



# **TEST REPORT**

### Applicant: Shenzhen Youmi Intelligent Technology Co., Ltd

Address: 406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China

FCC ID: 2ATZ4-A15UPG IC: 26074-A15UPG HVIN: HCT-V9000MB-A

**Product Name: Smart phone** 

Standard(s): 47 CFR Part 2, 47 CFR Part 22, Subpart H 47 CFR Part 27 RSS-132 Issue 4, January 31, 2023 RSS-139 Issue 4, September 29, 2022 RSS-Gen, Issue 5, February 2021 Amendment 2 ANSI C63.26-2015

The above equipment has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

| Report Number:<br>Date Of Issue: |                             | 0G        |
|----------------------------------|-----------------------------|-----------|
| <b>Reviewed By:</b>              | Julie Tan                   | Julie Tan |
| Title:                           | RF Engineer                 | Julie Min |
| Approved By:<br>Title:           | <b>Sun Zhong</b><br>Manager | Sun 2hong |

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

#### **Test Facility**

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123.

#### Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol " $\blacktriangle$ ". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " $\star$ ".

## CONTENTS

| DECLARATIONS       2         DOCUMENT REVISION HISTORY       5         1. GENERAL INFORMATION       6         1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)       6         1.2 DESCRIPTION OF TEST CONFIGURATION       7         1.2.2 Support Equipment List and Details       7         1.2.3 Support Cable List and Details       7         1.2.4 Block Diagram of Test Setup       7         1.3 MEASUREMENT UNCERTAINTY       8         2. SUMMARY OF TEST RESULTS       9         3. REQUIREMENTS AND TEST PROCEDURES       10         3.1 APPLICABLE STANDARD FOR PART 22 SUBPART H:       10 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. GENERAL INFORMATION       6         1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)       6         1.2 DESCRIPTION OF TEST CONFIGURATION       7         1.2.2 Support Equipment List and Details       7         1.2.3 Support Cable List and Details       7         1.2.4 Block Diagram of Test Setup       7         1.3 MEASUREMENT UNCERTAINTY       8         2. SUMMARY OF TEST RESULTS       9         3. REQUIREMENTS AND TEST PROCEDURES       10                                                                                                                                        |
| 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)       6         1.2 DESCRIPTION OF TEST CONFIGURATION.       7         1.2.2 Support Equipment List and Details       7         1.2.3 Support Cable List and Details       7         1.2.4 Block Diagram of Test Setup       7         1.3 MEASUREMENT UNCERTAINTY       8         2. SUMMARY OF TEST RESULTS       9         3. REQUIREMENTS AND TEST PROCEDURES       10                                                                                                                                                                              |
| 1.2 DESCRIPTION OF TEST CONFIGURATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.2.2 Support Equipment List and Details       7         1.2.3 Support Cable List and Details       7         1.2.4 Block Diagram of Test Setup       7         1.3 MEASUREMENT UNCERTAINTY       8         2. SUMMARY OF TEST RESULTS       9         3. REQUIREMENTS AND TEST PROCEDURES       10                                                                                                                                                                                                                                                                                                            |
| 1.2.3 Support Cable List and Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3. REQUIREMENTS AND TEST PROCEDURES10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.1. Δρρί ιζαρί ε Standard For Part 22 Surpart H· 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.1 M I LICADLE STANDARD FOR I ART 22 SUDI ART II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.1.1 RF Output Power10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.1.2 Spurious Emissions    10      3.1.3 Frequency stability    10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.2 APPLICABLE STANDARD FOR PART 27:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.2.1 RF Output Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.2.2 Spurious Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.2.3 Frequency stability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.3.1 Frequency Sub-bands15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.3.1.1 Applicable Standard15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.3.1.2 Judgment       15         3.3.2 Types of Modulation       15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.3.2.1 Applicable Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.3.2.2 Judgment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.3.3 Frequency stability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.3.4 Transmitter output power and effective radiated power (e.r.p.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.3.4.1 Applicable Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.3.5 Transmitter unwanted emissions       16         3.3.5.1 Applicable Standard       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.4 APPLICABLE STANDARD FOR RSS-139 ISSUE 4 SEPTEMBER 29, 2022:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.4.1 Band plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.4.1.1 Applicable Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.4.1.2 Judgment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.4.2 Types of Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.4.2.2 Judgment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 3.4.3 Frequency stability                                                      |    |
|--------------------------------------------------------------------------------|----|
| 3.4.3.1 Applicable Standard                                                    |    |
| 3.4.4 Transmitter Output Power                                                 |    |
| 3.4.4.1 Applicable Standard                                                    |    |
| 3.4.5 Transmitter unwanted emissions                                           | 20 |
| 3.4.5.1 Applicable Standard                                                    | 20 |
| 3.4.6 Additional requirements for subscriber equipment                         | 20 |
| 3.4.6.1 Applicable Standard                                                    | 20 |
| 3.4.6.2 Judgment                                                               | 20 |
| 3.5 TEST METHOD:                                                               | 21 |
|                                                                                |    |
| 3.5.1 Transmitter output power, e.r.p. and e.i.r.p.                            |    |
| Test Setup Block:                                                              |    |
| 3.5.2 Occupied Bandwidth                                                       |    |
| Test Setup Block:                                                              |    |
|                                                                                |    |
| Test Setup Block:<br>3.5.4 Transmitter unwanted emissions-Out of band emission |    |
| Test Setup Block:                                                              |    |
|                                                                                |    |
| 3.5.5 Frequency stability<br>Test Setup Block:                                 |    |
| 3.5.6 Transmitter unwanted emissions- Radiated Spurious emissions              |    |
|                                                                                |    |
| 4. Test DATA AND RESULTS                                                       |    |
| 4.1 ANTENNA PORT TEST DATA AND RESULTS FOR 5G_NR_DC_2A_N5A:                    |    |
| 4.2 ANTENNA PORT TEST DATA AND RESULTS FOR 5GNR N66                            | 29 |
| 4.3 RADIATED SPURIOUS EMISSIONS                                                |    |
| 5. EUT PHOTOGRAPHS                                                             |    |
| 6. TEST SETUP PHOTOGRAPHS                                                      |    |

### **DOCUMENT REVISION HISTORY**

| Revision Number | Report Number   | Description of Revision | Date of<br>Revision |
|-----------------|-----------------|-------------------------|---------------------|
| 1.0             | CR230745207-00G | Original Report         | 20239/18            |

### **1. GENERAL INFORMATION**

#### **1.1 Product Description for Equipment under Test (EUT)**

| EUT Name:                                                         | Smart phone                                                                                        |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| EUT Model:                                                        | MP32                                                                                               |  |
| <b>Operation Bands and modes:</b>                                 | 5G NR Band: DC_2A_n5A / SA n66                                                                     |  |
| Modulation Type:                                                  | 5G NR:<br>DFT-s-OFDM: PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM<br>CP-OFDM: QPSK, 16QAM, 64QAM, 256QAM |  |
| Rated Input Voltage:                                              | DC 3.85V from battery or DC 5V from adapter                                                        |  |
| Serial Number:                                                    | RE:29L3-4<br>RF 29L3-1                                                                             |  |
| EUT Received Date:                                                | 2023/8/14                                                                                          |  |
| EUT Received Status:                                              | Good                                                                                               |  |
| Note:5G NR bands supports SA Band 66 and NSA DC_2A_n5A mode only. |                                                                                                    |  |

#### **Operation Voltage(V**<sub>DC</sub>) ▲:

| Lowest: | 3.2 | Normal: | 3.87 | Highest: | 4.45 |
|---------|-----|---------|------|----------|------|
|---------|-----|---------|------|----------|------|

#### **Transmission Antenna Information**▲:

| Antenna | Antenna<br>Manufacturer | Antenna<br>Type | Operation<br>Bands | Antenna<br>Frequency<br>Range<br>(MHz) | Antenna<br>Gain<br>(GT)<br>(dBi) | Lc<br>(dB) |
|---------|-------------------------|-----------------|--------------------|----------------------------------------|----------------------------------|------------|
| ANT3    | ANWEI commnuication     |                 | N66                | 1710-1780                              | 1.08                             | N/A        |
| ANT0    | Equipment<br>Co.,Ltd    | FPC             | N5                 | 824-849                                | -4.65                            | 0.5        |
| NT. 4   |                         |                 |                    |                                        |                                  |            |

Note:

Lc= Signal Attenuation in the connecting cable between the transmitter and antenna, in dB.

GSM 850/ WCDMA Band 5/ LTE Band 5/ LTE Band 12/ LTE Band 13/5G NR n5 transmitted at antenna 0.

PCS 1900/ WCDMA Band 2/ LTE Band 2/5G NR n66 transmitted at antenna 3.

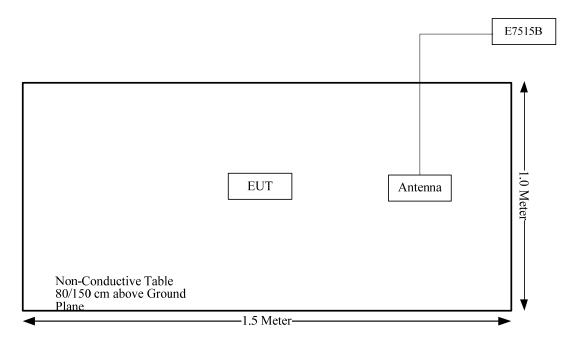
#### **Accessory Information:**

| Accessory<br>Description | Manufacturer                           | Model       | Parameters                                                                                                                                                           |
|--------------------------|----------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adapter                  | Shenzhen Hujian Electronics<br>Co.,Ltd | HJ-PD66W-US | Input: 100-240V~50/60Hz, 1.5A<br>Output: 5.0V, 3A 15.0W; 9.0V<br>3.0A 27.0W;<br>12.0V 3.0A 36.0W;<br>15.0V 3.0A 45.0W;<br>20.0V 3.25A 65.0W;<br>11.0V 6.0A 66.0W MAX |

### **1.2 Description of Test Configuration**

#### **1.2.1 EUT Operation Condition:**

| EUT Operation Mode:                                                          | The system was configured for testing in each operation mode. |  |
|------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| Equipment Modifications: No                                                  |                                                               |  |
| EUT Exercise Software:                                                       | No                                                            |  |
| The maximum power was configured per 3GPP Standard for each operation modes. |                                                               |  |


#### **1.2.2 Support Equipment List and Details**

| Manufacturer | Description                      | Model   | Serial Number |
|--------------|----------------------------------|---------|---------------|
| Keysight     | UXM 5G Wireless<br>Test Platform | E7515B  | MY58120285    |
| Unknown      | ANTENNA                          | Unknown | Unknown       |

#### 1.2.3 Support Cable List and Details

| Cable Description | Shielding<br>Type | Ferrite Core | Length<br>(m) | From Port | То |
|-------------------|-------------------|--------------|---------------|-----------|----|
| /                 | /                 | /            | /             | /         | /  |

#### 1.2.4 Block Diagram of Test Setup



#### **1.3 Measurement Uncertainty**

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

| Parameter                         | Measurement Uncertainty                                  |
|-----------------------------------|----------------------------------------------------------|
| Occupied Channel Bandwidth        | $\pm 5\%$                                                |
| RF output power, conducted        | ±0.61dB                                                  |
| Power Spectral Density, conducted | ±0.61 dB                                                 |
| Unwanted Emissions, radiated      | 30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB, |
|                                   | 6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB    |
| Unwanted Emissions, conducted     | ±1.26 dB                                                 |
| Temperature                       | $\pm 1$ °C                                               |
| Humidity                          | $\pm 5\%$                                                |
| DC and low frequency voltages     | $\pm 0.4\%$                                              |
| Duty Cycle                        | 1%                                                       |
| RF Frequency                      | $\pm 0.082 	imes 10^{-6}$                                |

### 2. SUMMARY OF TEST RESULTS

| Cellular Band: DC_2A_n5A: |                        |                                                                         |           |         |  |
|---------------------------|------------------------|-------------------------------------------------------------------------|-----------|---------|--|
| FCC Standard<br>Rule(s)   | ISEDC Standard Rule(s) | Description of Test                                                     | Result    | Section |  |
| /                         | RSS-132 Clause 5.1     | Frequency Sub-bands                                                     | Compliant | 3.3.1.2 |  |
| /                         | RSS-132 Clause 5.2     | Types of Modulation                                                     | Compliant | 3.3.2.2 |  |
| § 2.1055, § 22.355        | RSS-132 Clause 5.3     | Frequency stability                                                     | Compliant | 4.1     |  |
| §2.1046;§ 22.913          | RSS-132 Clause 5.4     | Transmitter output<br>power and effective<br>radiated power<br>(e.r.p.) | Compliant | 4.1     |  |
| § 2.1051,§ 22.917 (a)     | RSS-132 Clause 5.5     | Transmitter unwanted<br>emissions-<br>at Antenna Terminal               | Compliant | 4.1     |  |
| § 22.917 (a)              | RSS-132 Clause 5.5     | Transmitter unwanted<br>emissions-<br>Out of band emission              | Compliant | 4.1     |  |
| § 2.1053, § 22.917 (a)    | RSS-132 Clause 5.5     | Transmitter unwanted<br>emissions-<br>Radiated Spurious<br>emissions    | Compliant | 4.3     |  |
| § 2.1049; § 22.905        | RSS-Gen Clause 6.7     | Occupied Bandwidth                                                      | Compliant | 4.1     |  |

#### AWS Band: SA n66:

| FCC Standard<br>Rule(s) | ISEDC Standard Rule(s)          | Description of Test                                                  | Result    | Section |  |
|-------------------------|---------------------------------|----------------------------------------------------------------------|-----------|---------|--|
| /                       | RSS-139 Clause 5.2              | Frequency Plan                                                       | Compliant | 3.4.1.2 |  |
| /                       | RSS-139 Clause 5.3              | Types of Modulation                                                  | Compliant | 3.4.2.2 |  |
| /                       | RSS-139 Clause 5.7              | Additional<br>Requirements For<br>Subscriber Equipment               | Compliant | 3.4.6.2 |  |
| § 2.1055, § 27.54       | RSS-139 Clause 5.4              | Frequency stability                                                  | Compliant | 4.2     |  |
|                         |                                 | Transmitter Output<br>Power                                          | Compliant | 4.2     |  |
| § 2.1051,<br>§27.53     | RNN-139 (1911se D b) emissions- |                                                                      | Compliant | 4.2     |  |
| §27.53                  | RSS-139 Clause 5.6              | Transmitter unwanted<br>emissions-<br>Bandedge                       | Compliant | 4.2     |  |
| § 2.1053, §27.53        | RSS-139 Clause 5.6              | Transmitter unwanted<br>emissions-<br>Radiated Spurious<br>emissions | Compliant | 4.3     |  |
| § 2.1049, §27.53        | RSS-Gen Clause 6.7              | Occupied Bandwidth                                                   | Compliant | 4.2     |  |

### **3. REQUIREMENTS AND TEST PROCEDURES**

#### 3.1 Applicable Standard For Part 22 Subpart H:

#### 3.1.1 RF Output Power

FCC §22.913

(a)(5) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7watts.

(d) *Power measurement*. Measurement of the ERP of Cellular base transmitters and repeaters must be made using an average power measurement technique. The peak-toaverage ratio (PAR) of the transmission must not exceed 13 dB. Power measurements for base transmitters and repeaters must be made in accordance with either of the following:

(1) A Commission-approved average power technique (*see* FCC Laboratory's Knowledge Database); or (2) For purposes of this section, peak transmit power must be measured over an interval of continuous transmission using instrumentation calibrated in terms of an rmsequivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, *etc.*, so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

#### **3.1.2 Spurious Emissions**

#### FCC §22.917

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) dB$ .

(b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a reference bandwidth as follows:

(1) In the spectrum below 1 GHz, instrumentation should employ a reference bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy, provided that the measured power is integrated over the full required reference bandwidth (i.e., 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. (2) In the spectrum above 1 GHz, instrumentation should employ a reference bandwidth of 1 MHz

#### **3.1.3 Frequency stability**

#### FCC §22.355

Except as otherwise provided in this part, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

| Frequency<br>range<br>(MHz) | Base, fixed<br>(ppm) | Mobile >3 watts<br>(ppm) | Mobile<br>≤3 watts<br>(ppm) |
|-----------------------------|----------------------|--------------------------|-----------------------------|
| 25 to 50                    | 20                   | 20                       | 50                          |
| 50 to 450                   | 5                    | 5                        | 50                          |
| 450 to 512                  | 2.5                  | 5                        | 5                           |
| 821 to 896                  | 1.5                  | 2.5                      | 2.5                         |
| 928 to 929                  | 5                    | n/a                      | n/a                         |
| 929 to 960                  | 1.5                  | n/a                      | n/a                         |
| 2110 to 2220                | 10                   | n/a                      | n/a                         |

| Table C-1 - Frequenc | y Tolerance for Transmitters in the Public Mobile Servi | ces |
|----------------------|---------------------------------------------------------|-----|
|----------------------|---------------------------------------------------------|-----|

#### 3.2 Applicable Standard For Part 27:

#### 3.2.1 RF Output Power

#### FCC §27.50

#### (a)(3) Mobile and portable stations.

(i) For mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, *except that* for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth. For mobile and portable stations using time division duplexing (TDD) technology, the duty cycle must not exceed 38 percent in the 2305-2315 MHz and 2350-2360 MHz bands. Mobile and portable stations using FDD technology are restricted to transmitting in the 2305-2315 MHz band. Power averaging shall not include intervals in which the transmitter is off.

(ii) Mobile and portable stations are not permitted to transmit in the 2315-2320 MHz and 2345-2350 MHz bands.

(iii) *Automatic transmit power control*. Mobile and portable stations transmitting in the 2305-2315 MHz band or in the 2350-2360 MHz band must employ automatic transmit power control when operating so the stations operate with the minimum power necessary for successful communications.

(iv) *Prohibition on external vehicle-mounted antennas*. The use of external vehicle-mounted antennas for mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band is prohibited.

(b)(10) Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP.

(c)(10) Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP.

(d)(4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

(h) The following power limits shall apply in the BRS and EBS:

(2)Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

#### **3.2.2 Spurious Emissions**

#### FCC §27.53

(a) For operations in the 2305-2320 MHz band and the 2345-2360 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power P (with averaging performed only during periods of transmission) within the licensed band(s) of operation, in watts, by the following amounts:

(4)For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

(i) By a factor of not less than:  $43 + 10 \log (P) dB$  on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;

(ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;

(iii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2360 and 2365 MHz, and not less than  $70 + 10 \log (P) dB$  above 2365 MHz.

(c)For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least  $43 + 10 \log (P) dB$ ;

(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least  $43 + 10 \log (P) dB$ ;

(3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than  $76 + 10 \log (P)$  dB in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than  $65 + 10 \log (P)$  dB in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to – 70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and – 80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least  $43 + 10 \log (P) dB$ . Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

#### (h) AWS emission limits

(1) *General protection levels.* Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log<sub>10</sub> (P) dB.

(m)(4) For mobile digital stations, the attenuation factor shall be not less than  $40 + 10 \log (P) dB$  on all frequencies between the channel edge and 5 megahertz from the channel edge,  $43 + 10 \log (P) dB$  on all frequencies between 5 megahertz and X megahertz from the channel edge, and  $55 + 10 \log (P) dB$  on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that  $43 + 10 \log (P) dB$  on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

#### 3.2.3 Frequency stability

#### FCC §27.54

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

#### 3.3 Applicable Standard For RSS-132 Issue 4, January 31, 2023:

#### 3.3.1 Frequency Sub-bands

#### **3.3.1.1 Applicable Standard**

RSS-132 clause 5.1

The frequency bands 824-849 MHz and 869-894 MHz are divided into sub-bands as described in SRSP-503. These sub-bands are:

824-835 MHz, 835-845 MHz, 845-846.5 MHz, and 846.5-849 MHz for mobile transmit; and

869-880 MHz, 880-890 MHz, 890-891.5 MHz, and 891.5-894 MHz for base transmit.

#### 3.3.1.2 Judgment

Compliant, the device operates in this band is divided into sub-bands as described in SRSP-503.

#### **3.3.2 Types of Modulation**

#### 3.3.2.1 Applicable Standard

RSS-132 clause 5.2

Digital modulation shall be used.

#### 3.3.2.2 Judgment

Compliant, the device operates under this standard use digital modulation.

#### **3.3.3 Frequency stability**

#### **3.3.3.1** Applicable Standard

RSS-132 clause 5.3

The frequency stability shall be sufficient to ensure that the occupied bandwidth stays within each of the sub-bands when tested at the temperature and supply voltage variations specified in RSS-Gen.

#### 3.3.4 Transmitter output power and effective radiated power (e.r.p.)

#### 3.3.4.1 Applicable Standard

RSS-132 clause 5.4

The transmitter output power shall be measured in terms of average power. The equivalent radiated power (e.r.p.) shall not exceed 7 watts for mobile equipment and 3 watts for portable equipment. The effective isotropic radiated power (e.i.r.p.) shall not exceed the limits specified in SRSP-503 for base station equipment.

In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

#### 3.3.5 Transmitter unwanted emissions

#### 3.3.5.1 Applicable Standard

RSS-132 clause 5.5

Mobile and base station equipment shall comply with the limits in (i) and (ii) below.

- (i) In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts).
- (ii) After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.

#### 3.4 Applicable Standard For RSS-139 issue 4 September 29, 2022:

#### 3.4.1 Band plan

#### **3.4.1.1 Applicable Standard**

RSS-139 clause 5.2

The bands 1710-1780 MHz and 2110-2180 MHz are divided into 11 paired blocks as shown in table 1. Standard Radio System Plan SRSP-513, Technical Requirements for Advanced Wireless Services in the Bands 1710-1780 MHz and 2110-2180 MHz, contains the detailed band plan.

| Table    | Table 1: Frequency blocks in the bands 1710-1780 MHz and 2110-2180 MHz |                      |                        |  |  |
|----------|------------------------------------------------------------------------|----------------------|------------------------|--|--|
| Block    | Lower sub-band (MHz)                                                   | Upper sub-band (MHz) | Total block size (MHz) |  |  |
| Block A  | 1710-1720                                                              | 2110-2120            | 20                     |  |  |
| Block B  | 1720-1730                                                              | 2120-2130            | 20                     |  |  |
| Block C  | 1730-1735                                                              | 2130-2135            | 10                     |  |  |
| Block D  | 1735-1740                                                              | 2135-2140            | 10                     |  |  |
| Block E  | 1740-1745                                                              | 2140-2145            | 10                     |  |  |
| Block F  | 1745-1755                                                              | 2145-2155            | 20                     |  |  |
| Block G  | 1755-1760                                                              | 2155-2160            | 10                     |  |  |
| Block H  | 1760-1765                                                              | 2160-2165            | 10                     |  |  |
| Block I  | 1765-1770                                                              | 2165-2170            | 10                     |  |  |
| Block J1 | 1770-1775                                                              | 2170-2175            | 10                     |  |  |
| Block J2 | 1775-1780                                                              | 2175-2180            | 10                     |  |  |

The band 2180-2200 MHz is divided into two downlink-only blocks, as shown in table 2. SRSP-519, Technical Requirements for the Ancillary Terrestrial Component of Mobile-Satellite Service Systems Operating in the Bands 2000-2020 MHz and 2180-2200 MHz, contains the detailed band plan. In this RSS, AWS-4 is referred to as ATC band 2180-2200 MHz.

| Table 2: Frequency blocks in the bands 2180-2200 MHz |           |    |  |
|------------------------------------------------------|-----------|----|--|
| Block Frequency range (MHz) Block size (MHz)         |           |    |  |
| Block C                                              | 2180-2190 | 10 |  |
| Block D                                              | 2190-2200 | 10 |  |

The blocks listed in tables 1 and 2 can be aggregated to form a larger channel.

#### 3.4.1.2 Judgment

Compliant, the device operates in this band is Compliant with SRSP-513.

#### **3.4.2** Types of Modulation

#### **3.4.2.1** Applicable Standard

RSS-139 clause 5.3

Devices may use any type of modulation technique. The type of modulation shall be documented in the test report.

#### 3.4.2.2 Judgment

Compliant, the device operates under this standard use digital modulation.

#### **3.4.3 Frequency stability**

#### **3.4.3.1** Applicable Standard

RSS-139 clause 5.4

The frequency stability shall be sufficient to ensure that the occupied bandwidth stays within the operating frequency block or frequency block group when tested to the temperature and supply voltage variations specified in RSS-Gen.

#### **3.4.4 Transmitter Output Power**

#### **3.4.4.1 Applicable Standard**

RSS-139 clause 5.5

The maximum output power of the equipment shall comply with the limits specified below. In the tables, maximum power refers to the equivalent isotropically radiated power (e.i.r.p.) or total radiated power (TRP), measured in terms of average values.

The limits in this RSS are specified for the purpose of certification and may not apply to all deployment scenarios. Consult SRSP-513 and SRSP-519 for more details on the bands 2110-2180 MHz and 2180-2200 MHz respectively.

#### Table 3: Maximum power of equipment in the band 1710-1780 MHz

| Equipment type                 | Maximum power                     |  |
|--------------------------------|-----------------------------------|--|
| Fixed station and base station | 30 dBm e.i.r.p./channel bandwidth |  |
| Subscriber equipment           | 30 dBm e.i.r.p./channel bandwidth |  |

#### Table 4: Maximum power of equipment in the band 2110-2180 MHz

| Equipment type                         | Maximum power                     |
|----------------------------------------|-----------------------------------|
| Non-AAS fixed station and base station | 65 dBm e.i.r.p./MHz               |
| AAS fixed station and base station     | 46 dBm TRP/MHz                    |
| Subscriber equipment                   | 30 dBm e.i.r.p./channel bandwidth |

#### Table 5: Maximum power of equipment in the band 2180-2200 MHz

| Equipment type       | Maximum power       |  |
|----------------------|---------------------|--|
| Non-AAS base station | 65 dBm e.i.r.p./MHz |  |
| AAS base station     | 46 dBm TRP/MHz      |  |

In addition, the peak to average power ratio (PAPR) of the equipment shall not exceed 13 dB for more than 0.1% of the time, using a signal that corresponds to the highest PAPR during periods of continuous transmission.

#### 3.4.5 Transmitter unwanted emissions

#### 3.4.5.1 Applicable Standard

#### RSS-139 clause 5.6

Unwanted emissions shall be measured in terms of average values.

For all equipment, the TRP or total conducted power (sum of conducted power across all antenna connectors) of the unwanted emissions outside the frequency block or frequency block group shall not exceed the limits shown in table 4.

| Table 6: Unwanted emission limits                                    |                             |  |  |
|----------------------------------------------------------------------|-----------------------------|--|--|
| Offset from the edge of the frequency block or frequency block group | Unwanted emission<br>limits |  |  |
| ≤1 MHz                                                               | -13 dBm/(1% of B*)          |  |  |
| >1 MHz                                                               | -13 dBm/MHz                 |  |  |

\*B is the frequency block or frequency block group.

In addition to complying with the above limits, equipment operating in the band 2180-2200 MHz may require additional filtering (see SRSP-519).

#### 3.4.6 Additional requirements for subscriber equipment

#### **3.4.6.1** Applicable Standard

#### RSS-139 clause 5.7

Subscriber equipment other than fixed subscriber equipment shall use transmitter power control to limit power. The applicant shall include, with the application for certification, a declaration of compliance that confirms the control requirement was met and that includes a description of how the requirement was met. The declaration of compliance may be included as a separate document or attached (e.g. as an annex) to the test report.

Subscriber equipment operating in the band 1755-1780 MHz shall operate only when under the control of a base station. The applicant shall include, with the application for certification, a declaration of compliance that confirms the control requirement was met and that includes a description of how the requirement was met. The declaration of compliance may be included as a separate document or attached (e.g. as an annex) to the test report.

#### 3.4.6.2 Judgment

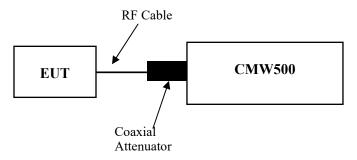
Compliant, the devices use transmitter power control to limit power and operate under the control of a base station.

#### 3.5 Test Method:

#### 3.5.1 Transmitter output power, e.r.p. and e.i.r.p

According to CFR Part 2.1046, ANSI C63.26-2015 Section 5.2.5.5:

The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:


ERP or EIRP =  $P_{Meas} + G_T - L_C$ 

where:

ERP or EIRP = effective radiated power or equivalent isotropically radiated power, respectively (expressed in the same units as P<sub>Meas</sub>, typically dBW or dBm);

- P<sub>Meas</sub> = measured transmitter output power or PSD, in dBm or dBW;
- $G_T$  = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);
- $L_C$  = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

**Test Setup Block:** 



Note: The Insertion loss of the RF cable and coaxial Attenuator was offset into the Reading of CMW500.

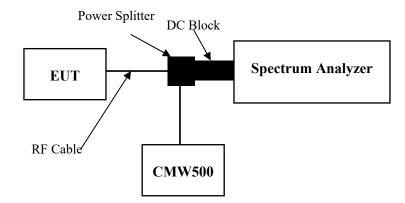
#### 3.5.2 Occupied Bandwidth

According to ANSI C63.26-2015 Section 5.4.4

The OBW is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring (99%) power bandwidth:

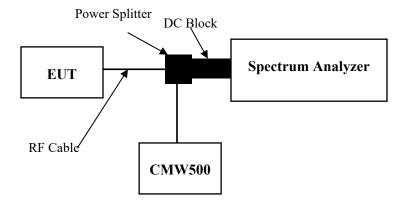
a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of  $1.5 \times OBW$  is sufficient).


b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set  $\ge$  3 × RBW.

c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3. NOTE—Step a), step b), and step c) may require iteration to adjust within the specified tolerances.

d) Set the detection mode to peak, and the trace mode to max-hold.

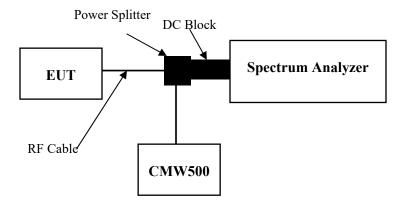
e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies.


f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s).



#### **3.5.3** Transmitter unwanted emissions-at antenna terminals

According to ANSI C63.26-2015 Section 5.7.4:


the applicable rule part specifies the reference bandwidth for measuring unwanted emission levels (typically, 100 kHz if the authorized frequency band/block is at or below 1 GHz and 1 MHz if the authorized frequency band/block is above 1 GHz),8 effectively depicting the unwanted emission limit in terms of a power spectral density. In those cases where no reference bandwidth is explicitly specified, the values in the preceding sentence should be used.



#### 3.5.4 Transmitter unwanted emissions-Out of band emission

According to ANSI C63.26-2015 Section 5.7.3:

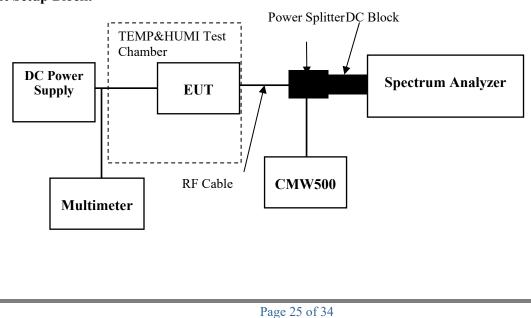
Typically, a measurement (resolution) bandwidth smaller than the reference bandwidth is allowed for measurements within a specified frequency range at the edge of the authorized frequency block/band (e.g., within the first Y MHz outside of the authorized frequency band/block, where the value of Y is specified in the relevant rule part). Some FCC out-of-band emission rules permit the use of a narrower RBW (typically limited to a minimum RBW of 1 % of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth. Beyond the specified frequency range in which this relaxation of the uniform reference bandwidth is permitted, it typically is also acceptable to use a narrower RBW (again limited to a minimum of 1 % of OBW) to increase accuracy, but the measurement result must subsequently be integrated over the full reference bandwidth.



#### 3.5.5 Frequency stability

According to ANSI C63.26-2015 Section 5.6:

Frequency stability is a measure of the frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at +20 °C and rated supply voltage.


The operating carrier frequency shall be set up in accordance with the manufacturer's published operation and instruction manual prior to the commencement of these tests. No adjustment of any frequency determining circuit element shall be made subsequent to this initial set-up. Frequency stability is tested:

a) At 10 °C intervals of temperatures between -30 °C and +50 °C at the manufacturer's rated supply voltage, and

b) At +20 °C temperature and  $\pm 15\%$  supply voltage variations. If a product is specified to operate over a range of input voltage then the -15% variation is applied to the lowermost voltage and the +15% is applied to the uppermost voltage.

During the test all necessary settings, adjustments and control of the EUT have to be performed without disturbing the test environment, i.e., without opening the environmental chamber. The frequency stabilities can be maintained to a lesser temperature range provided that the transmitter is automatically inhibited from operating outside the lesser temperature range. For handheld equipment that is only capable of operating from internal batteries and the supply voltage cannot be varied, the frequency stability tests shall be performed at the nominal battery voltage and the battery end point voltage specified by the manufacturer. An external supply voltage can be used and set at the internal battery nominal voltage, and again at the battery operating end point voltage which shall be specified by the equipment manufacturer.

If an unmodulated carrier is not available, the mean frequency of a modulated carrier can be obtained by using a frequency counter with gating time set to an appropriately large multiple of bit periods (gating time depending on the required accuracy). Full details on the choice of values shall be included in the test report.



#### 3.5.6 Transmitter unwanted emissions- Radiated Spurious emissions

According to ANSI C63.26-2015 Section 5.5.3:

#### Test setup:

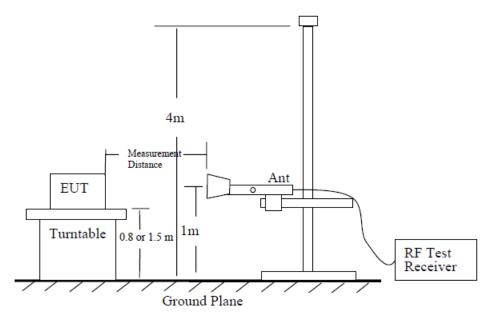



Figure 6—Test site-up for radiated ERP and/or EIRP measurements

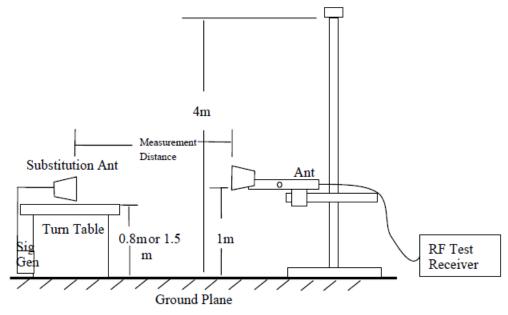



Figure 7 — Substitution method set-up for radiated emission

#### **Test Procedure:**

- a) Place the EUT in the center of the turntable. The EUT shall be configured to transmit into the standard non-radiating load (for measuring radiated spurious emissions), connected with cables of minimal length unless specified otherwise. If the EUT uses an adjustable antenna, the antenna shall be positioned to the length that produces the worst case emission at the fundamental operating frequency.
- b) Each emission under consideration shall be evaluated:
  - 1) Raise and lower the measurement antenna in accordance 5.5.2, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
  - Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
  - 3) Return the turntable to the azimuth where the highest emission amplitude level was observed.
  - 4) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
  - 5) Record the measured emission amplitude level and frequency using the appropriate RBW.
- c) Repeat step b) for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- d) Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
- e) Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- f) Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- g) For each emission that was detected and measured in the initial test [i.e., in step b) and step c)]:
  - 1) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
  - Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step b) and step c).
  - 3) Record the output power level of the signal generator when equivalence is achieved in step 2).
- Repeat step e) through step g) with the measurement antenna oriented in the opposite polarization.
- i) Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

- Pe = equivalent emission power in dBm
- Ps = source (signal generator) power in dBm

NOTE-dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

- j) Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: gain (dBd) = gain (dBi) - 2.15 dB. If necessary, the antenna gain can be calculated from calibrated antenna factor information
- k) Provide the complete measurement results as a part of the test report.

### 4. Test DATA AND RESULTS

#### 4.1 Antenna Port Test Data and Results for 5G NR DC 2A n5A:

| Serial Number: | MP32    | Test Date:   | 2023/08/26-2023/09/10 |
|----------------|---------|--------------|-----------------------|
| Test Site:     | RF      | Test Mode:   | Transmitting          |
| Tester:        | Jim Wei | Test Result: | Pass                  |

| Environmental Conditions: |      |                              |    |                        |       |
|---------------------------|------|------------------------------|----|------------------------|-------|
| Temperature:<br>(°C)      | 26.4 | Relative<br>Humidity:<br>(%) | 54 | ATM Pressure:<br>(kPa) | 101.5 |

#### **Test Equipment List and Details:**

| Manufacturer | Description                             | Model                  | Serial<br>Number    | Calibration<br>Date | Calibration<br>Due Date |
|--------------|-----------------------------------------|------------------------|---------------------|---------------------|-------------------------|
| R&S          | Spectrum<br>Analyzer                    | FSV40                  | 101474              | 2023/3/31           | 2024/3/30               |
| BACL         | TEMP&HUMI<br>Test Chamber               | BTH-150-40             | 30174               | 2023/3/31           | 2024/3/30               |
| UNI-T        | Multimeter                              | UT39A+                 | C210582554          | 2022/9/29           | 2023/9/28               |
| ZHAOXIN      | DC Power<br>Supply                      | RXN-6010D              | 21R6010D0912386 N/A |                     | N/A                     |
| Agilent      | Power divider                           | 11636B                 | 56199               | Each time           | N/A                     |
| JD           | RF Regulatory<br>Test System            | 5G NR Test<br>Software | V1.2.04             | N/A                 | N/A                     |
| Decentest    | Multiplex<br>Switch Test<br>Control Set | DT7200SCU              | DQ76345D            | 2022/11/1           | 2023/10/31              |
| Decentest    | Filter Switch<br>Unit                   | DT7200FSU              | DQ76345C            | N/A                 | N/A                     |
| Keysight     | UXM 5G<br>Wireless Test<br>Platform     | E7515B                 | MY58120285          | 2022/11/16          | 2023/11/15              |

\* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

#### **Test Data**

Test Result: Compliant. The test data please refer to the plots in the Appendix A1, B1, C1, D1, E1, F1.

| T.2 Antenna I  | 4.2 Antenna Fort Test Data and Results for Sortk 100 |              |                       |  |  |  |  |  |
|----------------|------------------------------------------------------|--------------|-----------------------|--|--|--|--|--|
| Serial Number: | MP32                                                 | Test Date:   | 2023/08/26-2023/09/10 |  |  |  |  |  |
| Test Site:     | RF                                                   | Test Mode:   | TX                    |  |  |  |  |  |
| Tester:        | Jim Wei                                              | Test Result: | Pass                  |  |  |  |  |  |

### 4.2 Antenna Port Test Data and Results for 5GNR N66

| Environmental Conditions:           |      |                              |    |                        |       |  |
|-------------------------------------|------|------------------------------|----|------------------------|-------|--|
| Temperature: $(^{\circ}\mathbb{C})$ | 26.4 | Relative<br>Humidity:<br>(%) | 54 | ATM Pressure:<br>(kPa) | 101.5 |  |

#### **Test Equipment List and Details:**

| Manufacturer | Description                             | Model                  | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------|-----------------------------------------|------------------------|------------------|---------------------|-------------------------|
| R&S          | Spectrum<br>Analyzer                    | FSV40                  | 101474           | 2023/3/31           | 2024/3/30               |
| BACL         | TEMP&HUMI<br>Test Chamber               | BTH-150-40             | 30174            | 2023/3/31           | 2024/3/30               |
| UNI-T        | Multimeter                              | UT39A+                 | C210582554       | 2022/9/29           | 2023/9/28               |
| ZHAOXIN      | DC Power<br>Supply                      | RXN-6010D              | 21R6010D0912386  | N/A                 | N/A                     |
| Agilent      | Power divider                           | 11636B                 | 56199            | Each time           | N/A                     |
| JD           | RF Regulatory<br>Test System            | 5G NR Test<br>Software | V1.2.04          | N/A                 | N/A                     |
| Decentest    | Multiplex<br>Switch Test<br>Control Set | DT7200SCU              | DQ76345D         | 2022/11/1           | 2023/10/31              |
| Decentest    | Filter Switch<br>Unit                   | DT7200FSU              | DQ76345C         | N/A                 | N/A                     |
| Keysight     | UXM 5G<br>Wireless Test<br>Platform     | E7515B                 | MY58120285       | 2022/11/16          | 2023/11/15              |

\* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

#### **Test Data**

Test Result: Compliant. The test data please refer to the plots in the Appendix, A2, B2, C2, D2, E2, F2.

#### **4.3 Radiated Spurious Emissions**

| Serial Number: | 29L3-4               | Test Date:   | 2023/8/31~2023/9/12 |
|----------------|----------------------|--------------|---------------------|
| Test Site:     | 966-1/966-2          | Test Mode:   | Transmitting        |
| Tester:        | Carl Xue, Mack Huang | Test Result: | Pass                |

| Environmental Conditions: |           |                           |       |                           |           |  |  |  |
|---------------------------|-----------|---------------------------|-------|---------------------------|-----------|--|--|--|
| Temperature:<br>(℃)       | 25.6~26.1 | Relative Humidity:<br>(%) | 51~64 | ATM<br>Pressure:<br>(kPa) | 100~100.2 |  |  |  |

#### **Test Equipment List and Details:**

| Manufacturer       | Description                           | Model                     | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------------|---------------------------------------|---------------------------|------------------|---------------------|-------------------------|
| Sunol Sciences     | Antenna                               | JB6                       | A082520-5        | 2020/10/19          | 2023/10/18              |
| R&S                | EMI Test Receiver                     | ESR3                      | 102724           | 2023/3/31           | 2024/3/30               |
| TIMES<br>MICROWAVE | Coaxial Cable                         | LMR-600-UltraFlex         | C-0470-02        | 2023/7/16           | 2024/7/15               |
| TIMES<br>MICROWAVE | Coaxial Cable                         | LMR-600-UltraFlex         | C-0780-01        | 2023/7/16           | 2024/7/15               |
| Sonoma             | Amplifier                             | 310N                      | 186165           | 2023/7/16           | 2024/7/15               |
| EMCO               | Adjustable Dipole<br>Antenna          | 3121C                     | 9109-756         | N/A                 | N/A                     |
| MICRO-COAX         | Coaxial Cable                         | UFA210B-0-0720-<br>300300 | 99G1448          | 2022/7/16           | 2024/7/15               |
| Agilent            | Signal Generator                      | E8247C                    | MY43321352       | 2022/11/18          | 2023/11/17              |
| ETS-Lindgren       | Horn Antenna                          | 3115                      | 9912-5985        | 2020/10/13          | 2023/10/12              |
| R&S                | Spectrum Analyzer                     | FSV40                     | 101591           | 2023/3/31           | 2024/3/30               |
| MICRO-COAX         | Coaxial Cable                         | UFA210A-1-1200-<br>70U300 | 217423-008       | 2023/8/6            | 2024/8/5                |
| MICRO-COAX         | Coaxial Cable                         | UFA210A-1-2362-<br>300300 | 235780-001       | 2023/8/6            | 2024/8/5                |
| Mini               | Pre-amplifier                         | ZVA-183-S+                | 5969001149       | 2022/11/9           | 2023/11/8               |
| АН                 | Double Ridge<br>Guide Horn<br>Antenna | SAS-571                   | 1396             | 2021/10/18          | 2024/10/17              |
| MICRO-COAX         | Coaxial Cable                         | UFA210B-0-0720-<br>300300 | 99G1448          | 2022/7/16           | 2024/7/15               |
| PASTERNACK         | Horn Antenna                          | PE9852/2F-20              | 112002           | 2021/2/5            | 2024/2/4                |
| PASTERNACK         | Horn Antenna                          | PE9852/2F-20              | 112001           | 2021/2/5            | 2024/2/4                |
| Quinstar           | Preamplifier                          | QLW-18405536-JO           | 15964001005      | 2022/9/16           | 2023/9/15               |
| MICRO-COAX         | Coaxial Cable                         | UFB142A-1-2362-<br>200200 | 235772-001       | 2023/8/6            | 2024/8/5                |

\* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

#### **Test Data:**

Please refer to the below table and plots.

Note: The device can be mounted in multiple orientations, pretest was performed with X,Y, Z Axis according to C63.26 figure 5, the worst orientation was photographed and it's data was recorded.

|                    |                                  | Destina                       | Substituted Method            |                              |                       |                            |                |                |
|--------------------|----------------------------------|-------------------------------|-------------------------------|------------------------------|-----------------------|----------------------------|----------------|----------------|
| Frequency<br>(MHz) | Polar<br>(H/V)                   | Receiver<br>Reading<br>(dBµV) | Substituted<br>Level<br>(dBm) | Antenna<br>Gain<br>(dBd/dBi) | Cable<br>Loss<br>(dB) | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|                    |                                  |                               | 5G_NR_n66_l                   | ow channel 1                 | 712.5 MF              | łz                         |                |                |
| 96.69              | Н                                | 52.39                         | -60.20                        | 0.00                         | 0.19                  | -60.39                     | -13.00         | 47.39          |
| 100.58             | V                                | 42.94                         | -64.05                        | 0.00                         | 0.19                  | -64.24                     | -13.00         | 51.24          |
| 3425.000           | Н                                | 40.40                         | -57.37                        | 10.37                        | 1.17                  | -48.17                     | -13.00         | 35.17          |
| 3425.000           | V                                | 40.25                         | -57.49                        | 10.37                        | 1.17                  | -48.29                     | -13.00         | 35.29          |
| 5137.500           | Н                                | 41.22                         | -52.40                        | 11.28                        | 1.46                  | -42.58                     | -13.00         | 29.58          |
| 5137.500           | V                                | 40.80                         | -52.71                        | 11.28                        | 1.46                  | -42.89                     | -13.00         | 29.89          |
|                    | 5G NR n66 middle channe 1745 MHz |                               |                               |                              |                       |                            |                |                |
| 94.11              | Н                                | 50.96                         | -61.80                        | 0.00                         | 0.18                  | -61.98                     | -13.00         | 48.98          |
| 97.55              | V                                | 44.67                         | -62.92                        | 0.00                         | 0.19                  | -63.11                     | -13.00         | 50.11          |
| 3490.000           | Н                                | 43.22                         | -54.62                        | 10.40                        | 1.17                  | -45.39                     | -13.00         | 32.39          |
| 3490.000           | V                                | 40.75                         | -57.03                        | 10.40                        | 1.17                  | -47.80                     | -13.00         | 34.80          |
| 5235.000           | Н                                | 39.87                         | -54.03                        | 11.34                        | 1.46                  | -44.15                     | -13.00         | 31.15          |
| 5235.000           | V                                | 39.59                         | -54.12                        | 11.34                        | 1.46                  | -44.24                     | -13.00         | 31.24          |
|                    |                                  |                               | 5G_NR_n66_h                   | igh channel 1                | 777.5 MI              | Hz                         |                |                |
| 100.25             | Н                                | 55.58                         | -56.79                        | 0.00                         | 0.19                  | -56.98                     | -13.00         | 43.98          |
| 101.24             | V                                | 44.54                         | -62.41                        | 0.00                         | 0.19                  | -62.60                     | -13.00         | 49.6           |
| 3555.000           | Н                                | 41.72                         | -55.97                        | 10.46                        | 1.22                  | -46.73                     | -13.00         | 33.73          |
| 3555.000           | V                                | 41.58                         | -56.00                        | 10.46                        | 1.22                  | -46.76                     | -13.00         | 33.76          |
| 5332.500           | Н                                | 40.14                         | -53.33                        | 11.40                        | 1.47                  | -43.40                     | -13.00         | 30.40          |
| 5332.500           | V                                | 40.03                         | -53.28                        | 11.40                        | 1.47                  | -43.35                     | -13.00         | 30.35          |

#### 5G NR n66 (30MHz-25GHz):

| <u> </u>                              |     |                               |                               | Substituted Method           |                       |                            |                |                |
|---------------------------------------|-----|-------------------------------|-------------------------------|------------------------------|-----------------------|----------------------------|----------------|----------------|
| Frequency<br>(MHz)                    | - · | Receiver<br>Reading<br>(dBµV) | Substituted<br>Level<br>(dBm) | Antenna<br>Gain<br>(dBd/dBi) | Cable<br>Loss<br>(dB) | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 5G NR DC 2A n5A low channel 826.5 MHz |     |                               |                               |                              |                       |                            |                |                |
| 136.52                                | Н   | 51.59                         | -60.67                        | 0.00                         | 0.22                  | -60.89                     | -13.00         | 47.89          |
| 147.00                                | V   | 41.23                         | -66.89                        | 0.00                         | 0.23                  | -67.12                     | -13.00         | 54.12          |
| 1653.000                              | Н   | 34.69                         | -69.64                        | 8.68                         | 0.81                  | -61.77                     | -13.00         | 48.77          |
| 1653.000                              | V   | 37.59                         | -66.82                        | 8.68                         | 0.81                  | -58.95                     | -13.00         | 45.95          |
| 2479.500                              | Н   | 36.77                         | -63.99                        | 9.39                         | 1.01                  | -55.61                     | -13.00         | 42.61          |
| 2479.500                              | V   | 36.52                         | -64.21                        | 9.39                         | 1.01                  | -55.83                     | -13.00         | 42.83          |
| 3306.000                              | Н   | 37.86                         | -58.87                        | 10.32                        | 1.15                  | -49.70                     | -13.00         | 36.70          |
| 3306.000                              | V   | 37.26                         | -59.25                        | 10.32                        | 1.15                  | -50.08                     | -13.00         | 37.08          |
|                                       |     | 5G_1                          | NR DC 2A n5                   | A_middle cha                 | annel 836             | .5 MHz                     |                |                |
| 147.00                                | Н   | 50.01                         | -62.05                        | 0.00                         | 0.23                  | -62.28                     | -13.00         | 49.28          |
| 258.00                                | V   | 43.74                         | -66.88                        | 0.00                         | 0.31                  | -67.19                     | -13.00         | 54.19          |
| 1673.000                              | Н   | 35.82                         | -68.49                        | 8.71                         | 0.85                  | -60.63                     | -13.00         | 47.63          |
| 1673.000                              | V   | 35.80                         | -68.61                        | 8.71                         | 0.85                  | -60.75                     | -13.00         | 47.75          |
| 2509.500                              | Н   | 37.06                         | -63.55                        | 9.42                         | 1.01                  | -55.14                     | -13.00         | 42.14          |
| 2509.500                              | V   | 37.27                         | -63.35                        | 9.42                         | 1.01                  | -54.94                     | -13.00         | 41.94          |
| 3346.000                              | Н   | 37.42                         | -59.74                        | 10.34                        | 1.16                  | -50.56                     | -13.00         | 37.56          |
| 3346.000                              | V   | 36.74                         | -60.28                        | 10.34                        | 1.16                  | -51.10                     | -13.00         | 38.10          |
|                                       |     | 5G                            | NR DC 2A n                    | 15A_high char                | nnel 846.             | 5 MHz                      |                |                |
| 158.00                                | Н   | 44.15                         | -67.52                        | 0.00                         | 0.23                  | -67.75                     | -13.00         | 54.75          |
| 234.00                                | V   | 39.43                         | -71.01                        | 0.00                         | 0.29                  | -71.30                     | -13.00         | 58.3           |
| 1693.000                              | Н   | 37.22                         | -67.08                        | 8.73                         | 0.89                  | -59.24                     | -13.00         | 46.24          |
| 1693.000                              | V   | 35.55                         | -68.87                        | 8.73                         | 0.89                  | -61.03                     | -13.00         | 48.03          |
| 2539.500                              | Н   | 36.22                         | -64.16                        | 9.46                         | 1.01                  | -55.71                     | -13.00         | 42.71          |
| 2539.500                              | V   | 35.38                         | -64.97                        | 9.46                         | 1.01                  | -56.52                     | -13.00         | 43.52          |
| 3386.000                              | Н   | 38.22                         | -59.37                        | 10.35                        | 1.18                  | -50.20                     | -13.00         | 37.20          |
| 3386.000                              | V   | 38.90                         | -58.64                        | 10.35                        | 1.18                  | -49.47                     | -13.00         | 36.47          |

5G\_NR\_DC\_2A\_n5A (30MHz-10GHz):

Note:

1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.

2) Absolute Level = Substituted Level - Cable loss + Antenna Gain

3) Margin = Limit-Absolute Level

### **5. EUT PHOTOGRAPHS**

Please refer to the attachment CR230745207-EXP EUT EXTERNAL PHOTOGRAPHS and CR230745207-INP EUT INTERNAL PHOTOGRAPHS

China Certification ICT Co., Ltd (Dongguan)

Report No.: CR230745207-00G

### 6. TEST SETUP PHOTOGRAPHS

Please refer to the attachment CR230745207-00F-TSP TEST SETUP PHOTOGRAPHS.

==== END OF REPORT =====