

RF REPORT

On Behalf of

FCC ID: 2ATYV-BLE-MODULE-A

Scangrip A/S FCC ID: 2ATYV-BLE-MODULE-A

BLE-MODULE-A

Model No.: 310.084

Prepared for : Scangrip A/S

Address : Rytterhaven 9, DK-5700 Svendborg, Denmark

Prepared By : Shenzhen Alpha Product Testing Co., Ltd

Address : Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

Shenzhen, Guangdong, China

Report Number : A2303118-C01-R01 Date of Receipt : November 17, 2022

Date of Test : November 17, 2022 to March 28, 2023

Date of Report : March 28, 2023

Version Number : V0

TABLE OF CONTENTS

Des	cript	ion		Page					
	-								
1	Gene	eral Info	rmation	5					
	1.1								
	1.2	Test La	ab information	5					
2	Sumi	Summary of test							
	2.1		tandard description:						
	2.2 2.3		Summary of testest Mode Description						
	2.3 2.4		quipmentquipment						
3	Evalu		· · · Results (Evaluation)						
	3.1		na requirement						
	0		Conclusion:						
4	Radio		rum Matter Test Results (RF)						
•	4.1	•	ucted Emission at AC power line						
	4.1	4.1.1	E.U.T. Operation:						
		4.1.2	Test Setup Diagram:						
		4.1.3	Test Result:						
	4.2	Occup	oied Bandwidth	14					
		4.2.1	E.U.T. Operation:						
		4.2.2 4.2.3	Test Setup Diagram: Test Result: Test Result						
	4.3		num Conducted Output Power						
	1.0	4.3.1	E.U.T. Operation:						
		4.3.2	Test Setup Diagram:						
		4.3.3	Test Result:	24					
	4.4	Power	Spectral Density						
		4.4.1	E.U.T. Operation:						
		4.4.2 4.4.3	Test Setup Diagram: Test Result: Test Result						
	4.5	_	ions in non-restricted frequency bands						
			E.U.T. Operation:						
		4.5.2	Test Setup Diagram:						
		4.5.3	Test Result:						
	4.6		edge emissions						
		4.6.1 4.6.2	E.U.T. Operation: Test Result:						
	4.7		ions in restricted frequency bands (below 1GHz)						
	4.7	4.7.1	E.U.T. Operation:						
			Test Result:						
	4.8	Emiss	ions in restricted frequency bands (above 1GHz)	46					
		4.8.1	E.U.T. Operation:	46					
		4.8.2	Test Result:	47					
5			Photos						
6	EUT	Constru	uctional Details (EUT Photos)	51					

TEST REPORT DECLARATION

Applicant : Scangrip A/S

Address : Rytterhaven 9, DK-5700 Svendborg, Denmark

Manufacturer : Scangrip A/S

Address : Rytterhaven 9, DK-5700 Svendborg, Denmark

EUT Description : BLE-MODULE-A

(A) Model No. : 310.084

(B) Trademark : Scangrip A/S

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with above listed standard(s) requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature) Yannis Wen
Project Engineer

Approved by (name + signature): Reak Yang
Project Manager

Date of issue: March 28, 2023

Revision History

Revision	Issue Date	Revisions	Revised By
VO	March 28, 2023	Initial released Issue	Yannis Wen

1 General Information

1.1 Description of Device (EUT)

Product Name	:	BLE-MODULE-A
Trademark	:	Scangrip A/S
Model Number	:	310.084
Operation Frequency	:	2402MHz to 2480MHz
Number of Channels	:	40
Modulation Type	:	GFSK
Data rate	:	1Mbps, 2Mbps
Power rating	:	4dBm
Antenna Type	:	PCB Antenna
Antenna Gain	:	1.95dBi

1.2 Test Lab information

Shenzhen Alpha Product Testing Co., Ltd

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

Registration Number: 293961 Designation Number: CN1236 July 15, 2019 Certificated by IC Registration Number: CN0085

Report No.: A2303118-C01-R01

2 Summary of test

2.1 Test Standard description:

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz **KDB558074 D01 15.247 Meas Guidance v05r02:** GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES

2.2 Summary of test

Item	Requirement	Method	Result
Antenna requirement	Part 15.203		Pass
Conducted Emission at AC power line	47 CFR 15.207(a)	ANSI C63.10-2013 section 6.2	Pass
Occupied Bandwidth	47 CFR 15.247(a)(2)	ANSI C63.10-2013, section 11.8	Pass
Maximum Conducted Output Power	47 CFR 15.247(b)(3)	ANSI C63.10-2013, section 11.9.1	Pass
Power Spectral Density	47 CFR 15.247(e)	ANSI C63.10-2013, section 11.10	Pass
Emissions in non-restricted frequency bands	47 CFR 15.247(d)	ANSI C63.10-2013 section 11.11	Pass
Band edge emissions (Radiated)	47 CFR 15.247(d)	ANSI C63.10-2013 section 6.6.4	Pass
Emissions in restricted frequency bands (below 1GHz)	47 CFR 15.247(d)	ANSI C63.10-2013 section 6.6.4	Pass
Emissions in restricted frequency bands (above 1GHz)	47 CFR 15.247(d)	ANSI C63.10-2013 section 6.6.4	Pass

2.3 Test Mode Description

Tested mode and channel				
Mode	Channel	Frequency (MHz)		
	Low : CH0	2402		
GFSK(1Mbps)	Middle: CH19	2440		
	High: CH39	2480		
	Low : CH0	2402		
GFSK(2Mbps)	Middle: CH19	2440		
	High: CH39	2480		

	Frequency list								
СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
CH0	2402	CH8	2418	CH16	2434	CH24	2450	CH32	2466
CH1	2404	CH9	2420	CH17	2436	CH25	2452	CH33	2468
CH2	2406	CH10	2422	CH18	2438	CH26	2454	CH34	2470
CH3	2408	CH11	2424	CH19	2440	CH27	2456	CH35	2472
CH4	2410	CH12	2426	CH20	2442	CH28	2458	CH36	2474
CH5	2412	CH13	2428	CH21	2444	CH29	2460	CH37	2476
CH6	2414	CH14	2430	CH22	2446	CH30	2462	CH38	2478
CH7	2416	CH15	2432	CH23	2448	CH31	2464	CH39	2480

Software Information					
Test Item	Software Name	Manufacturer	Version		
RE	EZ-EMC	farad	Alpha-3A1		
CE	EZ-EMC	farad	Alpha-3A1		
RF-CE	MTS 8310	MWRFtest	2.0.0.0		

Setting output power (Max)					
GFSK(1Mbps)	GFSK(2Mbps)	/	/		
4dBm	4dBm	/	/		

2.4 Test Equipment

Equipment	Manufacture	Model No.	Firmware version	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	/	N/A	2022.05.17	3Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2022.08.22	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2022.08.22	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03- 102082-Wa	2022.08.22	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2022.08.22	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	/	VULB 9168#627	2021.08.30	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2021.08.30	2Year
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00059	2021.08.30	2Year
RF Cable	Resenberger	Cable 1	/	RE1	2022.08.22	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2022.08.22	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2022.08.22	1Year
Pre-amplifier	HP	HP8347A	/	2834A00455	2022.08.22	1Year
Pre-amplifier	Agilent	8449B	/	3008A02664	2022.08.22	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	/	8126-466	2022.08.22	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2022.08.23	1 Year
Horn Antenna	SCHWARZBECK	BBHA9170	/	00946	2021.08.30	2 Year
Preamplifier	SKET	LNPA_1840 -50	/	SK2018101801	2022.08.22	1 Year
Power Meter	Agilent	E9300A	/	MY41496628	2022.08.22	1 Year
Power Sensor	DARE	RPR3006W	/	15100041SNO91	2022.08.22	1 Year
Temp. & Humid. Chamber	Weihuang	WHTH- 1000-40- 880	/	100631	2022.08.22	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	/	20140927-6	2022.08.22	1 Year
Adjustable attenuator	MWRFtest	N/A	/	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A

Page8 of52

Software Information						
Test Item	Software Name	Manufacturer	Version			
RE	EZ-EMC	farad	Alpha-3A1			
CE	EZ-EMC	farad	Alpha-3A1			
RF-CE	MTS 8310	MWRFtest	2.0.0.0			

2.5 Measurement Uncertainty

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	1.63dB
Uncertainty for Radiation Emission test in 3m chamber (below 30MHz)	3.5dB
Uncertainty for Radiation Emission test in 3m chamber	3.74dB(Polarize: V)
(30MHz to 1GHz)	3.76dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(1GHz to 25GHz)	3.80dB(Polarize: H)
Uncertainty for radio frequency	5.06×10 ⁻⁸ GHz
Uncertainty for conducted RF Power	0.40dB
Uncertainty for temperature	0.2℃
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

Report No.: A2303118-C01-R01

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
--	--

3.1.1 Conclusion:

The EUT antenna is PCB Antenna with max gain 1.95dBi. It comply with the standard requirement.

4 Radio Spectrum Matter Test Results (RF)

4.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)					
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					

4.1.1 E.U.T. Operation:

Operating Environment:							
Temperature:	Temperature: 23.8 °C Humidity: 53.1 % Atmospheric Pressure: 102 kPa						
Pre test mode: GFSK(1Mbps), GFSK(2Mbps)			SK(2Mbps)				
Final test mode: GFSK(1Mbps)							

4.1.2 Test Setup Diagram:

4.1.3 Test Result:

GFSK (1Mbps) / Line: Line / CH: L

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

^{*:}Maximum data x:Over limit !:over margin (Reference Only

GFSK (1Mbps) / Line: Neutral / CH: L

Note: All modes have been tested, and only worst data was listed in this report.

^{*:}Maximum data x:Over limit !:over margin \text{Reference Only Note: Measurement=Reading Level+Correc Factor.} Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

4.2 Occupied Bandwidth

Test Requirement:	Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Limit:	Section (a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	DTS bandwidth
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 x RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.2.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 23.8 °C Humidity: 53.1 % Atmospheric Pressure: 102 kPa							
Pre test mode: GFSK(1Mbps), GFSK(2Mbps)								
Final test mode	Final test mode: GFSK(1Mbps), GFSK(2Mbps)							

4.2.2 Test Setup Diagram:

4.2.3 Test Result:

Condition	Mode	Frequency	Antenna	99%	-6 dB	Limit -6 dB	Verdict
		(MHz)		OBW	Bandwidth	Bandwidth (MHz)	
				(MHz)	(MHz)		
NVNT	BLE	2402	Ant 1	1.01	0.656	0.5	Pass
	1M						
NVNT	BLE	2440	Ant 1	1.007	0.645	0.5	Pass
	1M						
NVNT	BLE	2480	Ant 1	1.007	0.65	0.5	Pass
	1M						

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1 Spectrum Ref Level 25.00 dBm Offset 6.62 dB RBW 100 kHz 35 dB SWT 18.9 μs 🁄 VBW 300 kHz Mode Auto FFT SGL Count 100/100 1Pk Max M1[1] 3.61 dBn 20 dBm 2.402049800 GH -2.37 dBm 2.401698000 GHz M2[1] 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm-10001 pts CF 2.402 GHz Span 3.0 MHz Marker Type | Ref | Trc | X-value Y-value Function Function Result 2.4020498 GHz M1 M2 3.61 dBm -2.37 dBm 2.401698 GHz МЗ 2.402353 GHz -2.35 dBm

Date: 17.NOV.2022 09:59:08

OBW NVNT BLE 1M 2440MHz Ant1 Spectrum Ref Level 25.00 dBm Offset 6.78 dB • RBW 30 kHz 35 dB SWT 63.2 µs ● VBW 100 kHz Att Mode Auto FFT SGL Count 100/100 ●1Pk Max -54.48 dBm 2.44150000 GHz M1[1] 20 dBm 1.006993007 MHz Occ Bw 10 dBm-0 dBm M -10 dBm--20 dBm--30 dBm -40 dBm -50 dBm--60 dBm -70 dBm-CF 2.44 GHz 1001 pts Span 3.0 MHz Marker Type | Ref | Trc Y-value X-value Function **Function Result** 2.4415 GHz 2.43953546 GHz 2.44054246 GHz M1 T1 T2 -54.48 dBm -14.24 dBm 1.006993007 MHz Occ Bw -15.04 dBm

Date: 17.NOV.2022 10:00:34

Date: 17.NOV.2022 10:00:42

Date: 17.NOV.2022 10:01:59

Date: 17.NOV.2022 10:02:08

Condition	Mode	Frequency	Antenna	99%	-6 dB	Limit -6 dB	Verdict
		(MHz)		OBW	Bandwidth	Bandwidth (MHz)	
				(MHz)	(MHz)		
NVNT	BLE	2402	Ant 1	2.018	1.096	0.5	Pass
	2M						
NVNT	BLE	2440	Ant 1	2.014	1.088	0.5	Pass
	2M						
NVNT	BLE	2480	Ant 1	2.018	0.96	0.5	Pass
	2M						

-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 6.62 dB RBW 100 kHz Att 30 dB SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT SGL Count 100/100 1Pk Max M1[1] 3.91 dBn 2.402046000 GH 10 dBm -2.08 dBm 2.401485000 GHz M2[1] 0 dBm--10 dBm -20 dBm -30 dBm--40 dBm -50 dBm -60 dBm-CF 2.402 GHz 10001 pts Span 4.0 MHz Marker Type | Ref | Trc | X-value Y-value Function Function Result 2.402046 GHz 2.401485 GHz M1 M2 3.91 dBm -2.08 dBm МЗ 2.402581 GHz -2.08 dBm

Date: 17.NOV.2022 10:08:27

Date: 17.NOV.2022 10:09:56

Date: 17.NOV.2022 10:10:05

Date: 17.NOV.2022 10:11:15

Date: 17.NOV.2022 10:11:25

4.3 Maximum Conducted Output Power

Test Requirement:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Limit:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	Maximum peak conducted output power
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power

4.3.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 23.8 °C Humidity: 53.1 % Atmospheric Pressure: 102 kPa							
Pre test mode: GFSK(1Mbps), GFSK(2Mbps)								
Final test mode	Final test mode: GFSK(1Mbps), GFSK(2Mbps)							

4.3.2 Test Setup Diagram:

4.3.3 Test Result:

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	3.73	30	Pass
NVNT	BLE 1M	2440	Ant1	3.65	30	Pass
NVNT	BLE 1M	2480	Ant1	3.42	30	Pass

Date: 17.NOV.2022 09:58:53

Date: 17.NOV.2022 10:00:26

Power NVNT BLE 1M 2480MHz Ant1 Spectrum Ref Level 25.00 dBm Att 35 dB SGL Count 100/100 Mode Auto FFT ●1Pk Max 3.42 dBm 2.48030000 GHz M1[1] 20 dBm 10 dBm-M1 0 dBm--10 dBm -20 dBm--30 dBm--40 dBm--50 dBm--60 dBm--70 dBm-CF 2.48 GHz 1001 pts Span 10.0 MHz

Date: 17.NOV.2022 10:01:51

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	3.96	30	Pass
NVNT	BLE 2M	2440	Ant1	3.85	30	Pass
NVNT	BLE 2M	2480	Ant1	3.56	30	Pass

Date: 17.NOV.2022 10:08:11

Span 10.0 MHz

Date: 17.NOV.2022 10:09:48

CF 2.44 GHz

Power NVNT BLE 2M 2480MHz Ant1

1001 pts

Date: 17.NOV.2022 10:11:07

Test Requirement:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Limit:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	Maximum power spectral density level in the fundamental emission
Procedure:	ANSI C63.10-2013, section 11.10 Maximum power spectral density level in the fundamental emission

4.4.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 23.8 °C Humidity: 53.1 % Atmospheric Pressure: 102 kPa							
Pre test mode: GFSK(1Mbps), GFSK(2Mbps)								
Final test mode: GFSK(1Mbps), GFSK(2Mbps)								

4.4.2 Test Setup Diagram:

Span 3.0 MHz

4.4.3 Test Result:

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-10.71	8	Pass
NVNT	BLE 1M	2440	Ant1	-9.98	8	Pass
NVNT	BLE 1M	2480	Ant1	-9.86	8	Pass

1001 pts

Date: 17.NOV.2022 09:59:15

CF 2.402 GHz

Date: 17.NOV.2022 10:02:16

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-10.49	8	Pass
NVNT	BLE 2M	2440	Ant1	-10.07	8	Pass
NVNT	BLE 2M	2480	Ant1	-10.02	8	Pass

PSD NVNT BLE 2M 2402MHz Ant1

Date: 17.NOV.2022 10:08:34

PSD NVNT BLE 2M 2440MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 6.78 dB RBW 3 kHz SWT 632.1 µs ● VBW 10 kHz Att 30 dB Mode Auto FFT SGL Count 100/100 1Pk Max M1[1] -10.07 dBm 2.44003600 GHz 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm 40 dBm -70 dBm CF 2.44 GHz 1001 pts Span 4.0 MHz

Date: 17.NOV.2022 10:10:14

Date: 17.NOV.2022 10:11:35

4.5 Emissions in non-restricted frequency bands

Test Requirement:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	Emissions in nonrestricted frequency bands
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

Operating Environment:							
Temperature:	Temperature: 23.8 °C Humidity: 53.1 % Atmospheric Pressure: 102 kPa						
Pre test mode: GF		GFSK(1Mbps), GF	SK(2Mbps)			
Final test mode:		GFSK(1Mbps), GF	SK(2Mbps)			

4.5.2 Test Setup Diagram:

4.5.3 Test Result:

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-37.69	-20	Pass
NVNT	BLE 1M	2440	Ant1	-37.56	-20	Pass
NVNT	BLE 1M	2480	Ant1	-37.47	-20	Pass

Date: 17.NOV.2022 09:59:51

Date: 17.NOV.2022 10:01:15

Date: 17.NOV.2022 10:02:54

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-42.49	-20	Pass
NVNT	BLE 2M	2440	Ant1	-41.58	-20	Pass
NVNT	BLE 2M	2480	Ant1	-41.69	-20	Pass

Y-value 0.80 dBm -38.58 dBm

-42.22 dBm -42.68 dBm

-40.88 dBm

Function

Function Result

Date: 17.NOV.2022 10:09:11

Date: 17.NOV.2022 10:10:39

Type | Ref | Trc

М2

МЗ

M5

X-value 2.397 GHz 16.5738 GHz

4.6887 GHz 7.0446 GHz

9.6386 GHz

Tx. Spurious NVNT BLE 2M 2440MHz Ant1 Emission Spectrum Ref Level 20.00 dBm Offset 6.78 dB RBW 100 kHz 30 dB SWT 265 ms VBW 300 kHz Att Mode Auto Sweep SGL Count 10/10 ●1Pk Max M1[1] 4.73 dBn 2.4500 GHz 10 dBm-M2[1] -37.79 dBm 20.2796 GHz -10 dBm D1 -16.201 dBm--20 dBm--30 dBm -40 dBm--50 dBm -70 dBm-Start 30.0 MHz 1001 pts Stop 26.5 GHz Marker Type | Ref | Trc | Function **Function Result** X-value Y-value 2.45 GHz 20.2796 GHz M1 M2 4.73 dBm -37.79 dBm -42.08 dBm -42.02 dBm M3 M4 4.874 GHz 7.4416 GHz М5

Date: 17.NOV.2022 10:12:13

4.6 Band edge emissions

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.					
Test Method:	Radiated emissions test	s				
Procedure:	ANSI C63.10-2013 section 6.6.4					

4.6.1 E.U.T. Operation:

Operating Environment:							
Temperature:	Temperature: 23.8 °C Humidity: 53.1 % Atmospheric Pressure: 102 kPa						
Pre test mode: GFSK(1Mbps), GFSK(2Mbp			SK(2Mbps)				
Final test mode: GFSK(1Mbps), G				SK(2Mbps)			

4.6.2 Test Result:

Radiated Method: GFSK(1Mbps)/ CH: L

GFSK(1Mbps) /CH: H

GFSK(2Mbps) / CH: L

GFSK(2Mbps) / CH: H

Conducted Method: GFSK(1Mbps) / CH: L

Date: 17.NOV.2022 09:59:27

GFSK(1Mbps) /CH: H

Date: 17.NOV.2022 10:02:29

GFSK(2Mbps) / CH: L

Date: 17.NOV.2022 10:08:47

GFSK(2Mbps) / CH: H

Date: 17.NOV.2022 10:11:48

4.7 Emissions in restricted frequency bands (below 1GHz)

Test Requirement:		ssions which fall in the restricte mply with the radiated emission c)).`					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.						
Test Method:	Radiated emissions test	s					
Procedure:	ANSI C63.10-2013 secti	on 6.6.4					

4.7.1 E.U.T. Operation:

Operating Environment:										
Temperature: 23.8 °C Humidity: 53.1 % Atmospheric Pressure: 102 kPa										
Pre test mode: GFSK(1Mbps), GFSK(2Mbps										
Final test mode):	GFSK(1Mbps)							

4.7.2 Test Result:

GFSK(1Mbps) / Polarization: Horizontal /CH: L

Radiated Emission Measurement File:3 Data :#2 Date: 2023/3/23 Time: 11:34:05 80.0 dBuV/m 70 60 FCC Part15Class B Radiation 50 40 30 20 10 0.0 30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 1000.000 Measure-Margin Antenna Table Reading Correct Limit No. Mk. Freq. Level Factor ment Height Degree MHz dBuV dB dBuV/m dBuV/m dΒ Detector cm degree Comment 43.50 120.5159 18.13 13.07 31.20 -12.30 1 peak 2 144.4023 16.33 14.64 30.97 43.50 -12.53 peak 3 155.9283 15.89 15.05 30.94 43.50 -12.56 peak 179.9113 21.45 12.69 34.14 43.50 -9.36 QP 4 33.50 5 191.7674 22.13 11.37 43.50 -10.00 QP

Page44 of52

Note:1. *: Maximum data; x: Over limit; !: over margin.

17.57

10.96

203.8085

6

28.53

43.50

-14.97

peak

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

GFSK(1Mbps) / Polarization: Vertical /CH: L

Radiated Emission Measurement

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		51.2166	16.85	13.88	30.73	40.00	-9.27	peak			
2		96.0537	21.47	10.54	32.01	43.50	-11.49	peak			
3	,	107.7365	20.88	11.61	32.49	43.50	-11.01	peak			
4	* '	120.2485	23.24	13.05	36.29	43.50	-7.21	QP			
5	,	132.3907	19.39	13.76	33.15	43.50	-10.35	peak			
6	,	180.6488	22.46	12.60	35.06	43.50	-8.44	QP			
7	,	192.0365	23.86	11.35	35.21	43.50	-8.29	QP			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

4.8 Emissions in restricted frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`								
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	3							
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.								
Test Method:	Radiated emissions tests								
Procedure:	ANSI C63.10-2013 section 6	6.6.4							

4.8.1 E.U.T. Operation:

Operating Environment:										
Temperature: 23.8 °C Humidity: 53.1 % Atmospheric Pressure: 102 kPa										
Pre test mode: GFSK(1Mbps), GFSK(2Mbps)										
Final test mode: GFSK(1Mbps), GFSK(2Mbps)										

4.8.2 Test Result:

From 1G-25GHz: GFSK(1Mbps)

Test Mode: TX Low											
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark		
4804	43.55	V	33.95	10.18	34.26	53.42	74	-20.58	PK		
4804	38.92	V	33.95	10.18	34.26	48.79	54	-5.21	AV		
7206	/	/	/	/	/	/	/	/	/		
9608	/	/	/	/	/	/	/	/	/		
4804	43.16	Н	33.95	10.18	34.26	53.03	74	-20.97	PK		
4804	35.40	Н	33.95	10.18	34.26	45.27	54	-8.73	AV		
7206	/	/	/	/	/	/	/	/	/		
9608	/	/	/	/	/	/	/	/	/		
	Test Mode: TX Mid										
4880	44.34	V	33.93	10.2	34.29	54.18	74	-19.82	PK		
4880	34.73	V	33.93	10.2	34.29	44.57	54	-9.43	AV		
7320	/	/	/	/	/	/	/	/	/		
9760	/	/	/	/	/	/	/	/	/		
4880	44.03	Н	33.93	10.2	34.29	53.87	74	-20.13	PK		
4880	35.22	Н	33.93	10.2	34.29	45.06	54	-8.94	AV		
7320	/	/	/	/	/	/	/	/	/		
9760	/	/	/	/	/	/	/	/	/		
				Test Mo	de: TX High						
4960	46.79	V	33.98	10.22	34.25	56.74	74	-17.26	PK		
4960	35.30	V	33.98	10.22	34.25	45.25	54	-8.75	AV		
7440	/	/	/	/	/	/	/	/	/		
9920	/	/	/	/	/	/	/	/	/		
4960	44.32	Н	33.98	10.22	34.25	54.27	74	-19.73	PK		
4960	31.44	Н	33.98	10.22	34.25	41.39	54	-12.61	AV		
7440	/	/	/	/	/	/	/	/	/		
9920	/	/	/	/	/	/	/	/	/		

Note:

^{1,} Result = Read level + Antenna factor + cable loss-Amp factor 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

From 1G-25GHz: GESK(2Mbps)

				Toot Ma	I T)/ I								
		Test Mode: TX Low											
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark				
4804	41.27	V	33.95	10.18	34.26	51.14	74	-22.86	PK				
4804	38.33	V	33.95	10.18	34.26	48.20	54	-5.80	AV				
7206	/	/	/	/	/	/	/	/	/				
9608	/	/	/	/	/	/	/	/	/				
4804	45.56	Н	33.95	10.18	34.26	55.43	74	-18.57	PK				
4804	37.23	Η	33.95	10.18	34.26	47.10	54	-6.90	AV				
7206	/	/	/	/	/	/	/	/	/				
9608	/	/	/	/	/	/	/	/	/				
	Test Mode: TX Mid												
4880	41.74	V	33.93	10.2	34.29	51.58	74	-22.42	PK				
4880	33.32	V	33.93	10.2	34.29	43.16	54	-10.84	AV				
7320	/	/	/	/	/	/	/	/	/				
9760	/	/	/	/	/	/	/	/	/				
4880	43.27	Η	33.93	10.2	34.29	53.11	74	-20.89	PK				
4880	33.65	Н	33.93	10.2	34.29	43.49	54	-10.51	AV				
7320	/	/	/	/	/	/	/	/	/				
9760	/	/	/	/	/	/	/	/	/				
				Test Mo	de: TX High	ı							
4960	46.70	V	33.98	10.22	34.25	56.65	74	-17.35	PK				
4960	36.09	V	33.98	10.22	34.25	46.04	54	-7.96	AV				
7440	/	/	/	/	/	/	/	/	/				
9920	/	/	/	/	/	/	/	/	/				
4960	42.01	Н	33.98	10.22	34.25	51.96	74	-22.04	PK				
4960	33.83	Н	33.98	10.22	34.25	43.78	54	-10.22	AV				
7440	/	/	/	/	/	/	/	/	/				
9920	/	/	/	/	/	/	/	/	/				

Note:

1, Result = Read level + Antenna factor + cable loss-Amp factor

2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

5 Test Setup Photos

Conducted Emission at AC power line

Band edge emissions Emissions in restricted frequency bands (above 1GHz)

Emissions in restricted frequency bands (below 1GHz)

6 EUT Constructional Details (EUT Photos)

----- END OF REPORT-----