

FCC Test Report

Report No.: RWAZ202300122A

Applicant: Shenzhen Youmi Intelligent Technology Co., Ltd.

Address: 406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan

District, Shenzhen City, China

Product Name: Three Anti-Tablet

Product Model: MT15

Multiple Models: N/A

Trade Mark: UMIDIGI

FCC ID: 2ATZ4-ACTIVET1PRO

Standards: FCC CFR Title 47 Part 15C (§15.247)

Test Date: 2024/01/18~2024/01/25

Frank Tin

Test Result: Complied

Report Date: 2024/01/29

Reviewed by:

Approved by:

FrankYin

Project Engineer

Jacob Kong

Jacob Gong

Manager

Prepared by:

World Alliance Testing and Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

Report Template: TR-4-E-006/V1 Page 1 of 39

Announcement

- 1. This test report shall not be reproduced in full or partial, without the written approval of World Alliance Testing and Certification (Shenzhen) Co., Ltd
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
- 5. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

Revision History

Version No.	Issued Date	Description
00	29,Jan,2024	Original

Report Template: TR-4-E-006/V1 Page 2 of 39

Contents

1	Gene	ral Info	rmation	4
	1.1	Client	Information	4
	1.2	Produ	ct Description of EUT	4
	1.3	Anten	na information	4
	1.4	Relate	ed Submittal(s)/Grant(s)	5
	1.5	Meası	urement Uncertainty	5
	1.6	Labor	atory Location	5
	1.7	Test M	Methodology	5
2	Desc	ription	of Measurement	6
	2.1	Test C	Configuration	6
	2.2	Test A	uxiliary Equipment	6
	2.3	Test S	Setup	7
	2.4	Test P	Procedure	9
	2.5	Meası	urement Method	. 10
	2.6	Meası	urement Equipment	11
3	Test	Results		. 12
	3.1	Test S	Summary	. 12
	3.2	Limit .		. 13
	3.3	AC Lii	ne Conducted Emissions Test Data	. 14
	3.4	Radia	ted emission Test Data	. 16
	3.5	RF Co	onducted Test Data	. 24
	3	3.5.1	20 dB Emission Bandwidth and 99% Occupied Bandwidth	
	3	3.5.2	Maximum Conducted Peak Output Power	. 24
	3	3.5.3	Channel separation	. 25
	3	3.5.4	Number of hopping Frequency	. 25
	3	3.5.5	Time of occupancy (dwell time)	. 25
	3	3.5.6	100 kHz Bandwidth of Frequency Band Edge	
4	Test	Setup P	Photo	
_		Dhoto		20

1 General Information

1.1 Client Information

Applicant:	Shenzhen Youmi Intelligent Technology Co., Ltd.
Address:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China
Manufacturer:	Shenzhen Youmi Intelligent Technology Co., Ltd.
Address:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China

1.2 Product Description of EUT

The EUT is Three Anti-Tablet that contains classic Bluetooth (BDR/EDR), BLE, 2.4G/5G WLAN and GSM/GPRS/EGPRS/WCDMA/LTE radios, this report covers the full testing of the classic Bluetooth (BDR/EDR) radio.

Sample Serial Number	35-2 for CE&RE test, 35-1 for RF test conducted test (assigned by WATC)
Sample Received Date	2024-01-15
Sample Status	Good Condition
Frequency Range	2402MHz - 2480MHz
Maximum Conducted Peak Output Power	1.89dBm
Modulation Technology	GFSK, π/4 DQPSK, 8DPSK
Spatial Streams	SISO (1TX, 1RX)
Antenna Gain [#]	2.12dBi
Power Supply	DC 3.87V from Battery or DC 5/9/11/12/15/20V from Adapter
Operating temperature#	-10 deg.C to +45deg.C
Adapter Information	Model: HJ-PD66W-US
	Input: AC100-240V, 50/60Hz, 1.5A
	Output: DC 5.0V, 3.0A, 15.0W or 9.0V, 3.0A, 27.0W or 12.0V, 3.0A, 36.0W or 15.0V, 3.0A, 45.0W or 20.0V, 3.25A, 65W or 11.0V, 6.0A, 66.0W MAX
Modification	Sample No Modification by the test lab

1.3 Antenna information

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Device Antenna information:

The BT antenna is an internal antenna which cannot replace by end-user, please see product internal photos for details.

Report Template: TR-4-E-006/V1 Page 4 of 39

1.4 Related Submittal(s)/Grant(s)

FCC Part 15, Subpart C, Equipment Class: DTS, FCC ID: 2ATZ4-ACTIVET1PRO

FCC Part 15, Subpart E, Equipment Class: NII, FCC ID: 2ATZ4-ACTIVET1PRO

FCC Part 22, Subpart H/Part 24, Subpart E/Part 27, Equipment Class: PCB, FCC ID:

2ATZ4-ACTIVET1PRO

1.5 Measurement Uncertainty

Parameter		Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
AC Power Lines Conduc	ted Emissions	±3.14dB
	Below 30MHz	±2.78dB
Emissions, Radiated	Below 1GHz	±4.84dB
	Above 1GHz	±5.44dB
Conducted Power		0.74dB
Frequency Error		150Hz
Bandwidth		0.34%
Power Spectral Density		0.74dB

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

1.6 Laboratory Location

World Alliance Testing and Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: ga@watc.com.cn

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

1.7 Test Methodology

FCC CFR 47 Part 2

FCC CFR 47 Part 15

KDB 558074 D01 DTS Meas Guidance v05r02

ANSI C63.10-2020

Report Template: TR-4-E-006/V1 Page 5 of 39

2 Description of Measurement

2.1 Test Configuration

Operating channels:					
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	39	2441	76	2478
1	2403	40	2442	77	2479
				78	2480
38	2440			1	/

According to ANSI C63.10-2020 chapter 5.6.1 Table 11 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	39	2441	78	2480

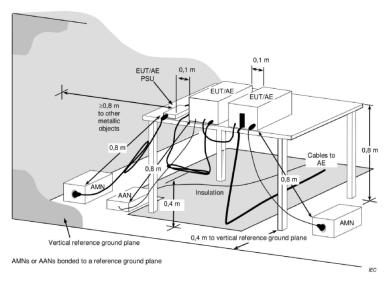
Test Mode:						
Transmitting mode:	Keep the EUT in	Keep the EUT in continuous transmitting with modulation				
Exercise software [#] :	Engineering mod	Engineering model				
		Po	owel Level Setting [#]			
Mode	Data rate	Low Channel	Middle Channel	High Channel		
GFSK	1Mbps	5	5	5		
π/4 DQPSK	2Mbps	5	5	5		
8DPSK	3Mbps	5	5	5		
The exercise software and the maximum power setting that provided by manufacturer.						

Worst-Case Configuration:

For radiated emissions, EUT was investigated in three orthogonal orientation, the worst-case orientation was recorded in report

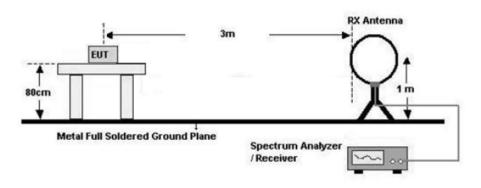
For AC power line conducted emission and radiated emission 9kHz-1GHz and above 18GHz were performed with the EUT transmits at the channel with highest output power as worst-case scenario.

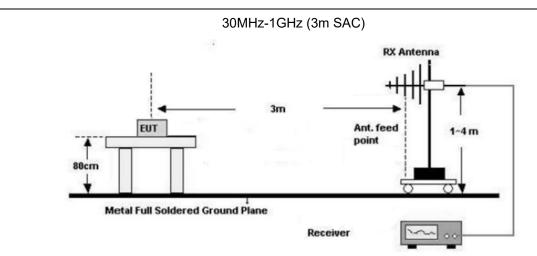
2.2 Test Auxiliary Equipment


Manufacturer	Description	Model	Serial Number
Unknown	Socket	Unknown	Unknown
Unknown	Earphone	Unknown	Unknown

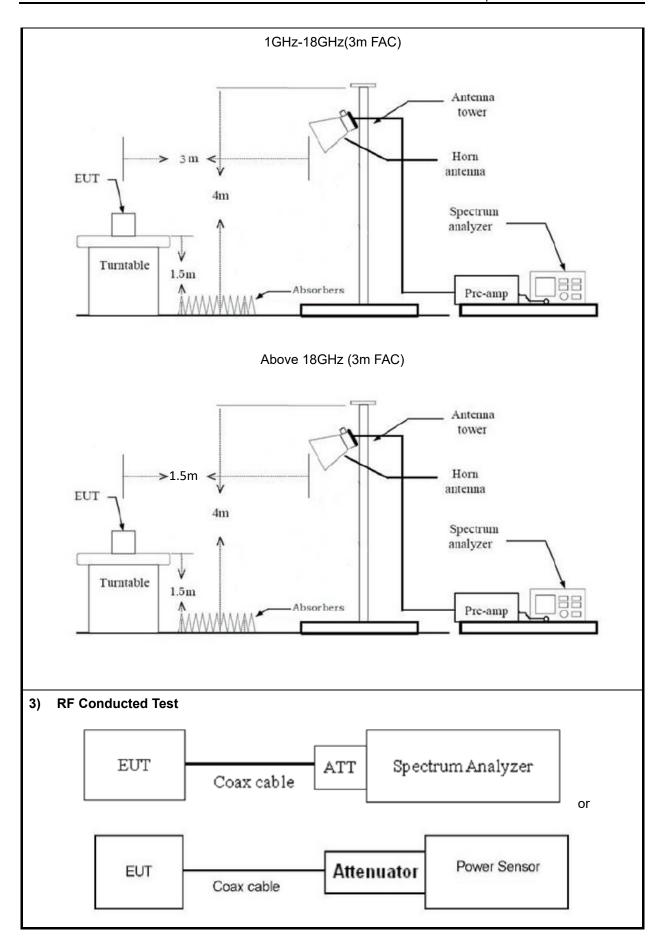
Report Template: TR-4-E-006/V1 Page 6 of 39

2.3 Test Setup


1) Conducted emission measurement:



Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.


2) Radiated emission measurement:

Below 30MHz (3m SAC)

2.4 Test Procedure

Conducted emission:

- 1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
- Both sides of A.C. line are checked for maximum conducted interference. In order to find the
 maximum emission, the relative positions of equipment and all of the interface cables must be
 changed according to ANSI C63.10 on conducted measurement.
- 3. Line conducted data is recorded for both Line and Neutral

Radiated Emission Procedure:

a) For below 30MHz

- 1. All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz- 30 MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (test distance / specification distance).
- 2. Loop antenna use, investigation was done on the three antenna orientations (parallel, perpendicular, gound-parallel)

b) For 30MHz-1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.

c) For above 1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m (1-18GHz) and 1.5m (above 18GHz).
- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
- 4. Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

RF Conducted Test:

1. The antenna port of EUT was connected to the RF port of the test equipment (Power Meter or

Report Template: TR-4-E-006/V1 Page 9 of 39

Spectrum analyzer) through Attenuator and RF cable.

- 2. The cable assembly insertion loss of 11dB (including 10 dB Attenuator and 1.0 dB cable) was entered as an offset in the power meter. Note: Actual cable loss was unavailable at the time of testing, therefore a loss of 1.0dB was assumed as worst case. This was later verified to be true by laboratory. (if the RF cable provided by client, the cable loss declared by client)
- 3. The EUT is keeping in continuous transmission mode and tested in all modulation modes.

2.5 Measurement Method

Description of Test	Measurement Method
AC Line Conducted Emissions	ANSI C63.10-2020 Section 6.2
Maximum Conducted Output Power	ANSI C63.10-2020 Section 7.8.5
20 dB Emission Bandwidth	ANSI C63.10-2020 Section 6.9.2
99% Occupied Bandwidth	ANSI C63.10-2020 Section 6.9.3
Channel separation	ANSI C63.10-2020 Section 7.8.2
Number of hopping Frequency	ANSI C63.10-2020 Section 7.8.3
Time of occupancy (dwell time)	ANSI C63.10-2020 Section 7.8.4
100kHz Bandwidth of Frequency Band Edge	ANSI C63.10-2020 Section 7.8.7.2&6.10
Radiated emission	ANSI C63.10-2020 Section 7.8&6.3&6.4&6.5&6.6

Report Template: TR-4-E-006/V1 Page 10 of 39

2.6 Measurement Equipment

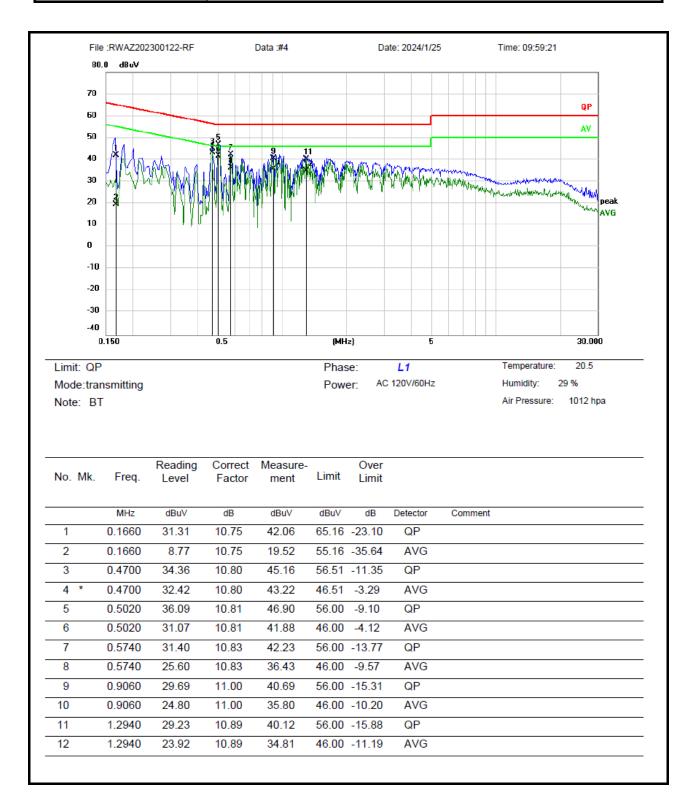
Manufacturer	Description	Model	Management No.	Calibration Date	Calibration Due Date	
	AC I	ine Conducted Em	nission Test			
ROHDE& SCHWARZ	EMI TEST RECEIVER	ESR	101817	2023/7/3	2024/7/2	
R&S	LISN	ENV216	101748	2023/8/1	2024/7/30	
N/A	Coaxial Cable	NO.12	N/A	2023/7/3	2024/7/2	
Farad	Test Software	EZ-EMC	Ver. EMEC-3A1	/	/	
	I	Radiated Emissio	n Test		T	
R&S	EMI test receiver	ESR3	102758	2023/7/3	2024/7/2	
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40-N	101608	2023/7/3	2024/7/2	
SONOMA INSTRUMENT	Low frequency amplifier	310	186014	2023/7/12	2024/7/11	
COM-POWER	preamplifier	PAM-118A	18040152	2023/8/21	2024/8/20	
COM-POWER	Amplifier	PAM-840A	461306	2023/8/8	2024/8/7	
ETS	Passive Loop Antenna	6512	29604	2023/7/7	2024/7/6	
SCHWARZBECK	Log - periodic wideband antenna	VULB 9163	9163-872	2023/7/7	2024/7/6	
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2024/7/5	
Ducommun technologies	Horn Antenna	ARH-4223-02	1007726-03	2023/7/10	2024/7/9	
Ducommun technologies	Horn Antenna	ARH-2823-02	1007726-03	2023/7/10	2024/7/9	
Oulitong	Band Reject Filter	OBSF-2400-248 3.5-50N	OE02103119	2023/9/15	2024/9/14	
Oulitong	Band Reject Filter	OBSF-5150-585 0-S	OE02104371	2023/9/15	2024/9/14	
N/A	Coaxial Cable	N/A	NO.9	2023/8/8	2024/8/7	
N/A	Coaxial Cable	N/A	NO.10	2023/8/8	2024/8/7	
N/A	Coaxial Cable	N/A	NO.11	2023/8/8	2024/8/7	
Audix	Test Software	E3	191218 V9	/	/	
	RF Conducted Test					
R&S	Spectrum Analyzer	FSU	200982	2023/10/25	2024/10/24	
ANRITSU	USB Power Sensor	MA24418A	12620	2023/7/12	2024/7/11	
MARCONI	10dB Attenuator	1692595	2942	2023/10/25	2024/10/24	

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.

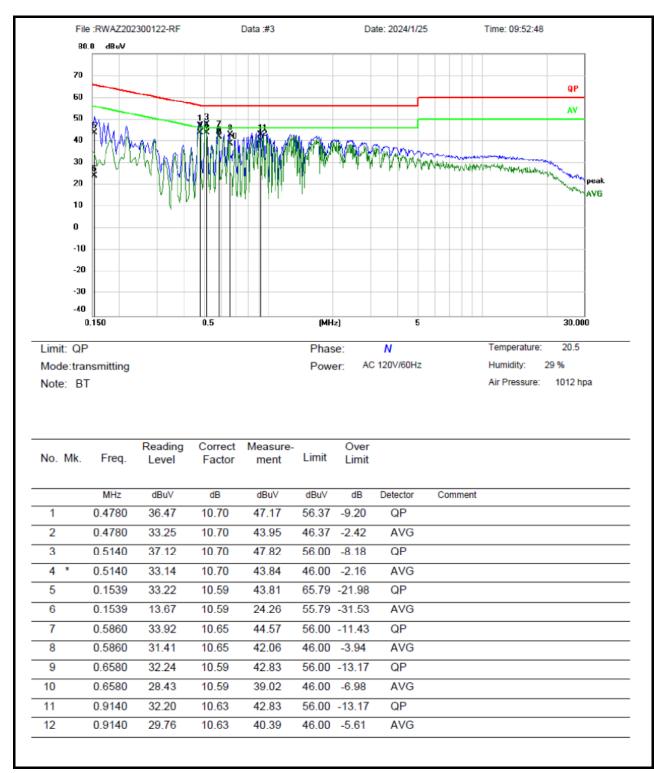
3 Test Results

3.1 Test Summary

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.247 (a)(1)	20dB Emission Bandwidth	Compliance
-	99% Occupied Bandwidth	Compliance
§15.247 (a)(1)	Channel separation	Compliance
§15.247 (a)(1)(iii)	Number of hopping Frequency	Compliance
§15.247 (a)(1)(iii)	Time of occupancy (dwell time)	Compliance
§15.247(b)(1)	Maximum Conducted Output Power	Compliance
§15.247(d)	100kHz Bandwidth of Frequency Band Edge	Compliance
§15.205, §15.209, §15.247(d)	Radiated emission	Compliance

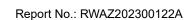

3.2 Limit

Test items	Limit
AC Line Conducted Emissions	See details §15.207 (a)
Conducted Output Power	For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.
Channel separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Number of hopping Frequency	Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.
Time of occupancy (dwell time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Spurious Emissions, 100kHz Bandwidth of Frequency Band Edge	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).



3.3 AC Line Conducted Emissions Test Data

Test Date:	2024-1-25	Test By:	Lirou Li
Environment condition:	Temperature: 20.5°C; Relative	Humidity:29%; ATM Pr	essure: 101.2kPa



Remark:

Measurement (dBuV)= Reading Level (dBuV) + Correct Factor(dB)

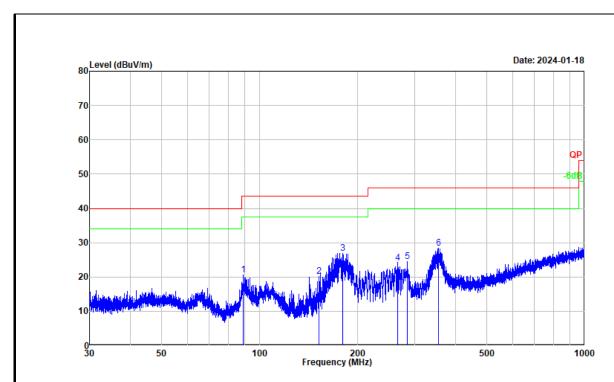
Correct Factor(dB)= LISN Voltage Division Factor (dB)+ Cable loss(dB)

Over = Measurement - Limit

3.4 Radiated emission Test Data

9 kHz-30MHz:

Test Date:	2024-01-18	Test By:	Bard Huang
Environment condition:	Temperature: 23.5°C; Relative	Humidity:57%; ATM Pr	essure: 101.2kPa

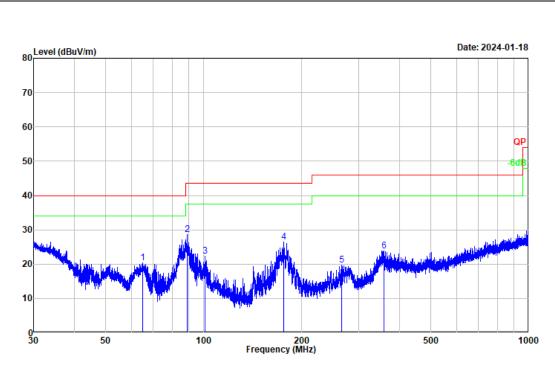

For radiated emissions below 30MHz, there were no emissions found within 20dB of limit.

Report Template: TR-4-E-006/V1 Page 16 of 39

30MHz-1GHz:

Test Date:	2024-01-18	Test By:	Bard Huang
Environment condition:	Temperature: 23.5°C; Relative	Humidity:57%; ATM Pr	essure: 101.2kPa

Project No. : RWAZ202300122-RF Test Mode : Transmitting Test Voltage : AC 120V/60Hz


Environment : $23.5\,^{\circ}$ C/57%R.H./101.2kPa Tested by : Bard Huang

Tested by : Bard Huang Polarization : horizontal Remark : BT

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	89.120	36.46	-15.96	20.50	43.50	-23.00	Peak
2	152.263	37.46	-17.34	20.12	43.50	-23.38	Peak
3	180.491	42.58	-15.66	26.92	43.50	-16.58	Peak
4	265.559	36.11	-12.12	23.99	46.00	-22.01	Peak
5	285.102	36.25	-11.72	24.53	46.00	-21.47	Peak
6	354.338	38.11	-9.63	28.48	46.00	-17.52	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Project No. : RWAZ202300122-RF Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : 23.5℃/57%R.H./101.2kPa

Tested by : Bard Huang Polarization : vertical Remark : BT

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	65.114	34.78	-14.45	20.33	40.00	-19.67	Peak	
2	89.081	44.53	-15.98	28.55	43.50	-14.95	Peak	
3	101.200	36.58	-14.17	22.41	43.50	-21.09	Peak	
4	176.114	42.56	-16.02	26.54	43.50	-16.96	Peak	
5	265.327	31.77	-12.12	19.65	46.00	-26.35	Peak	
6	359.029	33.37	-9.58	23.79	46.00	-22.21	Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Remark:

Level = Reading + Factor

Factor = Antenna factor + Cable loss – Amplifier gain

Over Limit = Level – Limit

Above 1GHz:

Test Date:	2024-01-18	Test By:	Bard Huang
Environment condition:	Temperature: 23.5°C; Relative	Humidity:57%; ATM Pr	essure: 101.2kPa

Frequency (MHz)	Reading level (dBµV)	Polar	Corrected Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark				
GFSK											
Low Channel											
2389.076	48.96	Horizontal	8.25	57.21	74	-16.79	Peak				
2389.076	39.07	Horizontal	8.25	47.32	54	-6.68	Average				
2387.124	50.16	Vertical	8.25	58.41	74	-15.59	Peak				
2387.124	38.63	Vertical	8.25	46.88	54	-7.12	Average				
4804	60.36	Horizontal	0.21	60.57	74	-13.43	Peak				
4804	51.03	Horizontal	0.21	51.24	54	-2.76	Average				
4804	60.39	Vertical	0.21	60.60	74	-13.40	Peak				
4804	51.30	Vertical	0.21	51.51	54	-2.49	Average				
			Middle C	hannel			_				
4882	51.46	Horizontal	0.45	51.91	74	-22.09	Peak				
4882	40.59	Horizontal	0.45	41.04	54	-12.96	Average				
4882	52.07	Vertical	0.45	52.52	74	-21.48	Peak				
4882	41.02	Vertical	0.45	41.47	54	-12.53	Average				
			High Ch	annel							
2484.081	60.36	Horizontal	8.25	68.61	74	-5.39	Peak				
2484.081	39.17	Horizontal	8.25	47.42	54	-6.58	Average				
2483.762	61.72	Vertical	8.25	69.97	74	-4.03	Peak				
2483.762	39.14	Vertical	8.25	47.39	54	-6.61	Average				
4960	52.53	Horizontal	0.93	53.46	74	-20.54	Peak				
4960	42.20	Horizontal	0.93	43.13	54	-10.87	Average				
4960	52.97	Vertical	0.93	53.90	74	-20.10	Peak				
4960	42.62	Vertical	0.93	43.55	54	-10.45	Average				
			π/4 DQ	PSK							
			Low Ch	annel							
2388.127	48.43	Horizontal	8.25	56.68	74	-17.32	Peak				
2388.127	39.80	Horizontal	8.25	48.05	54	-5.95	Average				
2388.073	48.65	Vertical	8.25	56.9	74	-17.10	Peak				
2388.073	38.59	Vertical	8.25	46.84	54	-7.16	Average				
4804	50.44	Horizontal	0.21	50.65	74	-23.35	Peak				

Report Template: TR-4-E-006/V1 Page 19 of 39

4804	38.72	Horizontal	0.21	38.93	54	-15.07	Average					
4804	50.79	Vertical	0.21	51.00	74	-23.00	Peak					
4804	38.17	Vertical	0.21	38.38	54	-15.62	Average					
	Middle Channel											
4882	50.99	Horizontal	0.45	51.44	74	-22.56	Peak					
4882	38.50	Horizontal	0.45	38.95	54	-15.05	Average					
4882	51.39	Vertical	0.45	51.84	74	-22.16	Peak					
4882	38.93	Vertical	0.45	39.38	54	-14.62	Average					
			High Ch	annel								
2483.887	57.44	Horizontal	8.25	65.69	74	-8.31	Peak					
2483.887	39.31	Horizontal	8.25	47.56	54	-6.44	Average					
2483.531	62.44	Vertical	8.25	70.69	74	-3.31	Peak					
2483.531	39.12	Vertical	8.25	47.37	54	-6.63	Average					
4960	52.22	Horizontal	0.93	53.15	74	-20.85	Peak					
4960	38.99	Horizontal	0.93	39.92	54	-14.08	Average					
4960	52.56	Vertical	0.93	53.49	74	-20.51	Peak					
4960	39.41	Vertical	0.93	40.34	54	-13.66	Average					
		<u>.</u>	8DPS	SK								
			Low Ch	annel								
2389.145	48.45	Horizontal	8.25	56.70	74	-17.30	Peak					
2389.145	40.12	Horizontal	8.25	48.37	54	-5.63	Average					
2388.485	49.58	Vertical	8.25	57.83	74	-16.17	Peak					
2388.485	38.51	Vertical	8.25	46.76	54	-7.24	Average					
4804	50.49	Horizontal	0.21	50.70	74	-23.30	Peak					
4804	38.60	Horizontal	0.21	38.81	54	-15.19	Average					
4804	50.75	Vertical	0.21	50.96	74	-23.04	Peak					
4804	38.92	Vertical	0.21	39.13	54	-14.87	Average					
			Middle C	hannel								
4882	50.82	Horizontal	0.45	51.27	74	-22.73	Peak					
4882	38.43	Horizontal	0.45	38.88	54	-15.12	Average					
4882	51.17	Vertical	0.45	51.62	74	-22.38	Peak					
4882	38.95	Vertical	0.45	39.40	54	-14.60	Average					
	•	•	High Ch	annel	•	•	•					
2484.175	58.31	Horizontal	8.25	66.56	74	-7.44	Peak					
2484.175	39.67	Horizontal	8.25	47.92	54	-6.08	Average					
2483.65	62.09	Vertical	8.25	70.34	74	-3.66	Peak					
2483.65	43.12	Vertical	8.25	51.37	54	-2.63	Average					
4960	51.78	Horizontal	0.93	52.71	74	-21.29	Peak					
					i .	1						

Report No.: RWAZ202300122A

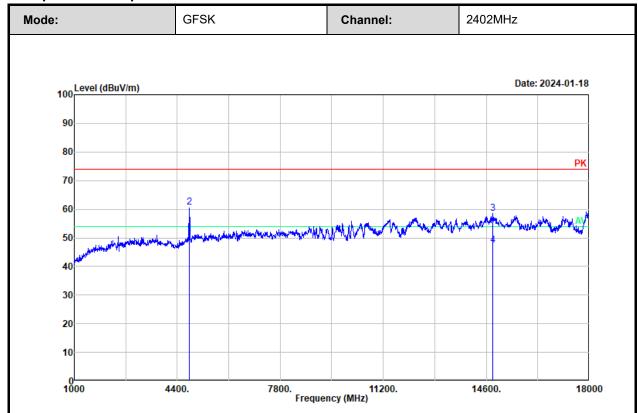
4960	39.10	Horizontal	0.93	40.03	54	-13.97	Average
4960	52.02	Vertical	0.93	52.95	74	-21.05	Peak
4960	39.59	Vertical	0.93	40.52	54	-13.48	Average

Remark:

Corrected Amplitude= Reading level + corrected Factor

Corrected Factor = Antenna factor + Cable loss – Amplifier gain

Margin = Corrected Amplitude – Limit

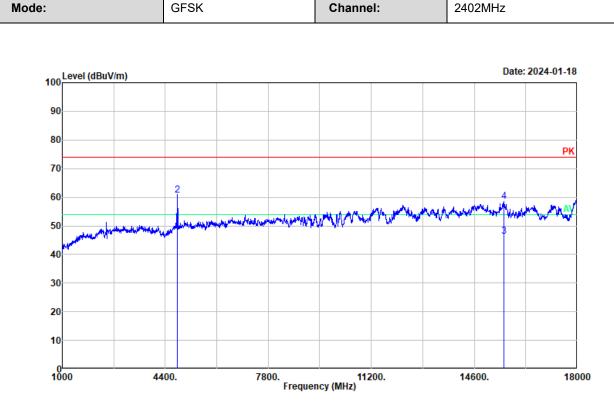

The emission levels of other frequencies that were lower than the limit 20dB, not show in test report.

For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.

Report Template: TR-4-E-006/V1 Page 21 of 39

Test plot for example as below:

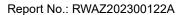
Project No. : RWAZ202300122-RF Test Mode : Transmitting Test Voltage : Power By Battery


Environment : 23.5℃/57%R.H./101.2kPa

Tested by : Bard Huang
Polarization : horizontal
Remark : GFSK low channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	4804.000	51.03	0.21	51.24	54.00	-2.76	Average
2	4804.000	60.36	0.21	60.57	74.00	-13.43	Peak
3	14810.910	49.47	9.11	58.58	74.00	-15.42	Peak
4	14810.910	38.42	9.11	47.53	54.00	-6.47	Average

Remarks: Factor = Antenna factor + Cable loss - Preamp gain


Project No. : RWAZ202300122-RF
Test Mode : Transmitting
Test Voltage : Power By Battery
Environment : 23.5℃/57%R.H./101.2kPa

Tested by : Bard Huang Polarization : vertical

Remark : GFSK low channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	4804.000	51.30	0.21	51.51	54.00	-2.49	Average
2	4804.000	60.39	0.21	60.60	74.00	-13.40	Peak
3	15584.790	38.29	8.10	46.39	54.00	-7.61	Average
4	15584.790	50.33	8.10	58.43	74.00	-15.57	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

3.5 RF Conducted Test Data

Test Date:	2024-01-20~2024-01-21	Test By:	Ryan Zhang
Environment condition:	Temperature: 23.9~24.5°C; Relative Humidity:55~68%; ATM Pressure:99~102.1kPa		

3.5.1 20 dB Emission Bandwidth and 99% Occupied Bandwidth

Test Mode	Channel	20dB BW [MHz]	99% OBW[MHz]
	2402	0.808	0.760
GFSK	2441	0.808	0.756
	2480	0.808	0.760
π/4 DQPSK	2402	1.232	1.152
	2441	1.232	1.148
	2480	1.236	1.148
8DPSK	2402	1.252	1.148
	2441	1.252	1.152
	2480	1.252	1.152

3.5.2 Maximum Conducted Peak Output Power

Test Mode	Channel[MHz]	Result[dBm]	Limit[dBm]	Verdict
	2402	1.88	21	Pass
GFSK	2441	1.89	21	Pass
	2480	1.72	21	Pass
π/4 DQPSK	2402	1.30	21	Pass
	2441	1.33	21	Pass
	2480	1.07	21	Pass
8DPSK	2402	1.28	21	Pass
	2441	1.34	21	Pass
	2480	1.08	21	Pass

Report Template: TR-4-E-006/V1 Page 24 of 39

3.5.3 Channel separation

Test Mode	Channel[MHz]	Result[MHz]	Limit[MHz]	Verdict
	2402	0.996	0.539	Pass
GFSK	2441	1.002	0.539	Pass
	2480	1.002	0.539	Pass
π/4 DQPSK	2402	1.002	0.821	Pass
	2441	1.002	0.821	Pass
	2480	1.008	0.824	Pass
	2402	1.002	0.835	Pass
8DPSK	2441	1.002	0.835	Pass
	2480	1.008	0.835	Pass

Note: Limit \(\frac{2}{3} \) *20dB BW

3.5.4 Number of hopping Frequency

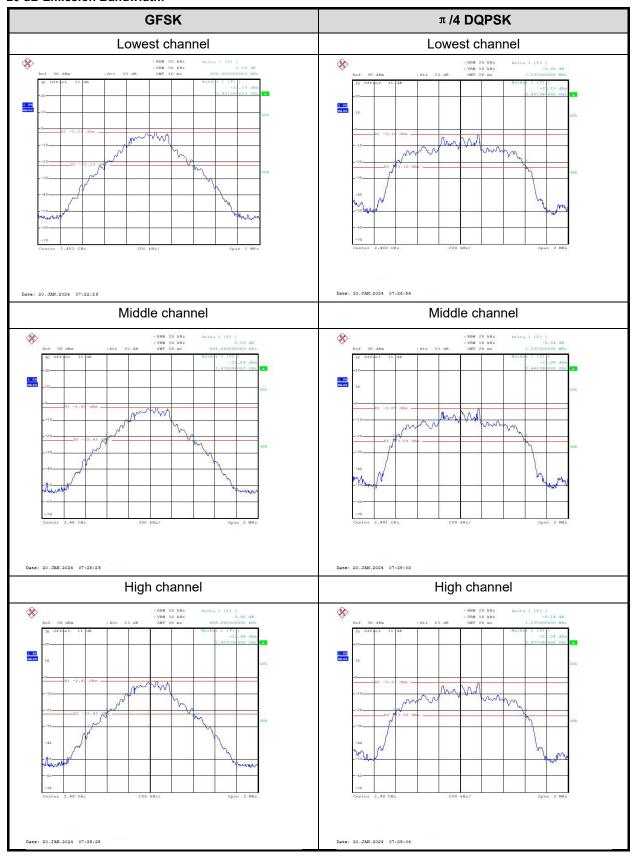
Test Mode	Frequency Range [MHz]	Number of hopping Frequency	Limit	Verdict
GFSK	2400-2483.5	79	≥15	Pass
π/4 DQPSK	2400-2483.5	79	≥15	Pass
8DPSK	2400-2483.5	79	≥15	Pass

3.5.5 Time of occupancy (dwell time)

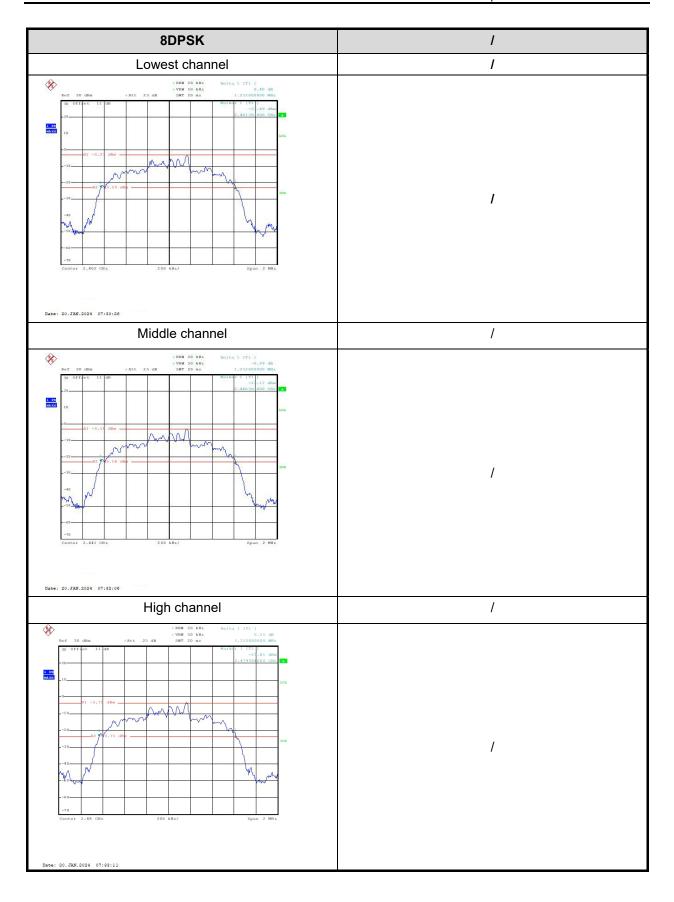
Test Mode	Packet Type	Channel[MHz]	Pulse Time [ms]	Result[s]	Limit[s]	Verdict
	DH1	2402	0.375	0.120	0.400	Pass
GFSK	DH3	2441	1.632	0.261	0.400	Pass
	DH5	2480	2.900	0.309	0.400	Pass
	2DH1	2402	0.384	0.123	0.400	Pass
π/4 DQPSK	2DH3	2441	1.638	0.262	0.400	Pass
	2DH5	2480	2.900	0.309	0.400	Pass
	3DH1	2402	0.384	0.123	0.400	Pass
8DPSK	3DH3	2441	1.638	0.262	0.400	Pass
	3DH5	2480	2.905	0.310	0.400	Pass

Note:

DH1: Dwell time=Pulse time (ms) *(1600/2/79)*31.6s DH3: Dwell time=Pulse time (ms) *(1600/4/79)*31.6s DH5: Dwell time=Pulse time (ms) *(1600/6/79)*31.6s

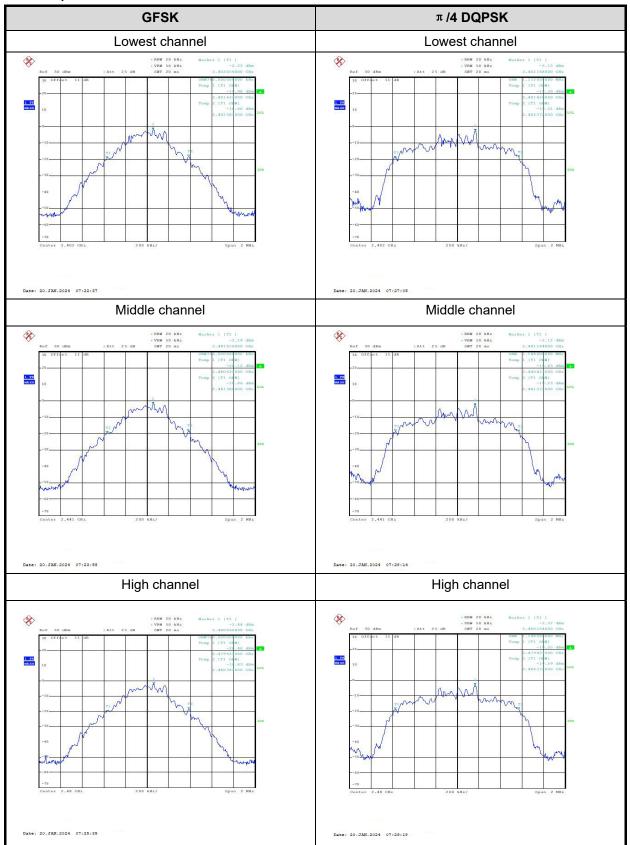

3.5.6 100 kHz Bandwidth of Frequency Band Edge

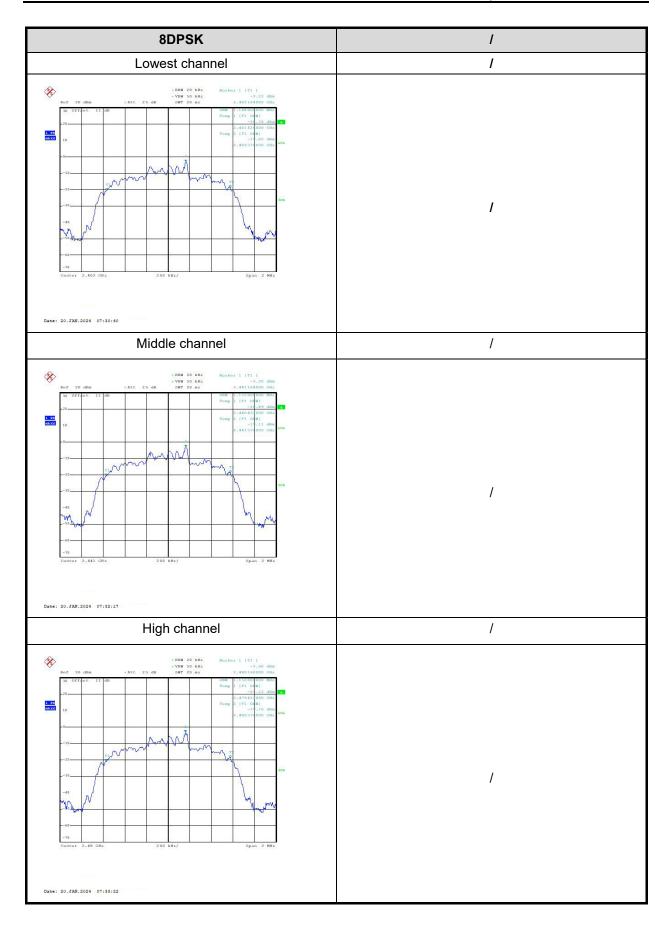
Test Mode	Channel	Result	Limit	Verdict
GFSK	2402	Refer test plot	Refer test plot	Pass
	2480	Refer test plot	Refer test plot	Pass
π/4 DQPSK	2402	Refer test plot	Refer test plot	Pass
	2480	Refer test plot	Refer test plot	Pass
8DPSK	2402	Refer test plot	Refer test plot	Pass
	2480	Refer test plot	Refer test plot	Pass



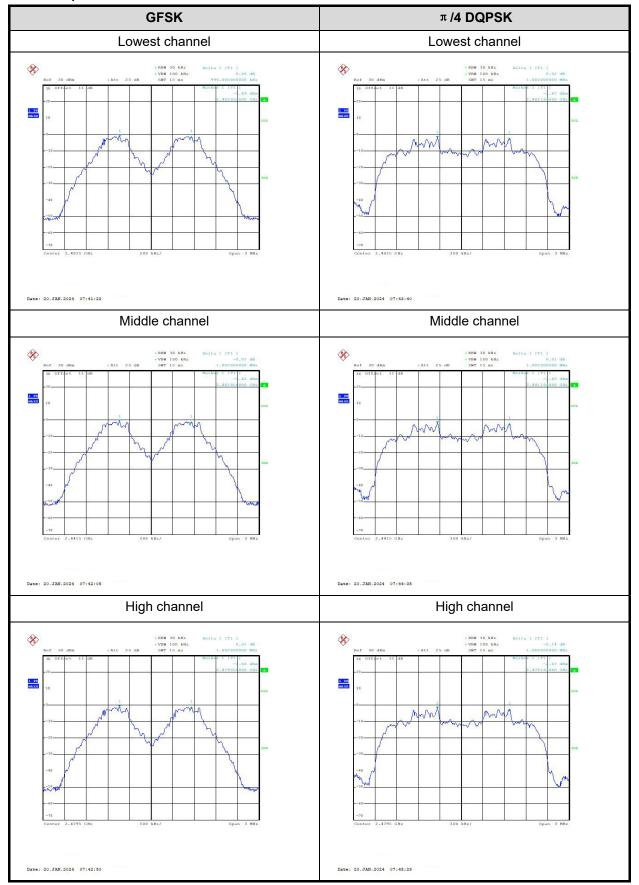
Test Plots:

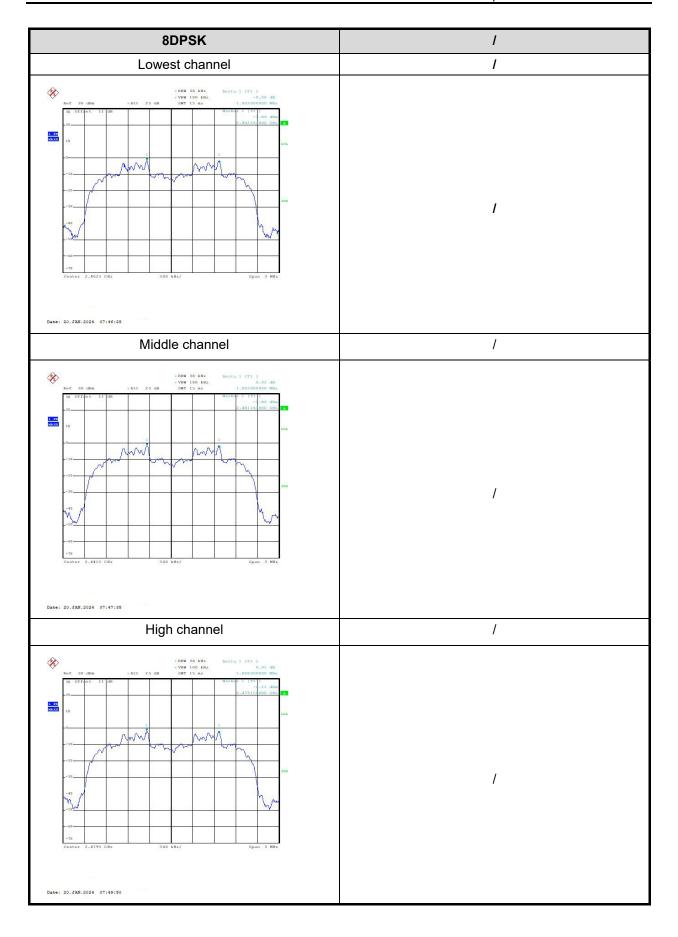
20 dB Emission Bandwidth:



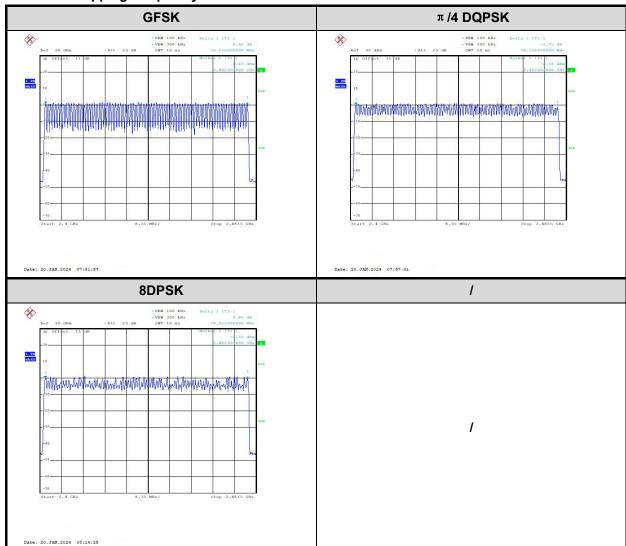


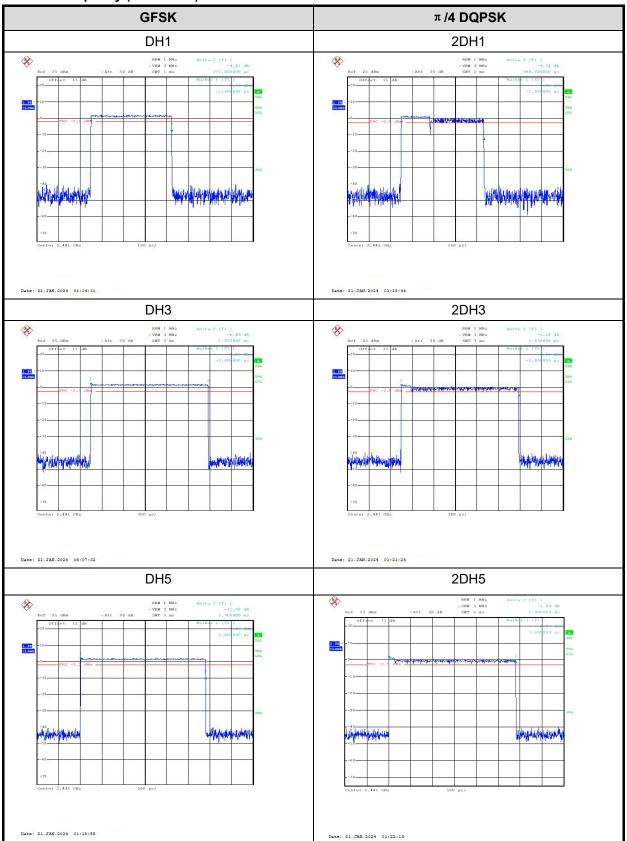
99% Occupied Bandwidth:



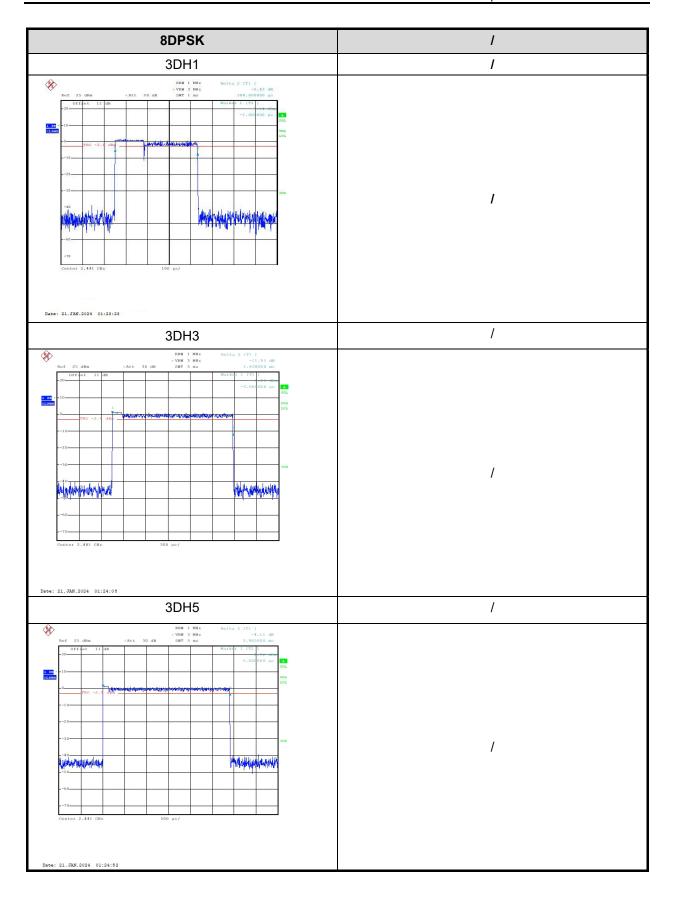


Channel separation:

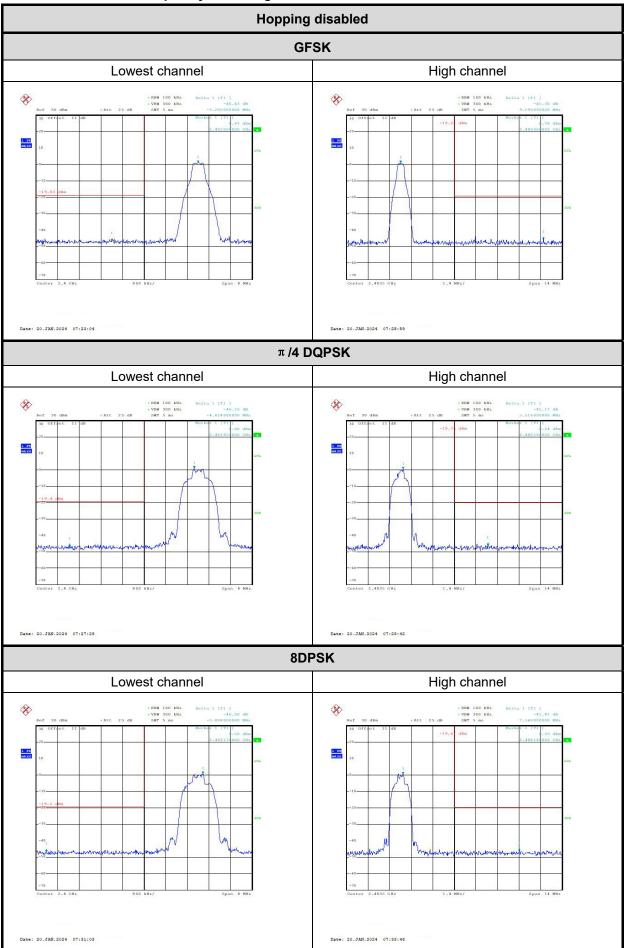


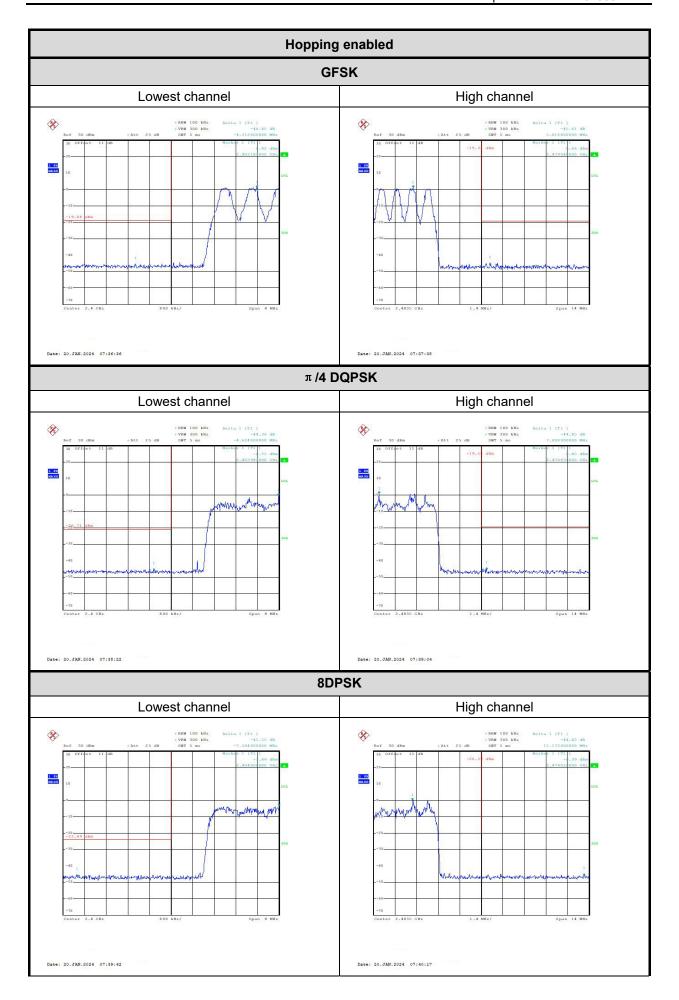


Number of hopping Frequency



Time of occupancy (dwell time)





100kHz Bandwidth of Frequency Band Edge:

4 Test Setup Photo

Please refer to the attachment RWAZ202300122 Test Setup photo.

5 E.U.T Photo

Please refer to the attachment RWAZ202300122 External photo and RWAZ202300122 Internal photo.

---End of Report---