

TESTREPORT

Applicant Name : Address :

Report Number: FCC ID: IC: Shenzhen Youmi Intelligent Technology Co., Ltd. 406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China SZNS220822-38161E-RFC 2ATZ4-F3P5G 26074-F3P5G

Test Standard (s)

FCC PART 22H; RSS-132 ISSUE 3, JANUARY 2013

Sample Description

Product:	Smart Phone
Trademark:	F3 5G
Tested Model:	F3 Pro 5G (Please refer to DOS for Model difference)
Multiple Model:	UMIDIGI
Date Received:	2022/08/22
Report Date:	2022/09/20

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above. **Prepared and Checked By:**Approved By:

Nick Fang

Nick Fang EMC Engineer

Candry . Cr

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect testresults are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com Version 2: 2021-11-09 Page 1 of 25FCC -2G,3G,4G

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications	6
SUPPORT EQUIPMENT LIST AND DETAILS	
SUPPORT CABLE DESCRIPTION Block Diagram of Test Setup	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC §1.1310&FCC §2.1093& RSS-102 - RF EXPOSURE	
FCC §2.1047 - MODULATION CHARACTERISTIC	
RSS-132 §5.1- CHANNELLING ARRANGEMENTS&FREQUENCY PLAN	
APPLICABLE STANDARD	
TEST RESULT	
RSS-132 §5.2 - TYPES OF MODULATION	
APPLICABLE STANDARD	
TEST RESULT	
FCC §2.1046& FCC §22.913(A)&RSS-132 §5.4- RF OUTPUT POWER	
APPLICABLE STANDARD	
Test Procedure Test Data	
FCC §2.1049&FCC §22.905&RSS-GEN §6.7 - OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §2.1051& FCC §22.917&RSS-132 §5.5&RSS-GEN §6.13 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
Applicable Standard	
Test Procedure	
TEST DATA	
FCC §2.1053& FCC §2.917&RSS-132 §5.5&RSS-GEN §6.13- SPURIOUS RADIATED EMISSIONS	20
APPLICABLE STANDARD	
Test Procedure	
ТЕЅТ ДАТА	20

FCC §22.917(A)&RSS-132 §5.5&RSS-GEN §6.13- BAND EDGES	22
APPLICABLE STANDARD	22
Test Procedure	
Test Data	
FCC §2.1055&FCC §22.355&RSS-132 §5.3&RSS-GEN §6.11 - FREQUENCY STABILITY	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	

GENERAL INFORMATION

HVIN	F3 5G: N512_MB_V	
	F3 Pro 5G: N515_MB_V	
FVIN	UMIDIGI_F3_5G_V1.0. UMIDIGI_F3_Pro_5G_V1.0	
Frequency Range	5G NR Band 5: 824-849 MHz(TX); 869-894MHz(RX)	
Maximum Output Power (Conducted power)	22.98dBm	
Modulation Technique	DFT-s-OFDM: PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM CP-OFDM: QPSK, 16QAM, 64QAM, 256QAM	
Antenna Specification*	Internal Antenna: -0.67dBi (provided by the applicant)	
Voltage Range	DC 3.85V from battery or DC 5/7/9/12V from adapter	
Sample serial number	SZNS220822-38161E-RF-S1(Assigned by ATC)	
Sample/EUT Status	Status Good condition	
	Model: HJ-FC017K7-US	
Adapter information	Input: AC 100-240V, 50/60Hz, 0.6A	
*	Output: DC 5.0V, 2.0A or 7.0V, 2.0A or 9.0V, 2.0A or 12.0V, 1.5A, 18.0W	
	VN.: Normal Voltage: 3.85V _{DC}	
	VL.: Low Temperature $3.45 V_{DC}$	
Normal/Entrance Condition*	VH.: High Temperature $4.4V_{DC}$	
Normal/Extreme Condition*	TN: Normal Temperature: 25°C	
	T1~T9: -30°C, -20°C, -10°C, 0°C, 10°C, 20°C, 30°C, 40°C, 50°C	
	(They are provided by the manufacturer)	

Product Description for Equipment under Test (EUT)

Remark:

- 1. 5G NR bands supports SA Band5 and NSA DC_2A_n5A mode only. For SA and NSA mode of all 5G NR, we only show the combination of the maximum power among all SA and NSA combinations in the report.
- 2. For modulation of CP-OFDM and DFT-s-OFDM, the maximum power of CP-OFDM is lower than DFT-s-OFDM modulation, therefore, we chose higher power (DFT-s-OFDM modulation) to perform all tests and show in the report.

Objective

This test report is in accordance with Part 2-Subpart Jand Subpart 22H of the Federal Communication Commission's rules and RSS-132 Issue 3 January 2013 of theInnovation, science and Economic Development Canada

The objective is to determine the compliance of the EUT with FCC rules and RSS-132 Issue 3 for output power, modulation characteristic, occupied bandwidth, and spurious emission at antenna terminal, spurious radiated emission, frequency stability and band edge.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the RSS-132 Issue 3 January 2013 and Code of Federal Regulations Title 47 Part 2-Subpart J as well as the following parts:

Part 22 Subpart H - Cellular Radiotelephone Service

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	5%
RF output po	wer, conducted	0.73dB
Unwanted Emission, conducted		1.6dB
RF Frequency		$0.082*10^{-7}$
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz-18GHz	4.98dB
Rudiated	18GHz- 26.5GHz	5.06dB
Temperature		1°C
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358,the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016.The Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

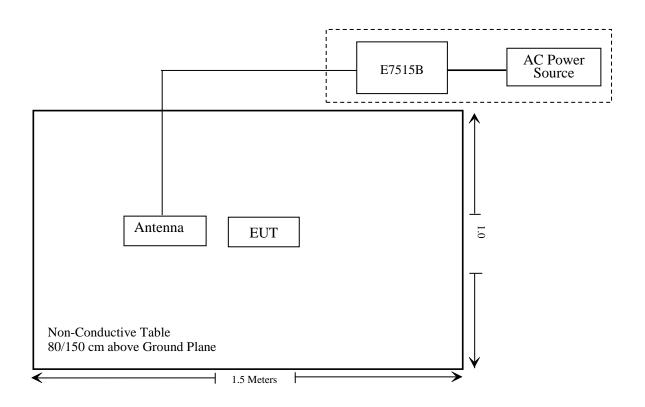
The final qualification test was performed with the EUT operating at normal mode.

The test items were performed with the EUT operating at testing mode. Test was performed with channels as below table:

Band	Channel Bandwidth	Frequency
NR Band 5	5.0 MHz	826.5MHz, 836.5MHz, 846.5MHz
	10.0 MHz	829MHz, 836.5MHz, 844MHz
	15.0 MHz	831.5MHz, 836.5MHz, 841.5MHz
	20.0 MHz	834MHz, 836.5MHz, 839MHz

Equipment Modifications

No modification was made to the EUT.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Keysight	Radio Communication Test Station	E7515B	DE56C00304

Support Cable Description

Cable Description	Length (m)	From / Port	То
Un-shielded Un-detachable AC cable	1.2	AC Power	E7515B

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC §1.1310, FCC §2.1093 RSS-102	RF Exposure (SAR)	Compliant*
FCC §2.1046,FCC §22.913(a) RSS-132 §5.4, RSS-Gen §6.12	RF Output Power	Compliant
FCC § 2.1047	Modulation Characteristics	Not Applicable
RSS-132 §5.1	Channeling Arrangements Frequency Plan	
RSS-132 §5.2	Types of Modulation Complia	
FCC § 2.1049, §22.905, §22.917 RSS-Gen §6.7	Occupied Bandwidth	Compliant
FCC § 2.1051, FCC §22.917 (a) RSS-132 §5.5, RSS-Gen §6.13	Spurious Emissions at Antenna Terminal	Compliant
FCC § 2.1053, FCC §22.917 (a) RSS-132 §5.5, RSS-Gen §6.13	Field Strength of Spurious Radiation	Compliant
FCC \$22.917 (a) RSS-132 \$5.5, RSS-Gen \$6.13	Band Edge	Compliant
FCC § 2.1055, FCC §22.355 RSS-132 §5.3, RSS-Gen §6.11	Frequency stability	Compliant

Note: Compliant*: Please refer to SAR report number: SZNS220822-38161E-20.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
]	Radiated Emission Test			
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13
Unknown	Band Reject Filter	MSF824-862MS-1147	201706003	2021/12/14	2022/12/13
Schwarzbeck	Bilog Antenna	VULB9163	9163-194	2020/01/05	2023/01/04
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-655	2020/01/05	2023/01/04
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04
Agilent	Signal Generator	N5183A	MY51040755	2021/12/13	2022/12/12

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		RF Conducted Test			
Keysight	PXA Signal Analyzer	N9030B	MY59431409	2022/05/28	2023/05/27
JD	RF Regulatory Test System	5G NR	-	NA	NA
R&S	Spectrum Analyzer	FSV40	101947	2022-07-15	2023-07-14
Keysight	UXM 5G Wireless Test Platform	E7515B	MY58120284	2022-07-15	2023-07-14
TEMP&HUMI Test Chamber	BTH-150	30022	2022-02-24	2022-02-03	2023-02-02
DecentTest	Multiplex Switch Test Control Set	DT7200SCU	DQ76345A	NA	NA
DecentTest	Filter Switch Unit	DT7200FSU	DQ76345B	NA	NA
Mini-Circuits	Power Splitter	DC-18000MHz	SF10944151S	2021/12/14	2022/12/13
Unknown	RF Cable	Unknown	1	Each time	Unknown
Fluke	Multi Meter	45	7664009	2021/12/14	2022/12/13

* Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310&FCC §2.1093& RSS-102 - RF EXPOSURE

Applicable Standard

FCC §1.1310,FCC §2.1093 and RSS-102.

According to FCC §1.1310,FCC §2.1093 andRSS-102, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guideline

Test Result

Compliant, please refer to the SAR report: SZNS220822-38161E-20.

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC §2.1047(d), Part 22H there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

RSS-132 §5.1- CHANNELLING ARRANGEMENTS&FREQUENCY PLAN

Applicable Standard

According to RSS-132 §5.1, Equipment certified under this Standard may employ any channeling arrangement that which is deemed suitable by the service provider, however, such a channeling arrangement shall meet all relevant conditions specified in SRSP-503.

Test Result

Channeling arrangement meets all relevant conditions specified in SRSP-503.

RSS-132 §5.2 - TYPES OF MODULATION

Applicable Standard

According to RSS-132 §5.2, equipment certified under this standard shall use digital modulation.

Test Result

The EUT uses DFT-s-OFDMPI/2 BPSK&DFT-s-OFDMQPSK&DFT-s-OFDM16QAM&DFT-s-OFDM64QAM&DFT-s-OFDM 256QAM& CP-OFDM QPSK& CP -OFDM 16QAM& CP -OFDM 64QAM& CP -OFDM 256QAM modulation.

FCC §2.1046& FCC §22.913(a)&RSS-132 §5.4- RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to RSS-132 §5.4

The transmitter output power shall be measured in terms of average power. The equivalent isotropically radiated power (e.i.r.p.) for mobile equipment shall not exceed 11.5 watts. Refer to SRSP-503 for base station e.i.r.p. limits.

In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

Test Procedure

Conducted method:

The RF output of the transmitter was connected to the E7515B through sufficient attenuation.

Radiated method:

ANSI C63.26-2015 Section 5.5

Test Data

Environmental Conditions

Temperature:	24.5 °C
Relative Humidity:	63%
ATM Pressure:	101.8 kPa

The testing was performed by Cat Kang on 2022-08-27.

EUT operation mode: Transmitting(Worst case record in the reports)

Conducted Power

Test data refer to the Appendix D

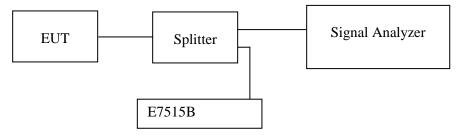
Peak-to-average ratio (PAR)

Test data refer to the Appendix E

FCC §2.1049&FCC §22.905&RSS-GEN §6.7 - OCCUPIED BANDWIDTH

Applicable Standard

FCC 47 §2.1049, FCC §22.905, RSS-GEN §6.7


The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "26 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 26 dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 1% to 5% of the anticipated emission bandwidth and the 26 dB & 99% bandwidth was recorded.

Test Data

Environmental Conditions

Temperature:	24.5 °C	
Relative Humidity:	63%	
ATM Pressure:	101.8 kPa	

The testing was performed by Cat Kang on 2022-08-27.

EUT operation mode: Transmitting(Worst case record in the reports)

Test Result: Pass

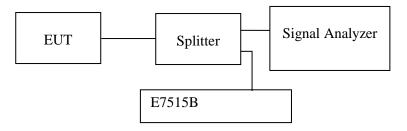
Test data refer to the Appendix F.

FCC §2.1051& FCC §22.917&RSS-132 §5.5&RSS-GEN §6.13 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

FCC §2.1051, FCC §22.917

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in §2.1051.


According to RSS-132 §5.5

Mobile and base station equipment shall comply with the limits in (i) and (ii) below.

- (a) In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts).
- (b) (ii) After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Data

Environmental Conditions

Temperature:	24.5 °C	
Relative Humidity:	63%	
ATM Pressure:	101.8 kPa	

The testing was performed by Cat Kang on 2022-08-27.

EUT operation mode: Transmitting(Worst case record in the reports)

Test result: Pass

Test data refer to the Appendix G

FCC §2.1053& FCC §2.917&RSS-132 §5.5&RSS-GEN §6.13- SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC §2.1051, FCC §22.917

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in §2.1051.

According to RSS-132 §5.5

Mobile and base station equipment shall comply with the limits in (i) and (ii) below.

- (c) In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts).
- (d) (ii) After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the receiving antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Test Data

Environmental Conditions

Temperature:	28°C	
Relative Humidity:	57%	
ATM Pressure:	101.3kPa	

The testing was performed by Level Li on 2022-09-14.

EUT operation mode: Transmitting (Pre-scan in the X, Y and Z axes of orientation, the worst case Y-axes of orientation were recorded)

The worst case is as below:

Shenzhen Accurate Technology Co., Ltd.

Report No.: SZNS220822-38161E-RFC

	Reco	eiver		Rx Antenna					
Frequency (MHz)	Reading (dBm)	PK/Ave	Turntable Angle Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
	5G N5, Low Channel, 5MHz								
239.7	-55.68	РК	134	2.2	Н	7.44	-48.24	-13	35.24
634.5	-48.05	РК	57	1.8	V	6.69	-41.36	-13	28.36
1653	-57.79	РК	134	2.2	Н	3.54	-54.25	-13	41.25
1653	-61.66	РК	57	1.8	V	3.1	-58.56	-13	45.56
			5G N	5, Middle Cł	annel, 5MHz	Z			
239.7	-56.61	РК	81	2.1	Н	7.44	-49.17	-13	36.17
634.5	-50.23	РК	327	2.1	V	6.69	-43.54	-13	30.54
1673	-59.36	РК	320	2.2	Н	3.78	-55.58	-13	42.58
1673	-62.27	РК	275	1.3	V	3.1	-59.17	-13	46.17
	5G N5, High Channel, 5MHz								
239.7	-55.58	РК	66	1.7	Н	7.44	-48.14	-13	35.14
634.5	-46.91	РК	322	1.5	V	6.69	-40.22	-13	27.22
1693	-57.29	РК	216	1.5	Н	4.02	-53.27	-13	40.27
1693	-61.45	РК	203	1.4	V	3.1	-58.35	-13	45.35
			DC-2A	-n5a , Low C	Channel, 5MI	Hz			
239.7	-57.12	РК	179	2.1	Н	7.44	-49.68	-13	36.68
634.5	-48.26	РК	334	1.5	V	6.69	-41.57	-13	28.57
1653	-57.71	РК	179	2.1	Н	3.54	-54.17	-13	41.17
1653	-61.31	РК	334	1.5	V	3.1	-58.21	-13	45.21
	DC-2A-n5a, Middle Channel, 5MHz								
239.7	-56.32	РК	275	1.3	Н	7.44	-48.88	-13	35.88
634.5	-49.98	РК	164	1.8	V	6.69	-43.29	-13	30.29
1673	-58.99	РК	203	2.1	Н	3.78	-55.21	-13	42.21
1673	-62.67	РК	209	2.2	V	3.1	-59.57	-13	46.57
	DC-2A-n5a, High Channel, 5MHz								
239.7	-56.61	РК	203	1.4	Н	7.44	-49.17	-13	36.17
634.5	-49.16	РК	42	2.0	V	6.69	-42.47	-13	29.47
1693	-58.15	РК	212	1.3	Н	4.02	-54.13	-13	41.13
1693	-62.11	РК	179	2.0	V	3.1	-59.01	-13	46.01

Note:

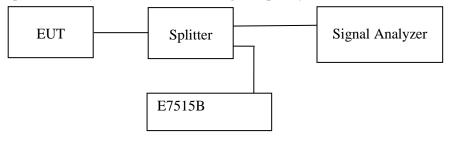
Absolute Level = Reading Level + Substituted Factor Substituted Factor contains: SG Level - Cable loss+ Antenna Gain Margin = Limit–Absolute Level

FCC §22.917(a)&RSS-132 §5.5&RSS-GEN §6.13- BAND EDGES

Applicable Standard

According to \$22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to RSS-132 §5.5


Mobile and base station equipment shall comply with the limits in (i) and (ii) below.

- (e) In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts).
- (f) (ii) After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency

Test Data

Environmental Conditions

Temperature:	24.5 °C	
Relative Humidity:	63%	
ATM Pressure:	101.8 kPa	

The testing was performed by Cat Kang on 2022-08-07 and 2022-09-19.

EUT operation mode: Transmitting (Worst case record in the reports)

Test Result: Pass

Test data refer to the Appendix H

FCC §2.1055&FCC §22.355&RSS-132 §5.3&RSS-GEN §6.11 - FREQUENCY STABILITY

Applicable Standard

ccording to FCC §2.1055, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

According to \$22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

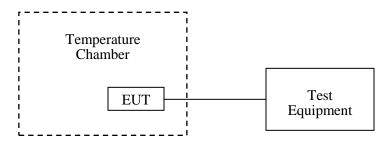
Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile > 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

Frequency Tolerance for Transmitters in the Public Mobile Services

According to RSS-132 §5.3

The carrier frequency shall not depart from the reference frequency in excess of ± 2.5 ppm for mobile stations and ± 1.5 ppm for base stations.

In lieu of meeting the above stability values, the test report may show that the frequency stability is sufficient to ensure that the occupied bandwidth stays within each of the sub-bands (see Section 5.1) when tested to the temperature and supply voltage variations specified in RSS-Gen.


Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external AC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The AC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Shenzhen Accurate Technology Co., Ltd.

Frequency Stability vs. Voltage: For hand carried, battery powered equipment; reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

Test Data

Environmental Conditions

Temperature:	24.5 °C	
Relative Humidity:	63%	
ATM Pressure:	101.8 kPa	

The testing was performed by Cat Kang on 2022-08-27.

EUT operation mode: Transmitting (Worst case record in the reports)

Test Result: Pass

Test data refer to the Appendix I

Note: ±2.5 ppm for 836.5MHz is -2091.25Hz ~ 2091.25Hz.

***** END OF REPORT *****