64.8%Maximum value of SAR (measured) = 2.80 W/kg

Add: No.52 Huan Yuan Bei Road,
Tel: +86-10-62304633-2079Haidian District, Beijing, 100191, China
Fax: +86-10-62304633-2504
http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance (ohm)	Delta (ohm)
Head	May 17, 2021	-26.1	2.62	55.0	0.50
750MHz	May 17, 2022	-25.4	-2.02	55.5	0.50

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance (ohm)	Delta (ohm)
Head	May 17, 2021	-26.06	9 56	54.96	0.50
750MHz	May 08, 2023	-23.83	-0.00	54.37	-0.59

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d229

May 20, 2021

Calibration Procedure(s)

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
ReferenceProbe EX3DV4	SN 3846	26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	A A A A A A A A A A A A A A A A A A A
Reviewed by:	Lin Hao	SAR Test Engineer	ANT HO
Approved by:	Qi Dianyuan	SAR Project Leader	da.
		Issued: May	24, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

lossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.85 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.9 W/kg ± 18.8 % (<i>k</i> =2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 18.7 % (<i>k</i> =2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4Ω+ 5.04jΩ		
Return Loss	- 24.6dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.105 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG	Manufactured by	SPEAG
-----------------------	-----------------	-------

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Date: 05.20.2021

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d229** Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.385$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Center Section

DASY5 Configuration:

DASY5 Validation Report for Head TSL

- Probe: EX3DV4 SN3846; ConvF(7.96, 7.96, 7.96) @ 1900 MHz; Calibrated: 2021-04-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

System Performance Check/Zoom Scan (7x7x7)(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.2 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.4 W/kg SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.01 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 50.8%

Maximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.8 W/kg = 11.99 dBW/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Impedance Measurement Plot for Head TSL

|--|

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance (ohm)	Delta (ohm)
Head	May 20, 2021	-24.6	4.40	53.4	0.19
1900MHz	May 17, 2022	-25.7	4.42	53.3	-0.10

Justification for	 Extended 	SAR	Dipole	Calibrations
-------------------	------------------------------	-----	--------	--------------

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance (ohm)	Delta (ohm)
Head 1900MHz	May 20, 2021	-24.60	1.00	53.44	-1.81
	May 08, 2023	-24.91	1.28	51.63	

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. . No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with
S D C A G
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.79 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.8 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 18.7 % (<i>k</i> =2)

S P C A G CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

In Collaboration with

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8Ω- 1.16jΩ
Return Loss	- 28.3dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.053 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

In Collaboration with e **CALIBRATION LABORATORY**

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com

DASY5 Validation Report for Head TSL Date: 05.19.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 1014 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.788 \text{ S/m}$; $\varepsilon_r = 39.43$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(7.45, 7.45, 7.45) @ 2450 MHz; Calibrated: • 2021-04-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 •
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 • (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.6 V/m; Power Drift = -0.04 dBPeak SAR (extrapolated) = 27.5 W/kgSAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.89 W/kgSmallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 46.5%Maximum value of SAR (measured) = 22.1 W/kg

0 dB = 22.1 W/kg = 13.44 dBW/kg

e S D 13 CALIBRATION LABORATORY

E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

In Collaboration with

Impedance Measurement Plot for Head TSL

|--|

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance (ohm)	Delta (ohm)
Head	May 19, 2021	-28.3	0.71	53.8	4 47
2450MHz	May 17, 2022	-27.5	-2.71	49.7	-4.17

|--|

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance (ohm)	Delta (ohm)
Head	May 19, 2021	-28.3	E CC	53.8	0.70
2450MHz	May 20, 2023	-29.9	5.66	53.1	-0.72

CALIBRATION CERTIFICATE

Object

D2600V2 - SN: 1153

May 19, 2021

Calibration Procedure(s)

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21	
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21	
Reference Probe EX3DV4	SN 3846	26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22	
DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22	
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22	
Network Analyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22	
	Name	Function	Signature	
Calibrated by: Zhao Jing		SAR Test Engineer	12 mil	
Poviewed by:				
Reviewed by.	Lin Hao	SAR Test Engineer	雨药	
Approved by:		CAD Device the order	-0	
	Qi Dianyuan	SAR Project Leader	ath	
		Issued: May 2	24, 2021	
		-		

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60203

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1 Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. . No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.95 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		Lister,

SAR result with Head TSL

SAR averaged over 1 <i>cm</i> ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.8 W/kg ± 18.8 % (<i>k</i> =2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 18.7 % (<i>k</i> =2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix(Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8Ω- 3.94jΩ	
Return Loss	- 27.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.052 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 05.19.2021

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1153 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.953$ S/m; $\epsilon_r = 38.72$; $\rho = 1000$ kg/m³ Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(7.3, 7.3, 7.3) @ 2600 MHz; Calibrated: 2021-04-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.5 V/m Power Drift = -0.07 dB

Peak SAR (extrapolated) = $30^{\circ}2$ W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.1 W/kg

Smallest distance from peaks to all points 3 dB below = 9.5 mmRatio of SAR at M2 to SAR at M1 = 45.2%

Maximum value of SAR (measured) = 23.6 W/kg

E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

|--|

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance (ohm)	Delta (ohm)
Head	May 19, 2021	-27.4	0.00	51.8	0.26
2600MHz	May 17, 2022	-24.9	-9.09	51.5	-0.30

Justification for	Extended	SAR Dipol	e Calibrations
-------------------	----------	-----------	----------------

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance (ohm)	Delta (ohm)
Head 2600MHz	May 19, 2021	-27.41	2 77	51.82	0.74
	May 08, 2023	-26.38	-3.77	52.56	0.74

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Client TUV-CN (Auden)		Cei	rtificate No: D5GHzV2-1280_May21
CALIBRATION CE	ERTIFICATE		
Object	D5GHzV2 - SN:12	280	
Calibration procedure(s)	QA CAL-22.v6 Calibration Proce	dure for SAR Validation	Sources between 3-10 GHz
Calibration date:	May 17, 2021		
This calibration certificate documer The measurements and the uncerta	nts the traceability to national terms with confidence provide the closed laborator	onal standards, which realize the robability are given on the following a facility: environment temperatu	e physical units of measurements (SI). ing pages and are part of the certificate. ure (22 \pm 3)°C and humidity < 70%.
All calibrations have been conducted Calibration Equipment used (M&TE	E critical for calibration)	y radiity. Bronormont tomporate	
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NBP	SN: 104778	09-Apr-21 (No. 217-03291/032	292) Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 3503	30-Dec-20 (No. EX3-3503_De	ec20) Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_No	lov20) Nov-21
Concender: Standarda	П. #	Check Date (in house)	Scheduled Check
Bewer motor E4410B	SN: GB39512475	30-Oct-14 (in house check Oc	ct-20) In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oc	ct-20) In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oc	ct-20) In house check: Oct-22
BE generator B&S SMT-06	SN: 100972	15-Jun-15 (in house check Oc	oct-20) In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check O	Oct-20) In house check: Oct-21
		E westing	Cignoturo
Calibrated by:	Name Jeffrey Katzman	Laboratory Techr	nician
Approved by:	Katja Pokovic	Technical Manag	ger All
This calibration certificate shall no	ot be reproduced except i	n full without written approval of t	lssued: May 21, 2021 the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	5.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	50.3 Ω - 4.1 jΩ		
Return Loss	- 27.7 dB		

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	51.4 Ω + 1.5 jΩ		
Return Loss	- 33.8 dB		

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	53.3 Ω + 5.0 jΩ		
Return Loss	- 24.7 dB		

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.188 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 17.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1280

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; σ = 4.54 S/m; ϵ_r = 34.7; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 4.89 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³ Medium parameters used: f = 5800 MHz; σ = 5.09 S/m; ϵ_r = 33.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.46 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.7% Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.79 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 8.44 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 67.9% Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.42 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.1% Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.85 dBW/kg

Impedance Measurement Plot for Head TSL

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance (ohm)	Delta (ohm)
Head	May 17, 2021	-27.7	-4.98	50.3	-3.13
5250MHz	May 17, 2022	-26.4		47.1	
Head	May 17, 2021	-33.8	0.21	51.4	-2.94
5600MHz	May 17, 2022	-33.7		48.4	
Head 5800MHz	May 17, 2021	-24.7	8.14	53.3	-2.43
	May 17, 2022	-26.7		50.8	

Justification for Extended SAR Dipole Calibrations

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance (ohm)	Delta (ohm)
Head	May 17, 2021	-27.75	0.77	50.25	-2.64
5250MHz	May 08, 2023	-27.96		47.61	
Head	Head May 17, 2021 -33.81 2.50	51.38	2 92		
5600MHz	May 08, 2023	-32.60	-3.59	48.56	-2.02
Head 5800MHz	May 17, 2021	-24.73	10.12	53.28	-3.74
	May 08, 2023	-27.23		49.54	

Justification for Extended SAR Dipole Calibrations

