

TEST REPORT

Applicant Name :Shenzhen Youmi Intelligent Technology Co., Ltd.Address :406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan
District, Shenzhen City, ChinaReport Number :RA230620-35481E-RFAFCC ID:2ATZ4-G5ACIC:26074-G5ACTost Standard (c)

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247, ISSUE 2, FEBRUARY 2017

Sample Description

Product Type:	Smart phone
Test Model No.:	G5
Multiple Model(s) No.:	N/A
Trade Mark:	UMIDIGI
Date Received:	2023/06/20
Report Date:	2023/07/06

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Roger, Ling

Roger Ling EMC Engineer **Approved By:**

Candy . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86-755-26503290
 Web: www.atc-lab.com

Version 139: 2023-01-30

Page 1 of 80

FCC-BT; RSS-BT

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) Objective	
Test Methodology	5
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	10
FCC§15.247 (I), §1.1307 (B)(1)&§2.1093 – RF EXPOSURE	11
APPLICABLE STANDARD	
RSS-102 § 2.5.1 - EXEMPTION LIMITS FOR ROUTINE EVALUATION-SAR EVALUATION	12
APPLICABLE STANDARD	
Test Result:	13
FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT	14
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	14
FCC §15.207 (A) & RSS-GEN § 8.8 – AC LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure Transd Factor & Margin Calculation	
TRANSD FACTOR & MARGIN CALCULATION TEST DATA	
FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	22
Test Procedure	
CORRECTED FACTOR & MARGIN CALCULATION Test Data	
FCC §15.247(A) (1) & RSS-247 § 5.1 (B) -CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
APPLICABLE STANDARD	
TEST DATA	-

Version 139: 2023-01-30

FCC-BT; RSS-BT

FCC §15.247(A) (1) & RSS-247 § 5.1 (A), RSS-GEN § 6.7 – 20 DB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	33
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(A) (1) (III) & RSS-247 § 5.1 (D) - QUANTITY OF HOPPING CHANNEL TEST	35
APPLICABLE STANDARD	35
TEST PROCEDURE	
TEST DATA	
FCC §15.247(A) (1) (III) & RSS-247 § 5.1 (D) - TIME OF OCCUPANCY (DWELL TIME)	
APPLICABLE STANDARD	
Test Procedure	37
TEST DATA	37
FCC §15.247(B) (1) & RSS-247§ 5.1(B) &§ 5.4(B) - PEAK OUTPUT POWER MEASUREMENT	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(D) & RSS-247 § 5.5 - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	40
APPENDIX	41
APPENDIX A: 20DB EMISSION BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX D: CARRIER FREQUENCY SEPARATION APPENDIX E: TIME OF OCCUPANCY	
APPENDIX E: TIME OF OCCUPANCY Appendix F: Number of hopping channels	
AFFENDIX F. NUMBER OF HOFFING CHANNELS	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RA230620-35481E-RFA	Original Report	2023/07/06

Version 139: 2023-01-30

Page 4 of 80

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	G2239U-UF-V3GG
FVIN	UMIDIGI_G5_V1.0
Frequency Range	Bluetooth: 2402-2480MHz
Transmit Power	-1.25dBm
Modulation Technique	Bluetooth: GFSK, π/4-DQPSK, 8DPSK
Antenna Specification*	1.76dBi (provided by the applicant)
Voltage Range	DC 3.85V from battery or DC 5V from adapter
Sample serial number	RE&CE: 2754-1 RF: 2754-2 (Assigned by ATC)
Sample/EUT Status	Good condition
Adapter 1 information	Model: HJ-0502000W2-US Input: AC 100-240V~50/60Hz, 0.3A Output: DC 5V, 2A
Adapter 2 information	Model: HF-0502000U Input: AC 100-240V~50/60Hz, 0.3A Output: DC 5.0V, 2A

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules and RSS-247, Issue 2, February 2017, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and RSS-247, Issue 2, February 2017, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Para	meter	Uncertainty
Occupied Char	nnel Bandwidth	5%
RF Fre	equency	0.082*10 ⁻⁷
RF output pov	wer, conducted	0.71dB
Unwanted Emis	ssion, conducted	1.6dB
AC Power Lines C	onducted Emissions	2.72dB
	9kHz - 30MHz	2.06dB
	30MHz - 1GHz	5.08dB
Emissions, Radiated	1GHz - 18GHz	4.96dB
Radiated	18GHz - 26.5GHz	5.16dB
	26.5GHz - 40GHz	4.64dB
Temperature		1 °C
Hun	nidity	6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 30241.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	40	2442
1	2403	41	2443
2	2404	42	2444
36	2438	75	2477
37	2439	76	2478
38	2440	77	2479
39	2441	78	2480

EUT was tested with Channel 0, 39 and 78.

EUT Exercise Software

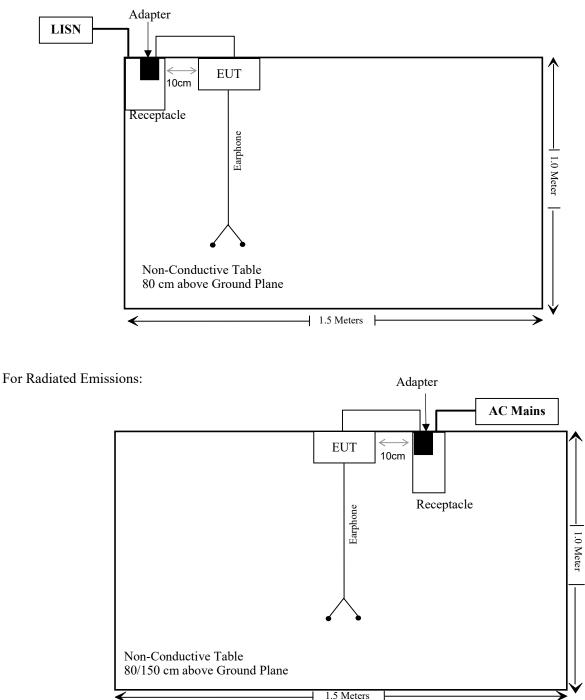
EUT was test in engineering mode. and the power level is 6*. The power level was provided by the applicant.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	ufacturer Description		Serial Number
Unknown	Earphone	Unknown	Unknown


External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable USB Cable	1.0	EUT	Adapter

Report No.: RA230620-35481E-RFA

Block Diagram of Test Setup

For conducted emission

Note: the support table edge was flush with the center of turntable

_

Version 139: 2023-01-30

Page 8 of 80

┢

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
§ 1.1307 ,§2.1093	RF Exposure	Compliant
RSS-102 § 2.5.1	Exemption Limits For Routine Evaluation- SAR evaluation	Compliant
FCC §15.203 RSS-Gen §6.8	Antenna Requirement	Compliant
FCC §15.207(a) RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
FCC §15.205, §15.209, §15.247(d) RSS-247 § 5.5, RSS-GEN § 8.10	Radiated Emissions	Compliant
FCC §15.247(a)(1) RSS-247 § 5.1(a), RSS-GEN § 6.7	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
FCC §15.247(a)(1) RSS-247 § 5.1 (b)	Channel Separation Test	Compliant
FCC §15.247(a)(1)(iii) RSS-247 § 5.1 (d)	Time of Occupancy (Dwell Time)	Compliant
FCC §15.247(a)(1)(iii) RSS-247 § 5.1 (d)	Quantity of hopping channel Test	Compliant
FCC §15.247(b)(1) RSS-247 § 5.1(b) &§ 5.4(b)	Peak Output Power Measurement	Compliant
FCC §15.247(d) RSS-247 § 5.5	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
Conducted emission test								
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2022/11/25	2023/11/24			
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2022/11/25	2023/11/24			
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2022/12/07	2023/12/06			
Unknown	RF Coaxial Cable	No.17	N0350	2022/11/25	2023/11/24			
	Conducted E	mission Test Sof	tware: e3 19821b (V9)	·			
		Radiated emiss	sion test					
Rohde& Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24			
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24			
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07			
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07			
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2022/11/08	2023/11/07			
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05			
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2022/11/30	2025/11/29			
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2022/12/26	2025/12/25			
	Radiated En	nission Test Soft	ware: e3 19821b (V	V9)				
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24			
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24			
Mini-Circuits	High Pass Filter	NHP-600+	15542	2022/11/25	2023/11/24			
		RF Conducte	d Test					
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101590	2022/11/25	2023/11/24			
Tonscend	RF Control Unit	JS0806-2	19G8060182	2022/10/24	2023/10/23			
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24			

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b)(1)&§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b)(1), systems operating under the provisions of this sectionshall be operated in a manner that ensure that the public is not exposed to radio frequency energylevel in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

Mode	Frequency (MHz)	Max tune-up conducted power (dBm)	Max tune-up conducted power (mW)	Distance (mm)	Calculated value	Threshold (1-g SAR)	SAR Test Exclusion
BT	2402-2480	-1.0	0.78	5	0.2	3.0	Yes

Result: No SAR test is required

RSS-102 § 2.5.1 – EXEMPTION LIMITS FOR ROUTINE EVALUATION-SAR EVALUATION

Applicable Standard

According to RSS-102 Issue 5§ (2.5.1), SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1.

Frequency	Exemption Limits (mW)							
(MHz)	At separation			At separation	At separation			
	distance of	distance of	distance of	distance of	distance of			
	≤5 mm	10 mm	15 mm	20 mm	25 mm			
≤300	71 mW	101 mW	132 mW	162 mW	193 mW			
450	52 mW	70 mW	88 mW	106 mW	123 mW			
835	17 mW	30 mW	42 mW	55 mW	67 mW			
1900	7 mW	10 mW	18 mW	34 mW	60 mW			
2450	$4 \mathrm{mW}$	7 mW	15 mW	30 mW	52 mW			
3500	2 mW	6 mW	16 mW	32 mW	55 mW			
5800	1 mW	6 mW	15 mW	27 mW	41 mW			

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance^{4,5}

Frequency	Exemption Limits (mW)							
(MHz)	At separation distance of 30 mm	At separation distance of 35 mm	At separation distance of 40 mm	At separation distance of 45 mm	At separation distance of ≥50 mm			
≤300	223 mW	254 mW	284 mW	315 mW	345 mW			
450	141 mW	159 mW	177 mW	195 mW	213 mW			
835	80 mW	92 mW	105 mW	117 mW	130 mW			
1900	99 mW	153 mW	225 mW	316 mW	431 mW			
2450	83 mW	123 mW	173 mW	235 mW	309 mW			
3500	86 mW	124 mW	170 mW	225 mW	290 mW			
5800	56 mW	71 mW	85 mW	97 mW	106 mW			

4. The exemption limits in Table 1 are based on measurements and simulations of half-wave dipole antennas at separation distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

5. Transmitters operating between 0.003-10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in Section 4.

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in Table 1, linear interpolation shall be applied for the applicable separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

For medical implants devices, the exemption limit for routine evaluation is set at 1 mW. The output power of a medical implants device is defined as the higher of the conducted or e.i.r.p to determine whether the device is exempt from the SAR evaluation.

Test Result:

For worst case:

For BT mode:

The higher of the conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power:

(2480-2450)/(3500-2450) = (4-P)/(4-2)

The exemption limit of 2480MHz is P= 3.94mW

The maximum tune up conducted power is -1.0dBm

The antenna gain is 1.76dBi

So the maximum output power is 0.76 dBm (1.19mW), which less than 3.94mW@2480MHz exemption limit

So the stand-alone SAR test is not required.

FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to FCC § 15.203, the applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

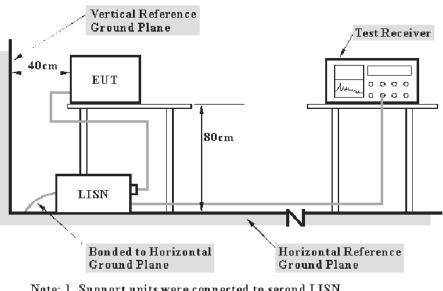
This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has one internal antenna arrangement which was permanently attached for Bluetooth and the maximum antenna gain is 1.76dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Antenna Type	Antenna Gain	Impedance	Frequency Range	
FPC	1.76 dBi	50 Ω	2.4~2.5GHz	

Result: Compliance


Version 139: 2023-01-30

FCC §15.207 (a) & RSS-GEN § 8.8 – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a), RSS-GEN § 8.8

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207 & RSS-Gen.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Version 139: 2023-01-30

Page 15 of 80

Transd Factor & Margin Calculation

The Transd factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Transd Factor = LISN VDF + Cable Loss

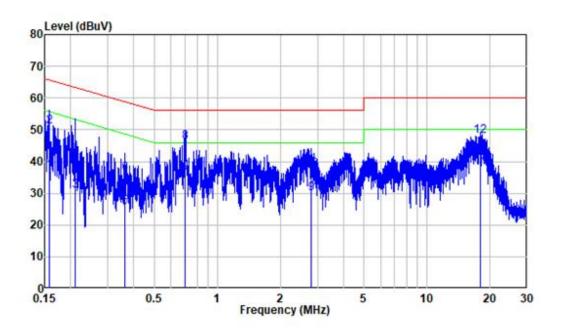
The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Test Data

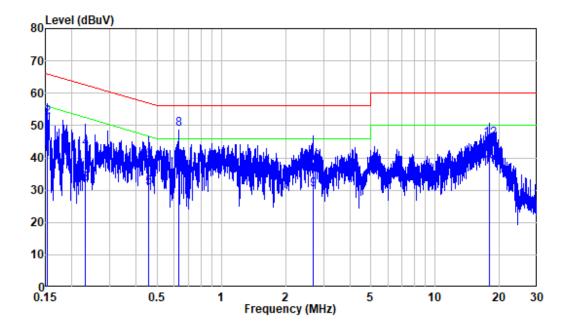
Environmental Conditions

Temperature:	23 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

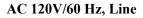

The testing was performed by Jerry Wu on 2023-06-30.

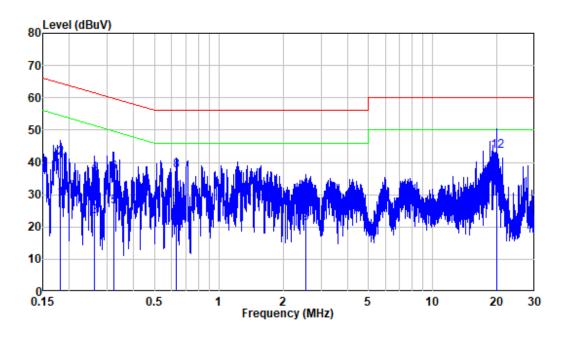
EUT operation mode: Transmitting(8DPSK high channel)

Report No.: RA230620-35481E-RFA


Adapter 1:

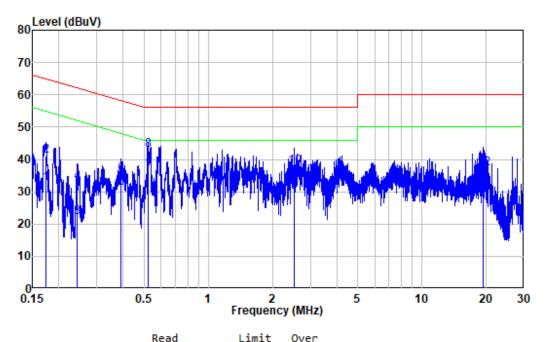
	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
-	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.158	10.36	26.89	37.25	55.54	-18.29	Average
2	0.158	10.36	40.60	50.96	65.54	-14.58	QP
3	0.210	10.30	20.47	30.77	53.20	-22.43	Average
4	0.210	10.30	32.53	42.83	63.20	-20.37	QP
5	0.361	10.46	15.31	25.77	48.71	-22.94	Average
67	0.361	10.46	25.62	36.08	58.71	-22.63	QP
7	0.704	10.67	24.23	34.90	46.00	-11.10	Average
8	0.704	10.67	35.41	46.08	56.00	-9.92	QP
9	2.802	10.47	19.29	29.76	46.00	-16.24	Average
10	2.802	10.47	26.88	37.35	56.00	-18.65	QP
11	17.849	10.26	27.86	38.12	50.00	-11.88	Average
12	17.849	10.26	37.76	48.02	60.00	-11.98	QP


AC 120V/60 Hz, Neutral



			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.153	10.27	29.29	39.56	55.86	-16.30	Average
2	0.153	10.27	42.36	52.63	65.86	-13.23	QP
3	0.231	10.32	21.77	32.09	52.41	-20.32	Average
4	0.231	10.32	32.62	42.94	62.41	-19.47	QP
5	0.456	10.45	20.45	30.90	46.76	-15.86	Average
6	0.456	10.45	28.83	39.28	56.76	-17.48	QP
7	0.630	10.47	27.92	38.39	46.00	-7.61	Average
8	0.630	10.47	38.43	48.90	56.00	-7.10	QP
9	2.696	10.52	19.59	30.11	46.00	-15.89	Average
10	2.696	10.52	28.15	38.67	56.00	-17.33	QP
11	17.932	10.20	27.00	37.20	50.00	-12.80	Average
12	17.932	10.20	35.81	46.01	60.00	-13.99	QP

Report No.: RA230620-35481E-RFA

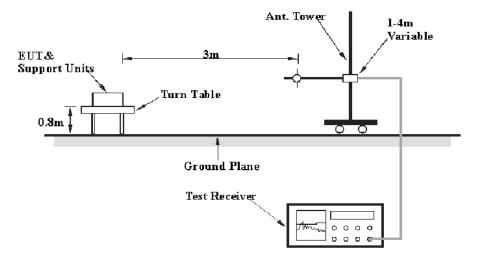

Adapter 2:

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.182	10.31	18.26	28.57	54.40	-25.83	Average
2	0.182	10.31	31.08	41.39	64.40	-23.01	QP
3	0.262	10.36	13.01	23.37	51.36	-27.99	Average
4	0.262	10.36	26.03	36.39	61.36	-24.97	QP
5	0.321	10.42	15.79	26.21	49.67	-23.46	Average
6	0.321	10.42	26.33	36.75	59.67	-22.92	QP
7	0.634	10.64	13.35	23.99	46.00	-22.01	Average
8	0.634	10.64	26.67	37.31	56.00	-18.69	QP
9	2.542	10.44	10.78	21.22	46.00	-24.78	Average
10	2.542	10.44	19.16	29.60	56.00	-26.40	QP
11	19.924	10.32	23.39	33.71	50.00	-16.29	Average
12	19.924	10.32	33.10	43.42	60.00	-16.58	QP

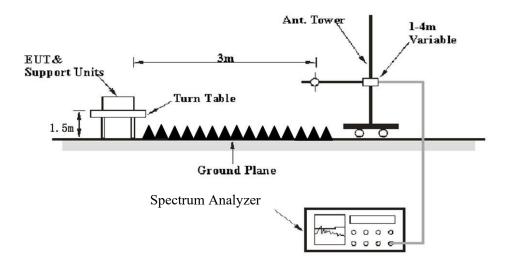
AC 120V/60 Hz, Neutral

			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.173	10.28	22.26	32.54	54.81	-22.27	Average
2	0.173	10.28	30.63	40.91	64.81	-23.90	QP
3	0.243	10.32	11.57	21.89	51.98	-30.09	Average
4	0.243	10.32	22.73	33.05	61.98	-28.93	QP
5	0.389	10.41	20.54	30.95	48.08	-17.13	Average
6	0.389	10.41	25.04	35.45	58.08	-22.63	QP
7	0.521	10.47	25.72	36.19	46.00	-9.81	Average
8	0.521	10.47	32.54	43.01	56.00	-12.99	QP
9	2.522	10.51	19.24	29.75	46.00	-16.25	Average
10	2.522	10.51	27.12	37.63	56.00	-18.37	QP
11	19.300	10.21	18.75	28.96	50.00	-21.04	Average
12	19.300	10.21	26.87	37.08	60.00	-22.92	QP

Version 139: 2023-01-30


FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d); RSS-247§ 5.5; RSS-GEN § 8.10

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247, RSS-247, RSS-Gen limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range RBW		Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК

For average measurement:

use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc. Average Emission Level=Peak Emission Level+20*log(Duty cycle)

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Factor & Margin Calculation

The Corrected Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit or Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a overlimit/margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin/Over Limit = Corrected Amplitude/Level-Limit Corrected Amplitude/Level = Reading + Corrected Factor

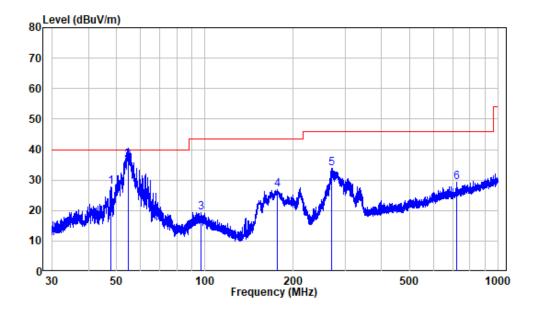
Test Data

Environmental Conditions

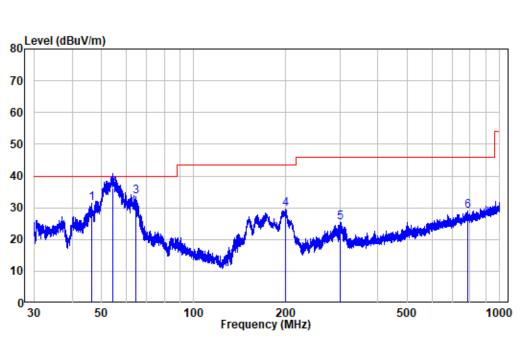
Temperature:	23~25.5℃		
Relative Humidity:	51~52%		
ATM Pressure:	101.0 kPa		

The testing was performed by Jason Liu on 2023-06-30 for below 1GHz, and Jimi Zheng on 2023-06-26 for above 1GHz

Version 139: 2023-01-30


EUT operation mode: Transmitting

Note: Pre-scan in the X,Y and Z axes of orientation, the worst case orientation was photo and recorded

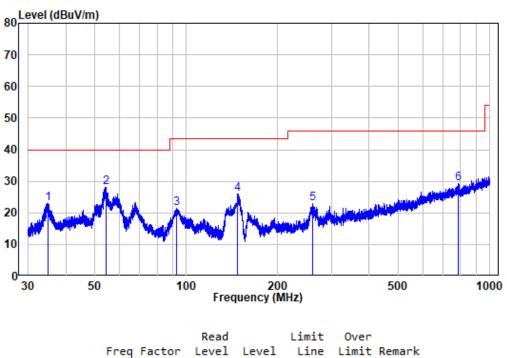

Below 1GHz: (8DPSK high channel)

Note: When the test result of Peak was below the limit of QP more than 6dB, just the peak value was recorded. Adapter 1:

Horizontal

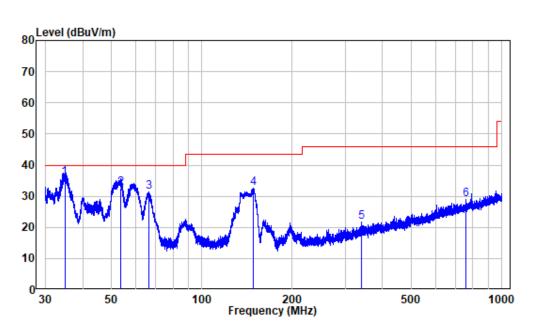
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	47.805	-10.00	37.75	27.75	40.00	-12.25	Peak
2	54.547	-10.31	46.72	36.41	40.00	-3.59	QP
3	96.902	-12.28	31.75	19.47	43.50	-24.03	Peak
4	176.423	-13.06	39.84	26.78	43.50	-16.72	Peak
5	270.968	-10.17	44.13	33.96	46.00	-12.04	Peak
6	722.359	-1.32	30.67	29.35	46.00	-16.65	Peak

Vertical


	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	46.279	-10.00	41.35	31.35	40.00	-8.65	Peak
2	54.380	-10.32	46.60	36.28	40.00	-3.72	QP
3	64.830	-12.45	45.90	33.45	40.00	-6.55	Peak
4	199.723	-11.41	41.06	29.65	43.50	-13.85	Peak
5	301.819	-9.16	34.65	25.49	46.00	-20.51	Peak
6	785.438	-0.04	28.96	28.92	46.00	-17.08	Peak

Version 139: 2023-01-30

Page 24 of 80


Adapter 2:

Horizontal

	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	35.097	-11.51	34.58	23.07	40.00	-16.93	Peak	
2	54.404	-10.32	38.28	27.96	40.00	-12.04	Peak	
3	92.625	-13.11	34.49	21.38	43.50	-22.12	Peak	
4	147.468	-15.43	41.41	25.98	43.50	-17.52	Peak	
5	260.715	-10.57	33.39	22.82	46.00	-23.18	Peak	
6	787.506	-0.08	29.39	29.31	46.00	-16.69	Peak	

Report No.: RA230620-35481E-RFA

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	34.867	-11.58	47.40	35.82	40.00	-4.18	QP
2	53.764	-10.30	42.85	32.55	40.00	-7.45	QP
3	66.441	-13.10	44.43	31.33	40.00	-8.67	Peak
4	148.116	-15.37	47.97	32.60	43.50	-10.90	Peak
5	339.291	-7.46	29.22	21.76	46.00	-24.24	Peak
6	756.713	-0.69	29.52	28.83	46.00	-17.17	Peak

Vertical

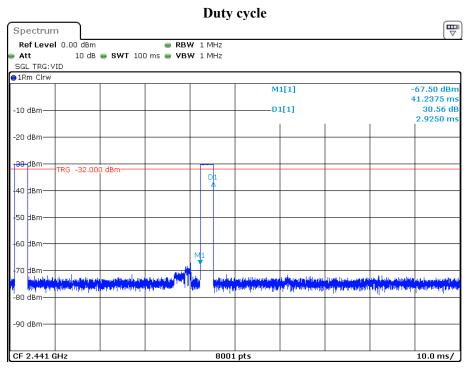
Report No.: RA230620-35481E-RFA

Above 1GHz: (worst case for 8DPSK)

F	Receiver		Tourstable	Rx Antenna		Factor	Corrected	Limit	Mangin
Frequency (MHz)	Reading (dBµV)	PK/Ave	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	Margin (dB)
			Le	ow Channel	2402MHz				
2313.25	53.62	PK	17	2.2	Н	-10.36	52.87	74	-21.13
2313.33	54.19	PK	8	2	V	-10.36	53.44	74	-20.56
2390	52.88	PK	325	1.5	Н	-10.62	52.92	74	-21.08
2390	53.75	PK	123	1.6	V	-10.62	53.79	74	-20.21
4804	48.13	PK	264	1.4	Н	-5.57	53.87	74	-20.13
4804	47.28	PK	326	1.4	V	-5.57	53.02	74	-20.98
			Mic	ldle Channel	(2441MHz	z)			
4882	60.16	PK	141	2.2	Н	-5.22	54.94	74	-19.06
4882	58.97	PK	8	2.2	V	-5.22	53.75	74	-20.25
			Hig	gh Channel(2	2480 MHz)			
2483.5	65.47	PK	102	1.3	Н	-10.46	55.01	74	-18.99
2483.5	65.94	PK	50	2	V	-10.46	55.48	74	-18.52
2483.56	66.58	PK	295	2.2	Н	-10.46	56.12	74	-17.88
2483.58	67.77	PK	153	1.4	V	-10.46	57.31	74	-16.69
4960	56.29	PK	357	1.5	Н	-4.90	51.39	74	-22.61
4960	57.80	РК	287	1.5	V	-4.90	52.90	74	-21.10

Field Strength of Average								
Frequency	Peak Measurement	Polar (H/V)	Duty Cycle Correction Factor (dB)	Corrected Ampitude (dBµV/m)	FCC Part 15.247			
(MHz)	@3m (dBµV/m)				Limit (dBµV/m)	Margin (dB)	Comment	
	·		Low Channe	12402MHz		•		
2313.25	52.87	Η	-24.66	28.21	54	-25.79	Bandedge	
2313.33	53.44	V	-24.66	28.78	54	-25.22	Bandedge	
2390	52.92	Η	-24.66	28.26	54	-25.74	Bandedge	
2390	53.79	V	-24.66	29.13	54	-24.87	Bandedge	
4804	53.87	Н	-24.66	29.21	54	-24.79	Harmonic	
4804	53.02	V	-24.66	28.36	54	-25.64	Harmonic	
			Middle Channe	el(2441MHz)				
4882	54.94	Η	-24.66	30.28	54	-23.72	Harmonic	
4882	53.75	V	-24.66	29.09	54	-24.91	Harmonic	
			High Channel	l(2480MHz)				
2483.5	55.01	Н	-24.66	30.35	54	-23.65	Bandedge	
2483.5	55.48	V	-24.66	30.82	54	-23.18	Bandedge	
2483.56	56.12	Η	-24.66	31.46	54	-22.54	Bandedge	
2483.58	57.31	V	-24.66	32.65	54	-21.35	Bandedge	
4960	51.39	Η	-24.66	26.73	54	-27.27	Harmonic	
4960	52.90	V	-24.66	28.24	54	-25.76	Harmonic	

Version 139: 2023-01-30

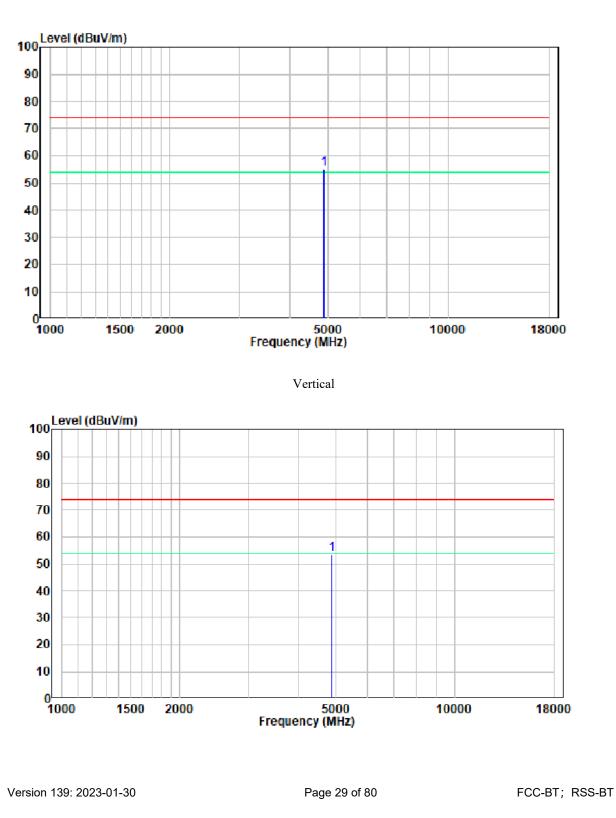

FCC-BT; RSS-BT

Note:

Absolute Level = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit Average level= Peak level+ Duty Cycle Corrected Factor The other emission which was 20dB below the limit or in the noise floor was not recorded.

Worst case duty cycle:

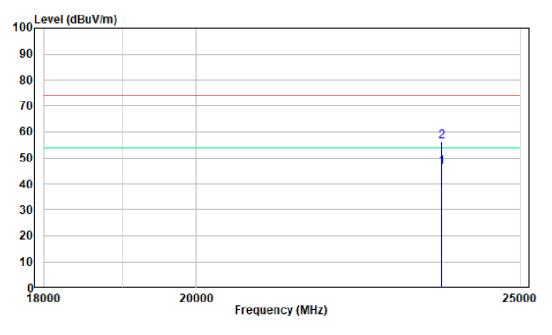
Duty cycle = Ton/100ms = 2.925*2/100=0.0585 Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.0585 = -24.66

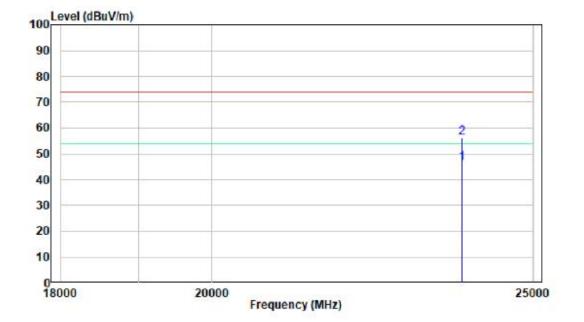

Date: 26.JUN.2023 09:59:05

Version 139: 2023-01-30

1 GHz - 18 GHz: (Pre-Scan plots)

Middle channel


Horizontal


18-25GHz: (Pre-Scan plots)

Middle channel

Horizontal

Vertical

Version 139: 2023-01-30

FCC §15.247(a) (1) & RSS-247 § 5.1 (b) -CHANNEL SEPARATION TEST

Applicable Standard

According to FCC §15.247(a) (1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

According to RSS-247 § 5.1 (b):

Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.2

- 1. Set the EUT in transmitting mode, max hold the channel.
- 2. Set the adjacent channel of the EUT and max hold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	24.5 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Amanda Wei from 2023-06-29 to 2023-06-30.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) & RSS-247 § 5.1 (a), RSS-GEN § 6.7 – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

According to FCC §15.247(a) (1):

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to RSS-247 § 5.1 (a), RSS-GEN § 6.7:

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "20 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 20 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Page 33 of 80

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

Temperature:	24.5 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Amanda Wei from 2023-06-29 to 2023-06-30.

EUT operation mode: Transmitting

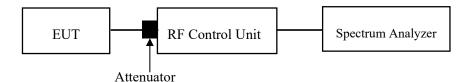
Test Result: Compliant. Please refer to the Appendix

FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

According to FCC §15.247(a) (1) (iii):

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.


According to RSS-247 § 5.1 (d):

Frequency hopping systems (FHSS) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.3

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	24.5 °C		
Relative Humidity:	48 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Amanda Wei from 2023-06-29 to 2023-06-30.

EUT operation mode: Transmitting

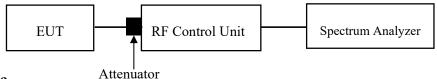
Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

According to FCC §15.247(a) (1) (iii):

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.


According to RSS-247 § 5.1 (d):

Frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.4

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

1 1000110000

Environmental Conditions

Temperature:	24.5 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Amanda Wei from 2023-06-29 to 2023-06-30.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

Version 139: 2023-01-30

Page 37 of 80

FCC §15.247(b) (1) & RSS-247§ 5.1(b) &§ 5.4(b) - PEAK OUTPUT POWER MEASUREMENT

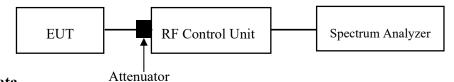
Applicable Standard

According to FCC §15.247(b) (1):

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

According to RSS-247§ 5.1(b) &§ 5.4(b):

For frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W (see Section 5.4(e) for exceptions).


Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.5

1. Place the EUT on a bench and set in transmitting mode.

- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	24.5 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Amanda Wei from 2023-06-29 to 2023-06-30.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

Version 139: 2023-01-30

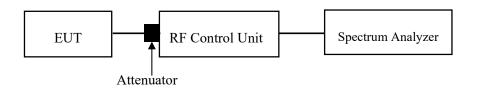
Page 38 of 80

FCC §15.247(d) & RSS-247 § 5.5 - BAND EDGES TESTING

Applicable Standard

According to FCC §15.247(d).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


According to RSS-247 § 5.5.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(e), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Version 139: 2023-01-30

Page 39 of 80

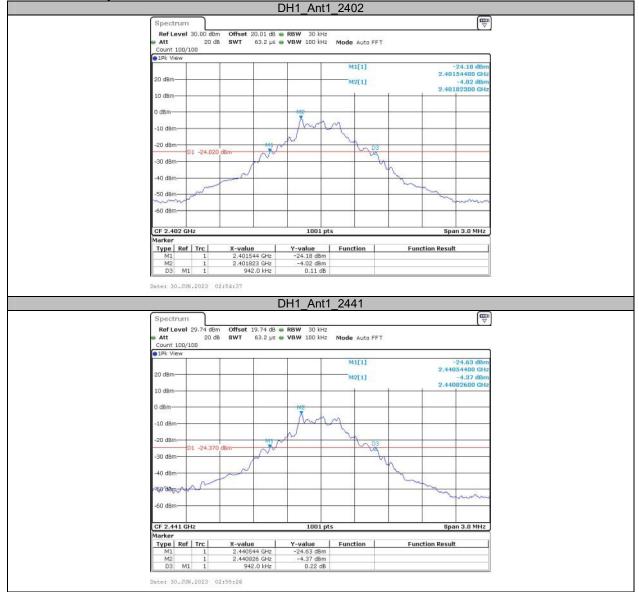
Test Data

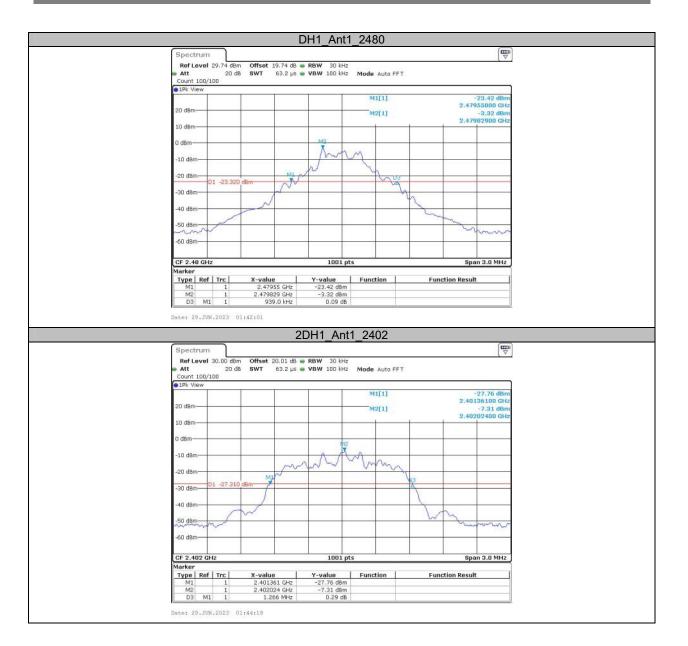
Environmental Conditions

Temperature:	24.5 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Amanda Wei from 2023-06-29 to 2023-06-30.

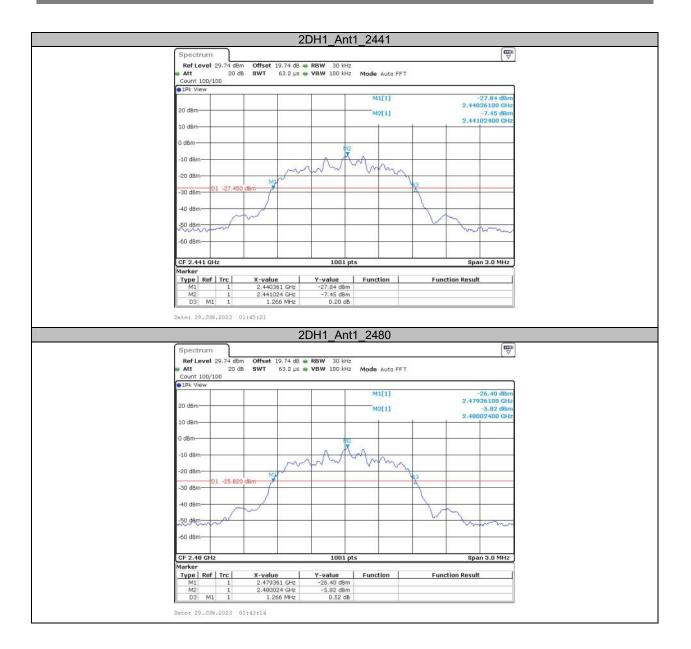
EUT operation mode: Transmitting

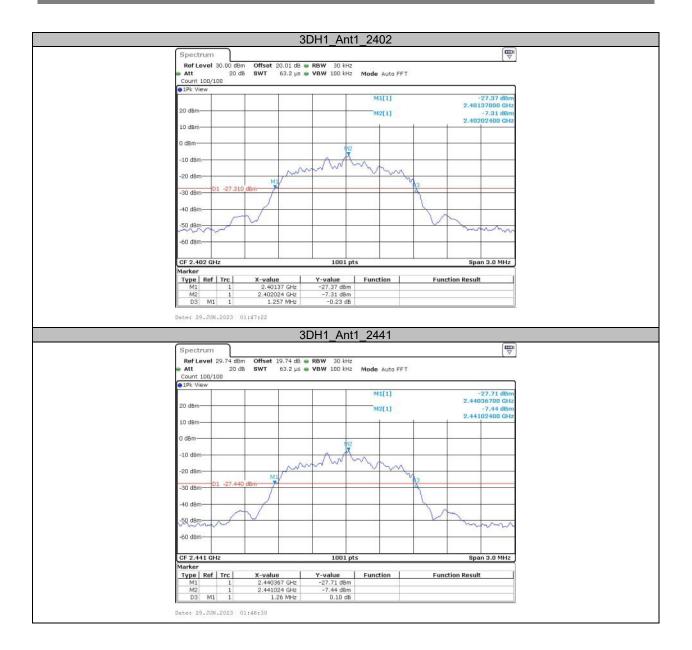

Test Result: Compliant. Please refer to the Appendix.


APPENDIX

Appendix A: 20dB Emission Bandwidth Test Result

Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict	
		2402	0.94	2401.54	2402.49			
DH1	Ant1	2441	0.94	2440.54	2441.49			
		2480	0.94	2479.55	2480.49			
		2402	1.27	2401.36	2402.63			
2DH1	Ant1	2441	1.27	2440.36	2441.63			
			2480	1.27	2479.36	2480.63		
		2402	1.26	2401.37	2402.63			
3DH1	Ant1	2441	1.26	2440.37	2441.63			
		2480	1.26	2479.37	2480.63			


Test Graphs



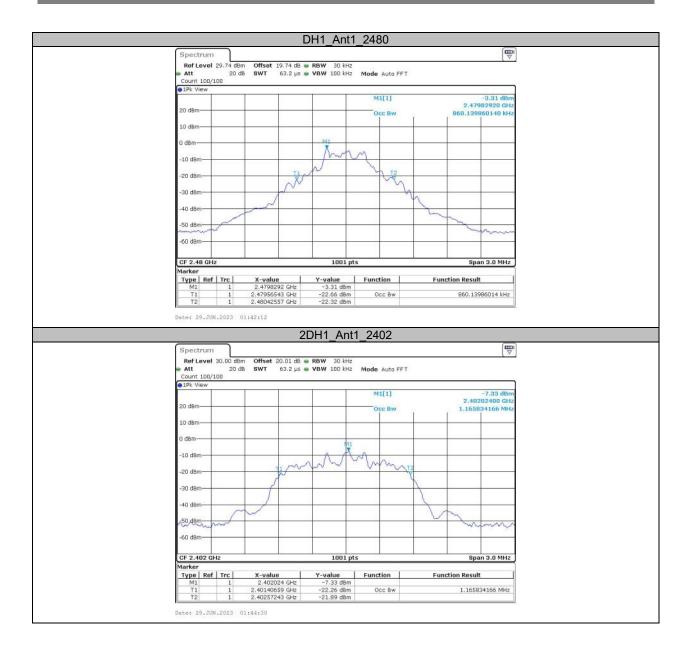
Version 139: 2023-01-30

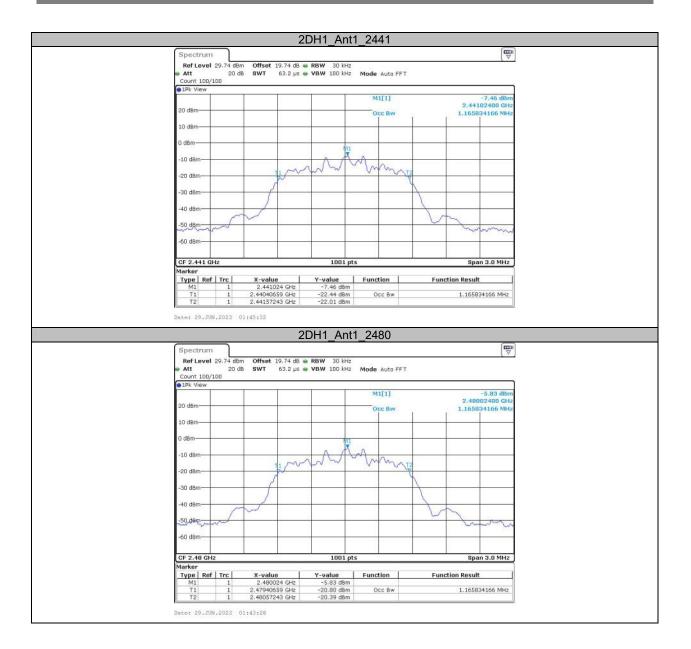
Page 43 of 80

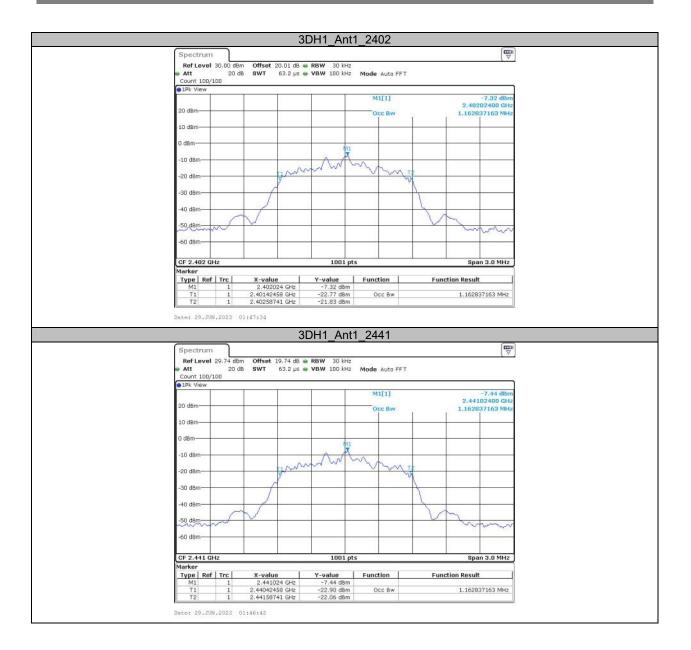
Shenzhen Accurate Technology Co., Ltd.

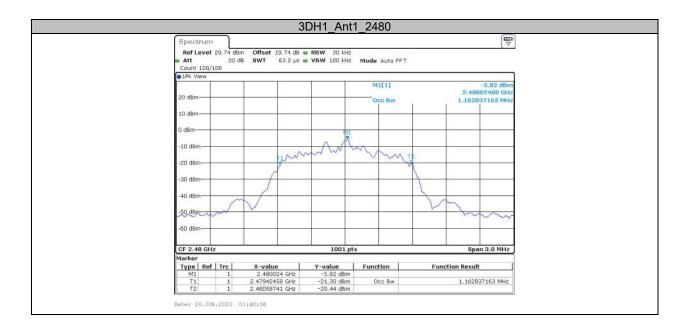
Spectru	m						₽
Ref Lev	el 29.74 dBr		4 dB 🖷 RBW 30 kHz				
🖝 Att	20 d	B SWT 63.	2 µs 🖷 VBW 100 kHz	Mode Auto FF	т		
Count 10							
SIPK VIEW	C			M1[1]			.98 dBm
				WITTI		2.47936	
20 dBm-	-			M2[1]			.84 dBm
						2.48002	
10 dBm-							
0 dBm							
o obiii			\$12				
-10 dBm-			AA	- 0			
			www.hw	m			
-20 dBm	-	MIT F		- 4.1	m	-	
	01 -25.840) dBm			103		
-30 dBm-		1		1	1	-	
-40 dBm-	1					-	
-50 d8m-		∇			1	1	
2-65 600C	2m					wh	m
-60 d8m-	_						10000
CF 2.48	SHz		1001 p	ts		Span 3	.0 MHz
Marker							
Type R	ef Trc	X-value	Y-value	Function	Fund	ction Result	1
M1	1	2.479367 G					
M2 D3	1 M1 1	2.480024 G 1.26 M					
03	M1 1	1.26 M	HZ -0.22 GB				

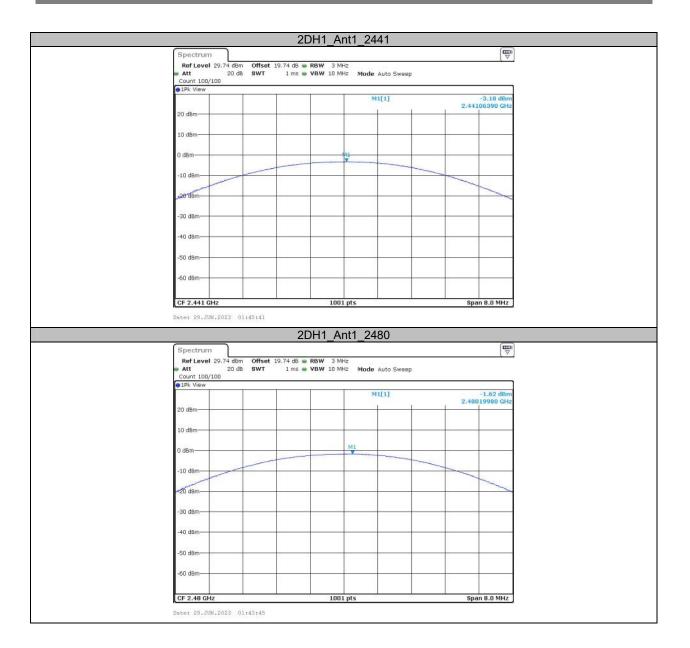
Version 139: 2023-01-30


Page 46 of 80


Appendix B: Occupied Channel Bandwidth Test Result


Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.860	2401.565	2402.426		
DH1	Ant1	2441	0.863	2440.565	2441.429		
		2480	0.860	2479.565	2480.426		
		2402	1.166	2401.407	2402.572		
2DH1	Ant1	2441	1.166	2440.407	2441.572		
		2480	1.166	2479.407	2480.572		
		2402	1.163	2401.425	2402.587		
3DH1	Ant1	2441	1.163	2440.425	2441.587		
		2480	1.163	2479.425	2480.587		


Test Graphs


Appendix C: Maximum conducted output power Test Result Peak

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Power[dBm]	Conducted Limit[dBm]	Verdict
		2402	-2.76	≤20.97	PASS
DH1	Ant1	2441	-2.98	≤20.97	PASS
		2480	-1.82	≤20.97	PASS
	Ant1	2402	-3.15	≤20.97	PASS
2DH1		2441	-3.18	≤20.97	PASS
		2480	-1.62	≤20.97	PASS
		2402	-2.83	≤20.97	PASS
3DH1	Ant1	2441	-2.85	≤20.97	PASS
		2480	-1.25	≤20.97	PASS
Note: the antenna	gain is 1.76d	Bi, the maximum Ell	RP is 0.51dBm<36dBm		

Test Graphs


DH1_Ant1_2402	
Spectrum	
RefLevel 30.00 dBm Offset 20.01 dB RBW 3 MHz Att 20 dB SWT 1 ms VBW 10 MHz Mode Auto Sweep	
Count 100/100 IPk View	
M1[1]	-2.76 dBm 2.40172030 GHz
20 dBm-	2.401/2000 GH2
10 Mm	
10 dBm-	
0 dBm	
-10 dBm	
and and a second s	
-20 d8m-	
-30 dBm-	
10.00	
-40 dBm	
~50 d8m-	
-60 dBm-	
CF 2.402 GHz 1001 pts	Span 8.0 MHz
Date: 29.JUN.2023 01:40:21	
DH1_Ant1_2441	
Spectrum	Ţ
Ref Level 29.74 dBm Offset 19.74 dB RBW 3 MHz Att 20 dB SWT 1 ms VBW 10 MHz Mode Auto Sweep	
Count 100/100	
M1[1]	-2.98 dBm
20 dBm-	2.44100800 GHz
10.0	
10 dBm-	
0 dBm	
-10 dBm	
20 ^r d8m	
-30 dBm	
-30 dBm	
-40 dBm	
-40 dBm	
-40 dBm	Span B.0 MHz

Version 139: 2023-01-30

Page 56 of 80

Version 139: 2023-01-30

Page 57 of 80

Report No.: RA230620-35481E-RFA

Spectrum				
	Offset 19.74 dB 🖷 RBW 3 M	1Hz		2
Att 20 dB Count 100/100	SWT 1 ms 👄 VBW 10 M	1Hz Mode Auto Sweep		
e 1Pk View				1
		M1[1]	-1.25 dBm	
			2.47993610 GHz	
20 dBm		+ + +		
10 dBm				
0 dBm	N	1		
		and the second s		
-10 dBm				
-20 dBm-			1	
1973 B200 B200 B				
-30 dBm-				
-40 dBm-				
To dom				
-50 dBm-				
-50 upin	10			
60.40m				
-60 dBm	10 C			
CF 2.48 GHz	100	1 pts	Span 8.0 MHz	

Appendix D: Carrier frequency separation Test Result

Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.000	≥0.627	PASS
2DH1	Ant1	Нор	0.997	≥0.847	PASS
3DH1	Ant1	Нор	1.003	≥0.840	PASS

Version 139: 2023-01-30

Page 59 of 80

Test Graphs

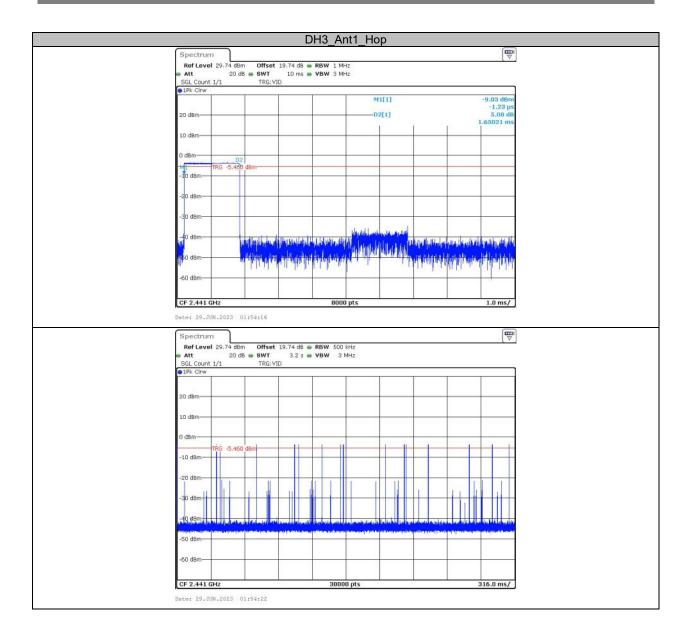
 Spectrum						
Ref Level 2		et 19.74 dB 👄 RE		0.0. 12220		•
Att Count 100/10		18.9 µs 🖷 VE	W 300 kHz Mode	Auto FFT		
• 1Pk View						
			Ma	[1]	-5.36 dBm 2.44099275 GHz	
20 dBm-		_	-D2	[1]	2.44099273 GHZ 0.45 dB	
				1	1.00290 MHz	
10 dBm-						
0 dBm	M1	0.0		D2		
	NX	~			~	
-10 dBm				-		
100000						
-20 dBm-						
-30 dBm						
-50 doin						
-40 dBm						
-50 dBm-		_				
-60 dBm						
Start 2.4405			691 pts		Stop 2.4425 GHz	

Appendix E: Time of occupancy Test Result

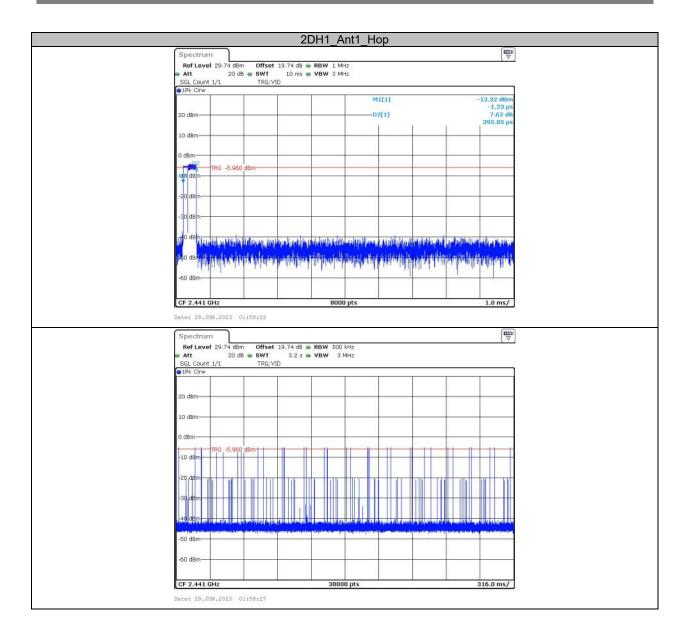
Test Mode	Antenna	Frequency[MHz]	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.40	320	0.128	≤0.4	PASS
DH3	Ant1	Нор	1.65	160	0.264	≤0.4	PASS
DH5	Ant1	Нор	2.89	130	0.376	≤0.4	PASS
2DH1	Ant1	Нор	0.40	330	0.132	≤0.4	PASS
2DH3	Ant1	Нор	1.64	170	0.279	≤0.4	PASS
2DH5	Ant1	Нор	2.88	130	0.374	≤0.4	PASS
3DH1	Ant1	Нор	0.39	320	0.125	≤0.4	PASS
3DH3	Ant1	Нор	1.64	160	0.262	≤0.4	PASS
3DH5	Ant1	Нор	2.88	130	0.374	≤0.4	PASS

Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops

Note 2: Totalhops=Hopping Number in 3.16s*10

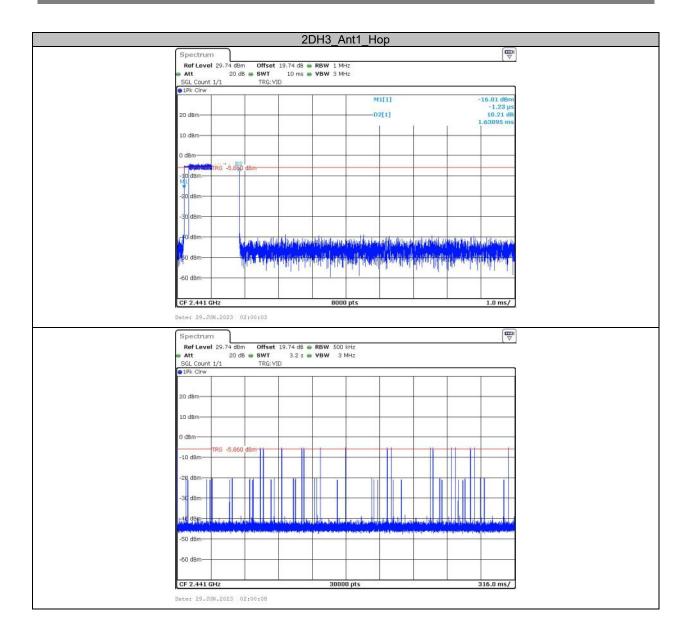

Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)

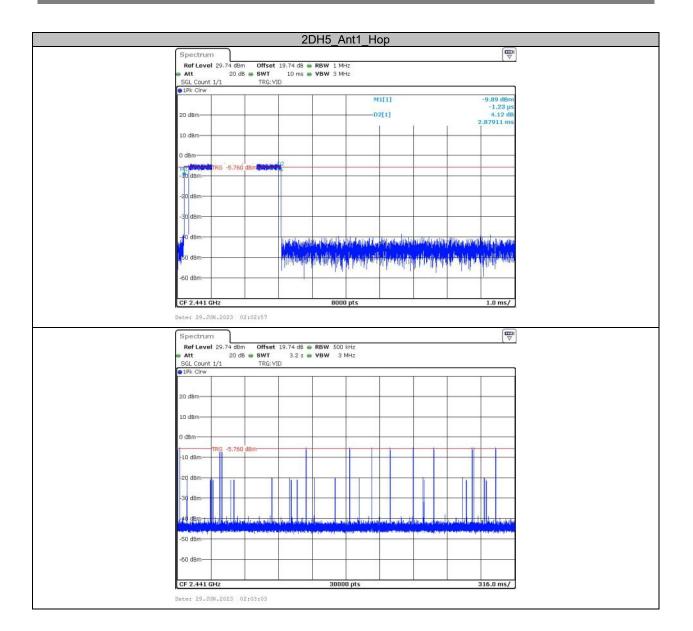

Test Graphs


DH1_Ant1_Hop	
Spectrum 🕎	
Ref Level 29.74 dBm Offset 19.74 dB 🖷 RBW 1 MHz	
Att 20 dB SWT 10 ms VBW 3 MHz SGL Count 1/1 TRG:VID	
IPk Cirw	
M1[1] -17.69 d8m -1.23 μs	
20 dBm D2[1] 13.75 dB	
401.30 µs	
10 dBm	
-10 dBm	
MI	
-20 dBm	
-30 dBm	
1950 dB (Ch. Mills) and a black of the Strategy of the state of the	
an a	
-60 dem	
CF 2.441 GHz 8000 pts 1.0 ms/	
No	
Date: 29.JUN.2023 01:51:21	
 Date: 29.JUN.2023 01:51:21	
 No	
 Date: 29.JUN.2023 01:51:21 Spectrum Ref Level 29.74 dBm Offset 19.74 dB RBW 500 kHz Att 20 dB SWT 3.2 s VBW 3 MHz	
 Date: 29.JUN.2023 01:51:21	
 Date: 29.JUN.2023 01:51:21 Spectrum Ref Level 29.74 dBm Offset 19.74 dB RBW 500 kHz Att 20 dB SWT 3.2 s VBW 3 MHz	
 Date: 29.JUN.2023 01:51:21	
Date: 29.JUN.2023 01:51:21	
Date: 29.JUN.2023 01:51:21	
Date: 29.JUN.2023 01;51;21	
Date: 29.JUN.2023 01;51;21	
Date: 29.JUN.2023 01:51:21	
Date: 29.JUN.2023 01:51:21	
Date: 29.JUN.2023 01;51;21	
Date: 29.JUN.2023 01:51:21 Spectrum Ref Level 29.74 dBm Offset 19.74 dB RBW 500 kHz Att 20 dB SWT 3.2 5 YBW 3 MHz SGL Count 1/1 TRG: VID TRG: VID • IPk Cirw	
Date: 29.JUN.2023 01;51:21 Spectrum Ref Level 29.74 dbm Offset 19.74 db RBW 500 kHz Att 20 db SWT 3.2 s YBW 3 MHz SGL Count 1/1 TRG: VID TRG: VID TRG: VID IPIk Cirw Image: VID	
Date: 29.JUN.2023 01:51:21 Spectrum Ref Level 29.74 dBm Offset 19.74 dB RBW 500 kHz Att 20 dB SWT 3.2 s YBW 3 MHz SGL Count 1/1 TRG: VID TRG: VID TRG: VID 0 dBm 0 0 dBm 0 0 10 dBm 0 0 0 0 0 31 dBm 0 0 0 0 0 40 dBm 0 0 0 0 0 0 31 dBm 0 0 0 0 0 0 0 40 dBm 0 0 0 0 0 0 0 0 32 dBm 0 0 0 0 0 0 0 0 31 dBm 0 0 0 0 0 0 0 0	
Date: 29.JUN.2023 01;51;21 Spectrum Reft 20.974 dBm Offset 19.74 dB RBW 500 kHz Att 20.08 SWT 3.2 s VBW 3 MHz SGL Count 1/1 TRG: VID IPk Cirw 0 dBm 10 dBm -20 dBm -30 dBm	
Date: 29.JUN.2023 01:51:21 Spectrum Ref Level 29.74 dBm Offset 19.74 dB RBW 500 kHz Att 20 dB SWT 3.2 s YBW 3 MHz SGL Count 1/1 TRG: VID TRG: VID TRG: VID • IPk Cinw	
Date: 29.JUN.2023 01;51;21 Spectrum Ref Level 29.74 dBm Offset 19.74 dB RBW 500 kHz Att 20 dB SWT 3.2 s VBW 3 MHz SGL Count 1/1 TRG:VID TRG:VID TRG:VID IPIk Claw Image: Claw Image: Claw Image: Claw Image: Claw 0 dBm Image: Claw Image: Claw Image: Claw Image: Claw Image: Claw 10 dBm Image: Claw	
Date: 29.JUN.2023 01;51;21 Spectrum Reft 20.974 dBm Offset 19.74 dB RBW 500 kHz Att 20.08 SWT 3.2 s VBW 3 MHz SGL Count 1/1 TRG: VID IPk Cirw 0 dBm 10 dBm -20 dBm -30 dBm	

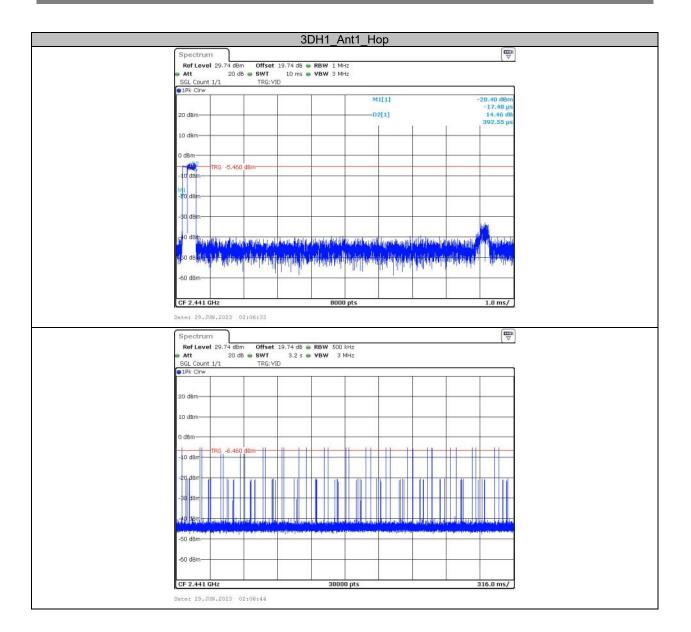
Version 139: 2023-01-30

Page 63 of 80

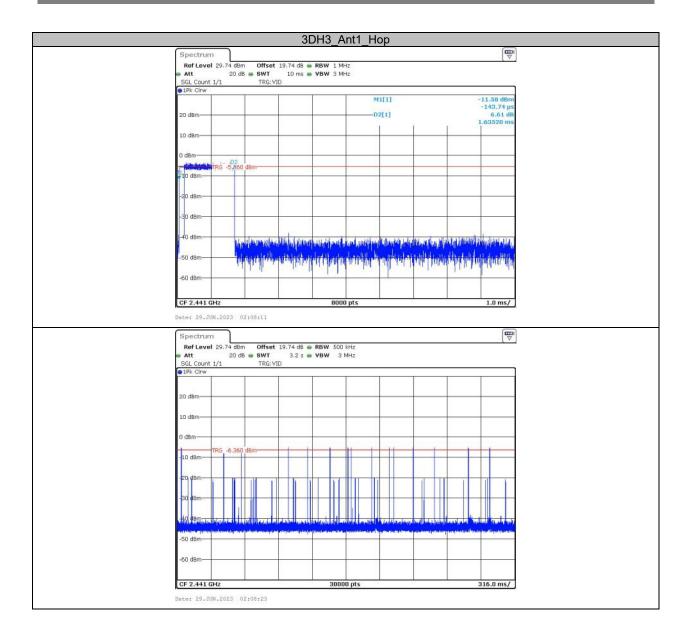


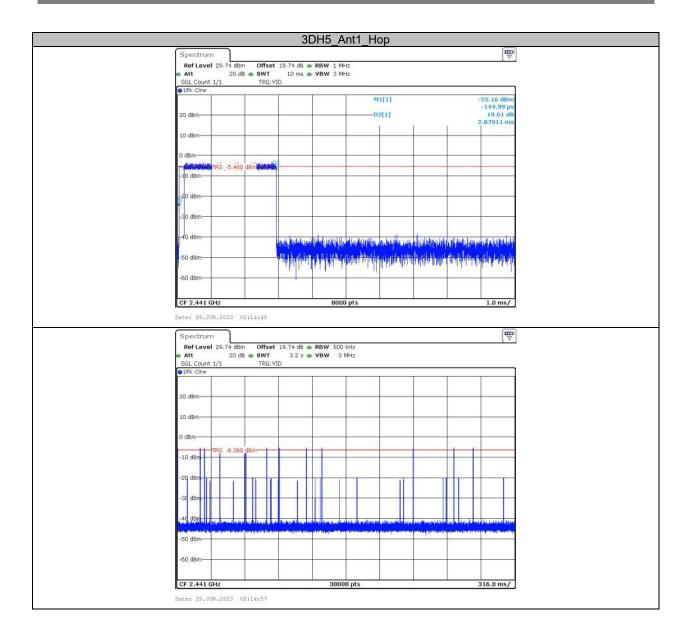

Version 139: 2023-01-30

Page 66 of 80


Version 139: 2023-01-30

Page 67 of 80


Version 139: 2023-01-30


Page 68 of 80

Version 139: 2023-01-30

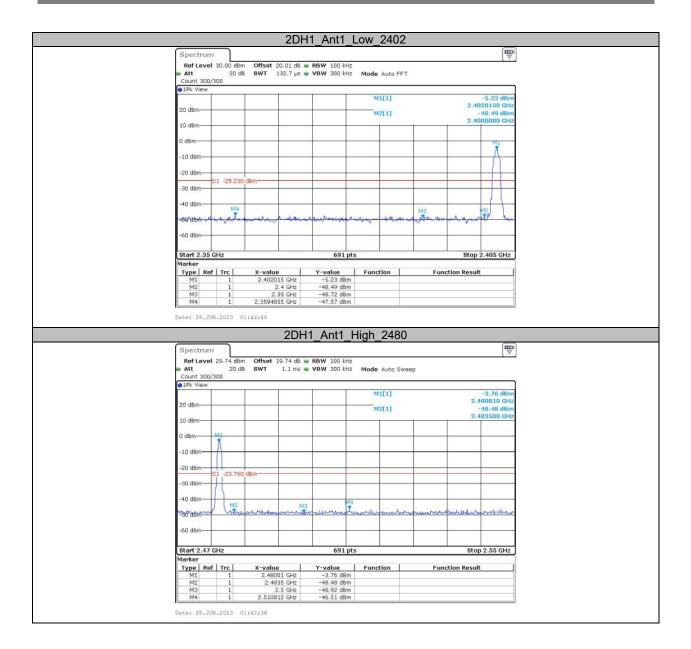
Page 69 of 80

Appendix F: Number of hopping channels Test Result

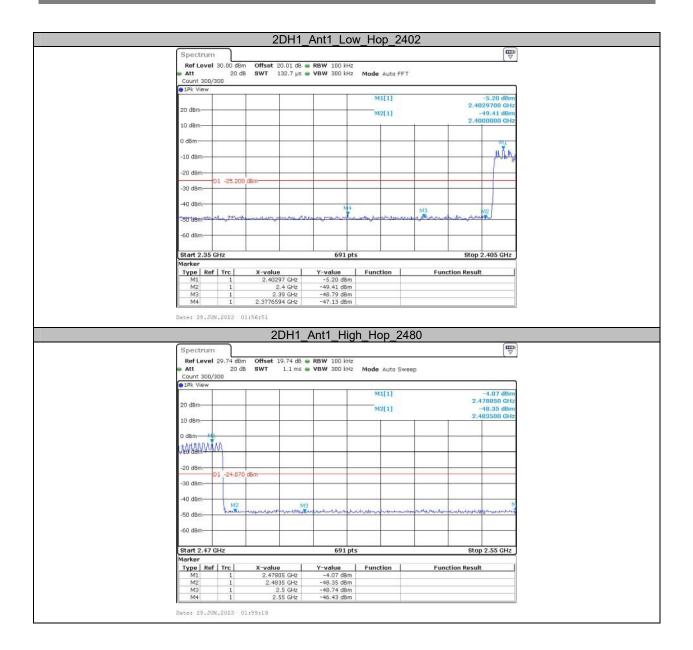
Test Mode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS
3DH1	Ant1	Нор	79	≥15	PASS

Test Graphs

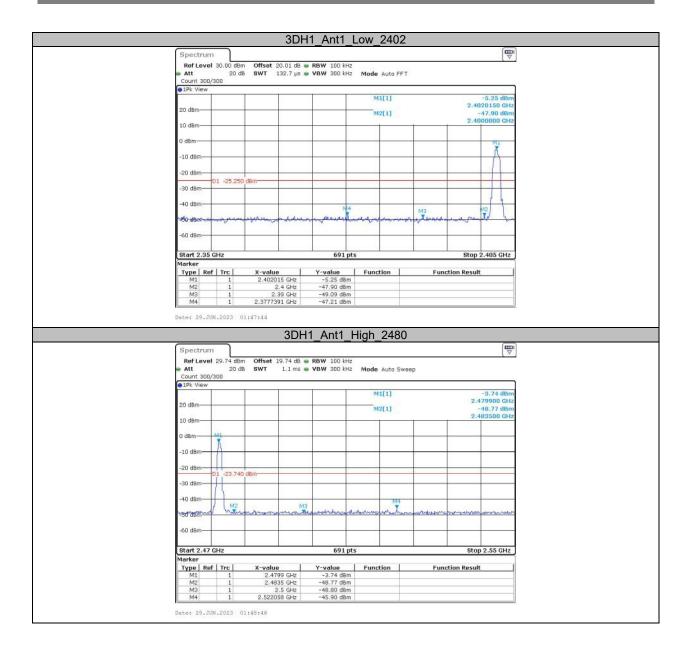
DH1_Ant1_Hop Ref Level 30.00 dbm Offset 20.01 db RBW 100 LHz Auto Sweep 20 db SWT 1 ms Count 1000/1000 0 dbm 0 dbm 0 dbm 10 dbm 0 dbm 0 dbm 0 dbm -10 ubm -10 ubm -10 ubm 0 dbm -20 dbm -10 ubm -10 ubm -10 ubm -50 dbm -50 dbm -50 dbm -50 dbm
Ref Level 30.00 dbm Offset 20.01 db @ RBW 100 kHz Att 20 db SWT 1 ms @ VBW 300 kHz Count 1000/1000 @ IPk View 20 dbm 10 dbm 0 dbm -10 dbm -20 dbm -10 dbm
Count 1000/1000 ● IPk View 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -10 dBm
20 dBm
10 dBm
0 d8m
0 d8m
-30 dem- -40 dem- 40 dem-
-50 dBm
-50 d8m
-80 d8m
-40 dem
-50 dBm-
-60 dBm
Start 2.4 GHz 691 pts Stop 2.4835 GHz Date: 29.JUN.2023 01:51:05
2DH1_Ant1_Hop
Spectrum Ref Level 30.00 dBm Offset 20.01 dB • RBW 100 kHz
Att 20 dB SWT 1 ms
●1Pk View
20 dBm
10 dBm
0 dBm-
MININ DAMANDA ANANANA MAANANANA ANANANANANANANANANAN
- วิฉ. ตละเอง เกม ในโดยสาก เอง เป็นได้ได้ เป็นไปไป ได้เป็น เป็นได้ เป็นเป็นได้ เป็นได้
-20 dBm-
-30 d8m
+40 dBm-
-50 d9m
60 dbm
-60 dBm
-50 dBm Start 2.4 GHz 691 pts Stop 2.4835 GHz

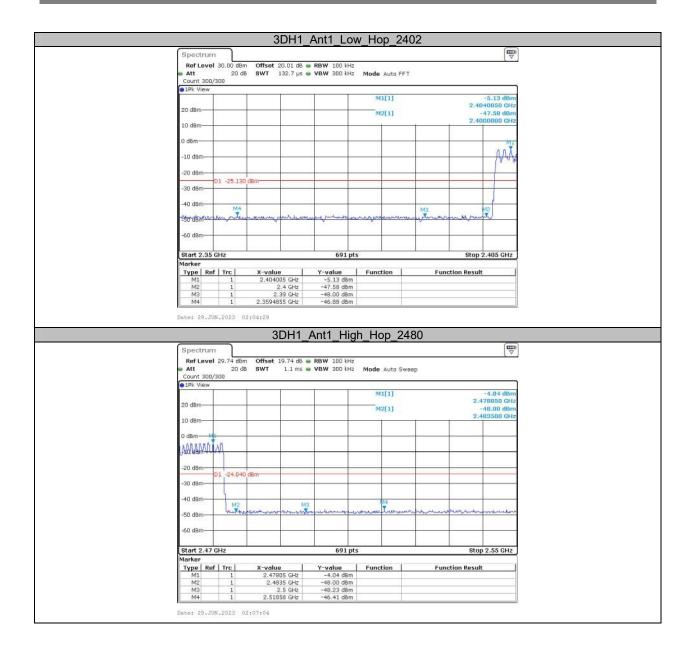

Spectrum		(The second seco	
	Offset 20.01 dB 🖷 RBW 100 kHz		
Att 20 dB \$ Count 1000/1000	WT 1 ms 🖶 VBW 300 kHz Mode Auto Sweep	9	
e 1Pk View			
20 dBm			
10 dBm			
1775			
0 dBm		Carton Contra and Arrente	
_AAJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ANNALA MANALAMATANA ANALAMANA ANNALAMA	DAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	alagraph and a second and a second and a second a se		
-20 dBm-			
-30 dBm-			
land land			
-40 dBm			
-50 dBm-		han	
-60 dBm			
Start 2.4 GHz	691 pts	Stop 2.4835 GHz	

Appendix G: Band edge measurements Test Graphs


<u> </u>		1_Ant1_Lov	_2402		(
Spectrum	4.44						
RefLevel 30.00 dBm Att 20 dB	Offset 20.01 dB SWT 132.7 µs (
Count 300/300	assir ps (AULO FF I				
• 1Pk View			continue -				
8			M1[1]		-3.54 d 2.4018560 (
20 dBm			M2[1]		-49.00 d		
10 dBm					2.4000000		
0 dBm			-	-	ML	_	
-10 dBm							
-10 dBm-							
-20 dBm-				+ +			
D1 -23.540	dBm		1				
-30 dBm-							
-40 dBm			_				
2/14	1.111121	State Color		MB	42	0	
1050.0800 - and and	and a case of a construction of the	and the second s	Quality and a second	And the second of the	the file of the		
-60 dBm						_	
Start 2.35 GHz		691 pts	2		Stop 2.405 G	Hz	
Marker							
Type Ref Trc	X-value		unction	Functi	on Result		
M1 1 M2 1	2.401856 GHz 2.4 GHz	-3.54 dBm -49.00 dBm					
M3 1	2.39 GHz	-50.53 dBm					
M4 1	2.352471 GHz	-47.49 dBm					
Date: 29.JUN.2023 0	234242202	1_Ant1_Hig	1_2480				
Date: 29.JUN.2023 0	234242202	1_Ant1_Higl	า_2480				
Spectrum Ref Level 29.74 dBm	DH	RBW 100 kHz	88 202 K			B	-
Spectrum Ref Level 29.74 dBm Att 20 dB	DH		88 202 K	p		E	
Spectrum Ref Level 29.74 dBm	DH	RBW 100 kHz	88 202 K	sp.		T	
Spectrum Ref Level 29.74 dBm Att 20 dE Count 300/300	DH	RBW 100 kHz	88 202 K	ip	-2.50 d	IBm	
Spectrum Ref Level 29.74 dBm Att 20 dE Count 300/300	DH	RBW 100 kHz	ode Auto Swee M1[1]	ip	-2.50 d 2.479900 (IBm GHz	_
Spectrum Ref Level 29.74 dBn Att 20 dB Count 300/300 IPk View 20 dBm	DH	RBW 100 kHz	ode Auto Swee	ip	-2.50 d	IBm GHz IBm	
 Spectrum Ref Level 29.74 dBm Att 20 dB © JPk View 20 dBm 10 dBm	DH	RBW 100 kHz	ode Auto Swee M1[1]	ip	-2.50 d 2.479900 (-48.78 d	IBm GHz IBm	
 Spectrum Ref Level 29.74 dBn Att 20 dB Count 300/300 IPk View 20 dBm	DH	RBW 100 kHz	ode Auto Swee M1[1]	ip	-2.50 d 2.479900 (-48.78 d	IBm GHz IBm	
 Spectrum Ref Level 29,74 dBm Att 20 dB Count 300/300 IPk View 20 dBm 10 dBm	DH	RBW 100 kHz	ode Auto Swee M1[1]	ър	-2.50 d 2.479900 (-48.78 d	IBm GHz IBm	
 Spectrum Ref Level 29.74 dBm Att 20 dB Count 300/300 IPk View 20 dBm 10 dBm	DH	RBW 100 kHz	ode Auto Swee M1[1]	ір 	-2.50 d 2.479900 (-48.78 d	IBm GHz IBm	
Spectrum Ref Level 29.74 dBn Att 20 dB Count 300/300 IPk View 20 dBm 10 dBm -10 dBm	DH 1 Offset 19.74 dB = 5 SWT 1.1 m5 =	RBW 100 kHz	ode Auto Swee M1[1]	ip	-2.50 d 2.479900 (-48.78 d	IBm GHz IBm	
 Spectrum Ref Level 29.74 dBm Att 20 dB Count 300/300 IPk View 20 dBm 10 dBm -10 dBm -20 dBm 01 -22.500	DH 1 Offset 19.74 dB = 5 SWT 1.1 m5 =	RBW 100 kHz	ode Auto Swee M1[1]	ip	-2.50 d 2.479900 (-48.78 d	IBm GHz IBm	
Spectrum Ref Level 29.74 dBn Att 20 dB Count 300/300 IPk View 20 dBm 10 dBm -10 dBm	DH 1 Offset 19.74 dB = 5 SWT 1.1 m5 =	RBW 100 kHz	ode Auto Swee M1[1]	ip	-2.50 d 2.479900 (-48.78 d	IBm GHz IBm	
Spectrum Ref Level 29.74 dBm Att 20 dB 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	DH Offset 19.74 dB (SWT 1.1 ms (dBm- dBm-	RBW 100 kHz M	ode Auto Swee M1[1]	ю 	-2.50 d 2.479900 (-48.78 d	IBm GHz IBm	
Spectrum Ref Level 29.74 dBm Att 20.4 dBm Count 300/300 IPk View 20 dBm 10 dBm -10 dBm -30 dBm -40 dBm	DH Offset 19.74 dB = SWT 1.1 ms =	RBW 100 kHz M	M1[1] M2[1]		-2.50 d 2.479900 -48,78 d 2.489500 (IBm GHz IBm GHz	
Spectrum Ref Level 29.74 dBn Att 20 dE Count 300/300 IPk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	DH Offset 19.74 dB (SWT 1.1 ms (dBm- dBm-	RBW 100 kHz M	M1[1] M2[1]		-2.50 d 2.479900 (-48.78 d	IBm GHz IBm GHz	
Spectrum Ref Level 29.74 dBm Att 20 db • IPk View 20 dBm 10 dBm -10 dBm -30 dBm -30 dBm -30 dBm	DH Offset 19.74 dB = SWT 1.1 ms =	RBW 100 kHz M	M1[1] M2[1]		-2.50 d 2.479900 -48,78 d 2.489500 (IBm GHz IBm GHz	
Spectrum Ref Level 29.74 dBm Att 20.4 dBm Count 300/300 IPk View 20 dBm 10 dBm -10 dBm -30 dBm -40 dBm	DH Offset 19.74 dB = SWT 1.1 ms =	RBW 100 kHz M	M1[1] M2[1]		-2.50 d 2.479900 -48,78 d 2.489500 (IBm GHz IBm GHz	
Spectrum Ref Level 29,74 dBm Att 20 dB Count 300/300 IPk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	DH Offset 19.74 dB = SWT 1.1 ms =	RBW 100 kHz M VBW 300 kHz M	M1[1] M2[1]		-2.50 d 2.479900 (2.489500 (2.489500 (IBm GHz GHz	
Spectrum Ref Level 29.74 dBm Att 20 db • IPk View 20 dBm 10 dBm -10 dBm -30 dBm -30 dBm -30 dBm	DH Offset 19.74 dB = SWT 1.1 ms =	RBW 100 kHz M	M1[1] M2[1]		-2.50 d 2.479900 -48,78 d 2.489500 (IBm GHz GHz	
Spectrum Ref Level 29.74 dBm Att 20 dB 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -80 dBm -80 dBm -80 dBm Start 2.47 GHz Marker Type Ref Trc	Conservative	RBW 100 kHz M VBW 300 kHz M Image: State of the state of t	M1[1] M2[1]	terna handaan a	-2.50 d 2.479900 (2.489500 (2.489500 (IBm GHz GHz	
Spectrum Ref Level 29.74 dBm Att 20.730 © IPk View 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm Start 2.47 GHz Marker Type Ref Trc M1	DH	RBW 100 kHz M VBW 300 kHz M Image: State of the state of t	M1[1] M2[1] M2[1]	terna handaan a	-2.50 d 2.479900 (-48,78 d 2.483500 (IBm GHz 	
Spectrum Ref Level 29.74 dBm Att 20 dB 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -80 dBm -80 dBm -80 dBm Start 2.47 GHz Marker Type Ref Trc	Conservative	RBW 100 kHz M VBW 300 kHz M Image: State of the state of t	M1[1] M2[1] M2[1]	terna handaan a	-2.50 d 2.479900 (-48,78 d 2.483500 (IBm GHz 	
Spectrum Ref Level 29.74 dBm Att 20 dB 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -80 dBm -90 Ref Trc M1 1 M2 1	DH	RBW 100 kHz VBW 300 kHz VBW 300 kHz M4 691 pts Y-value F -2.50 dBm -48.76 dBm	M1[1] M2[1] M2[1]	terna handaan a	-2.50 d 2.479900 (-48,78 d 2.483500 (IBm GHz 	

Shenzhen Accurate Technology Co., Ltd.





Shenzhen Accurate Technology Co., Ltd.

Shenzhen Accurate Technology Co., Ltd.

***** END OF REPORT *****

Version 139: 2023-01-30

FCC-BT; RSS-BT