

TEST REPORT						
FCC Rules Part 15.225						
Report Reference No	MTEB23070019-R3					
	2ATYP-HK9600	\bigcirc \downarrow				
Compiled by (position+printed name+signature):	File administrators Alisa Luo	Hisa Luo				
Supervised by (position+printed name+signature):	Test Engineer Sunny Deng	Aisa Luo Sunny Deng Jutter				
Approved by (position+printed name+signature):	Manager Yvette Zhou	petter				
Date of issue	Jul.04,2023					
Representative Laboratory Name .:	Shenzhen Most Technology Ser	rvice Co., Ltd.				
Address:	No.5, 2nd Langshan Road, North Nanshan, Shenzhen, Guangdong					
Applicant's name	Shiji (US) Inc.					
Address:	730 Peachtree Street NE, Suite United States	e 375, Atlanta, Georgia, 30319,				
Test specification/ Standard:	FCC Rules Part 15.225					
TRF Originator	Shenzhen Most Technology Servi	ce Co., Ltd.				
Shenzhen Most Technology Service This publication may be reproduced in Shenzhen Most Technology Service C material. Shenzhen Most Technology S liability for damages resulting from the placement and context.	whole or in part for non-commercia o., Ltd. is acknowledged as copyrig Service Co., Ltd. takes no responsit	ht owner and source of the pility for and will not assume				
Test item description	POS COMPUTER					
Trade Mark	Shiji					
Manufacturer	Shiji (US) Inc.					
Model/Type reference	HK9600					
Listed Models	HK960U, HK968, HK968U					
Modulation Type	ASK					
Operation Frequency	13.56MHz					
Hardware Version	MTGU3BP					
Software Version	F4e					
Rating	DC 24V (by Adapter)					
Result:	PASS					

TEST REPORT

Equipment under Test	:	POS COMPUTER
Model /Type	:	HK9600
Listed Models		HK960U, HK968, HK968U
Remark		All models are identical to each other, except model name.
Applicant	:	Shiji (US) Inc.
Applicant	•	
Address	:	730 Peachtree Street NE, Suite 375, Atlanta, Georgia, 30319, United States
		730 Peachtree Street NE, Suite 375, Atlanta, Georgia, 30319,

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	REVISION HISTORY	4
<u>2.</u>	TEST STANDARDS	<u>5</u>
<u>3.</u>	SUMMARY	<u> 6</u>
3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9 3.10. 3.11.	General Remarks Product Description Equipment Under Test Short description of the Equipment under Test (EUT) EUT operation mode Block Diagram of Test Setup Test Item (Equipment Under Test) Description* Auxiliary Equipment (AE) Description Antenna Information* EUT configuration Modifications	6 6 6 7 7 7 7 7 7
<u>4.</u>	TEST ENVIRONMENT	8
4.1. 4.2. 4.3. 4.4. 4.5.	Address of the test laboratory Environmental conditions Test Description Statement of the measurement uncertainty Equipments Used during the Test	8 8 9 9 10
<u>7.</u>	TEST CONDITIONS AND RESULTS	<u>11</u>
	 7.1. AC Power Conducted Emission 7.2. Radiated Emission 7.3. 20dB Bandwidth 7.4. FREQUENCY TOLERANCE	16 25
<u>8.</u>	TEST SETUP PHOTOS OF THE EUT	
<u>9.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	

1. <u>Revision History</u>

Revision	Issue Date	Revisions	Revised By
00	2023-07-04	Initial Issue	Alisa Luo

2. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

The tests were performed according to following standards:

FCC Rules Part 15.225: Operation within the band 13.110-14.010 MHz.

ANSI C63.10:2013 : American National Standard for Testing Unlicensed Wireless Devices ANSI C63.4: 2014: –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

3. <u>SUMMARY</u>

3.1. General Remarks

Date of receipt of test sample	:	2023.06.26
Testing commenced on	:	2023.06.27
Testing concluded on	:	2023.07.04

3.2. Product Description

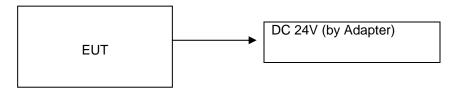
Product Name:	POS COMPUTER
Model/Type reference:	НК9600
Power Supply:	DC 24V (by Adapter)
Testing sample ID:	MTYP01898-1899
Modulation:	ASK
Operation frequency:	13.56MHZ
Channel number:	1 (declared by the client)

3.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below)		

DC 24V (by Adapter)


3.4. Short description of the Equipment under Test (EUT)

This is a Self-Checkout Terminal For more details, refer to the user's manual of the EUT.

3.5. EUT operation mode

Channel	Freq.(MHz)	Note(Modulation Type)
1	13.56MHz	ASK

3.6. Block Diagram of Test Setup

3.7. Test Item (Equipment Under Test) Description*

Short designation	EUT Name	EUT Description	Serial number	Hardware status	Software status
EUT A	Adapter	GM60-240250-F	/	/	/
EUT B	Adapter	FSP060-DAAN3	/	/	/
EUT C	Adapter	FSP120-AAAN3	/	/	/

*: declared by the applicant. According to customers information EUTs A and B are the same devices. Only the secondary screen size is different

3.8. Auxiliary Equipment (AE) Description

AE short designation	EUT Name (if available)	EUT Description	Serial number (if available)	Software (if used)
AE 1	/	1	/	1
AE 2	/	1	1	1

3.9 Antenna Information*

Short designation	Antenna Name	Antenna Type	Frequency Range	Serial number	Antenna Peak Gain
Antenna 1		/	/	/	/
Antenna 2	/	/	/	/	/

*: declared by the applicant.

3.10. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

•- supplied by the manufacturer

O- Supplied by the lab

\bullet	ADAPTER 1	M/N:	GM60-240250-F
			Foshan Shunde GUANYUDA Power
		Manufacturer:	Supply Co., Ltd.
ullet	ADAPTER 2	M/N:	FSP060-DAAN3
		Manufacturer:	FSP Group Inc.
\bullet	ADAPTER 3	M/N:	FSP120-AAAN3
		Manufacturer:	FSP Group Inc.

3.11. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 0031192610

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 6343.01

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

4.2. Environmental conditions

Radiated Emission:

Temperature:	23 ° C
Humidity:	48 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

4.3. Test Description

FCC and IC Requirements				
FCC Part 15.203	Antenna Requirement	PASS		
FCC Part 15.207	AC Power Conducted Emission	PASS		
FCC Part 15.209&15.205 (a) &15.225(a,b,c,d)	Spurious Emissions	PASS		
FCC Part 15.215 (c) &15.225	20dB Occupied Bandwidth	PASS		
FCC Part 15.225(e)	Frequency Tolerance	PASS		

Remark:

1. The measurement uncertainty is not included in the test result.

2. NA = Not Applicable; NP = Not Performed

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Most Technology Service Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

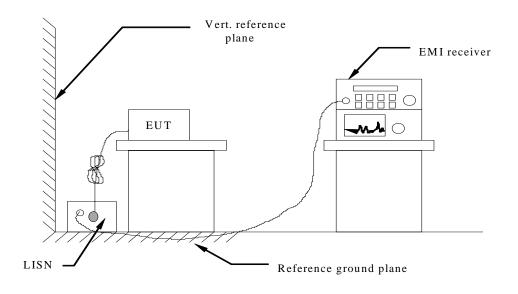
Hereafter the best measurement capability for Shenzhen Most Technology Service Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

F

4.5. Equipments Used during the Test


	5.						
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware versions	Last Cal.	Cal. Interval
1.	L.I.S.N.	R&S	ENV216	100093	/	2023/03/17	1 Year
2	Three-phase artificial power network	Schwarzback Mess	NNLK8129	8129178	/	2023/03/17	1 Year
3.	Receiver	R&S	ESCI	100492	V3.0-10-2	2023/03/17	1 Year
4	Receiver	R&S	ESPI	101202	V3.0-10-2	2023/03/17	1 Year
5	Spectrum analyzer	Agilent	9020A	MT-E306	A14.16	2023/03/17	1 Year
6	Bilong Antenna	Sunol Sciences	JB3	A121206	/	2023/03/17	1 Year
7	Horn antenna	HF Antenna	HF Antenna	MT-E158	/	2023/03/17	1 Year
8	Loop antenna	Beijing Daze	ZN30900B	/	/	2023/03/17	1 Year
9	Horn antenna	R&S	OBH100400	26999002	/	2023/03/17	1 Year
10	Wireless Communication Test Set	R&S	CMW500	/	CMW-BASE- 3.7.21	2023/03/17	1 Year
11	Spectrum analyzer	R&S	FSP	100019	V4.40 SP2	2023/03/17	1 Year
12	High gain antenna	Schwarzbeck	LB-180400KF	MT-E389	/	2023/03/17	1 Year
13	Preamplifier	Schwarzbeck	BBV 9743	MT-E390	/	2023/03/17	1 Year
14	Pre-amplifier	EMCI	EMC051845S E	MT-E391	/	2023/03/17	1 Year
15	Pre-amplifier	Agilent	83051A	MT-E392	/	2023/03/17	1 Year
16	High pass filter unit	Tonscend	JS0806-F	MT-E393	/	2023/03/17	1 Year
17	RF Cable(below1GHz)	Times	9kHz-1GHz	MT-E394	/	2023/03/17	1 Year
18	RF Cable(above 1GHz)	Times	1-40G	MT-E395	/	2023/03/17	1 Year
19	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	/	2023/03/17	1 Year

6. Note: The Cal.Interval was one year.

7. TEST CONDITIONS AND RESULTS

7.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received DC5V power, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

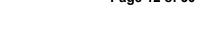
5 All support equipments received AC power from a second LISN, if any.

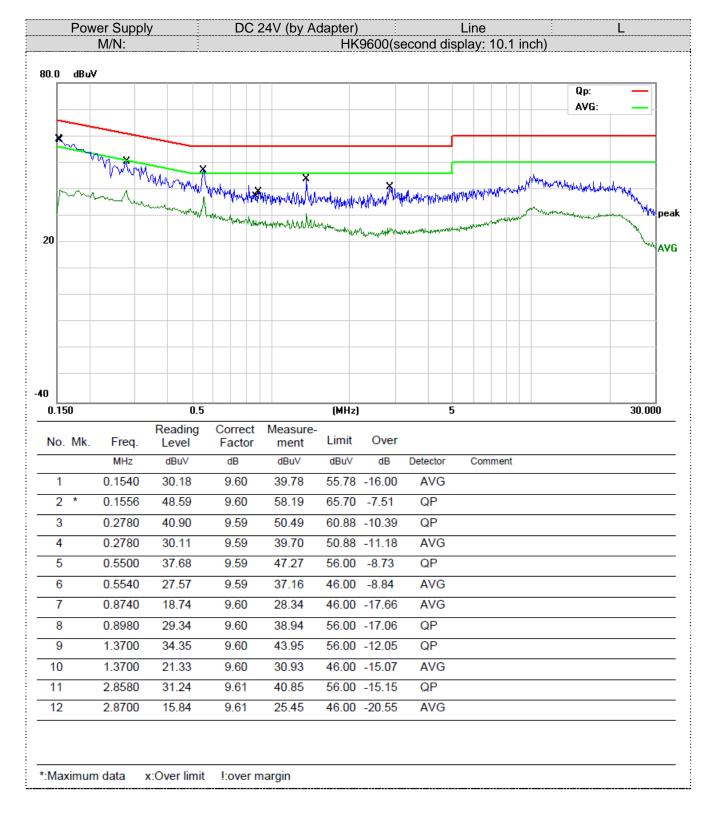
6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

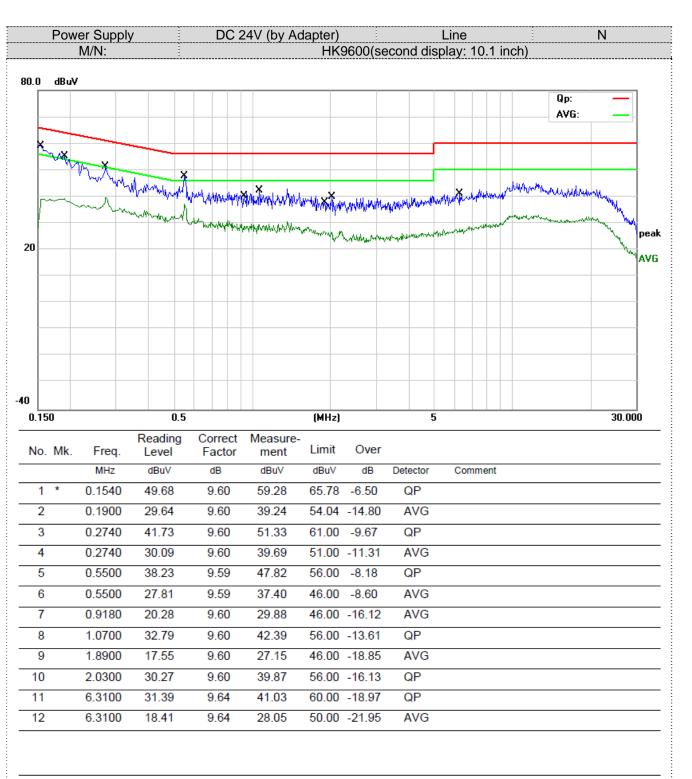
7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

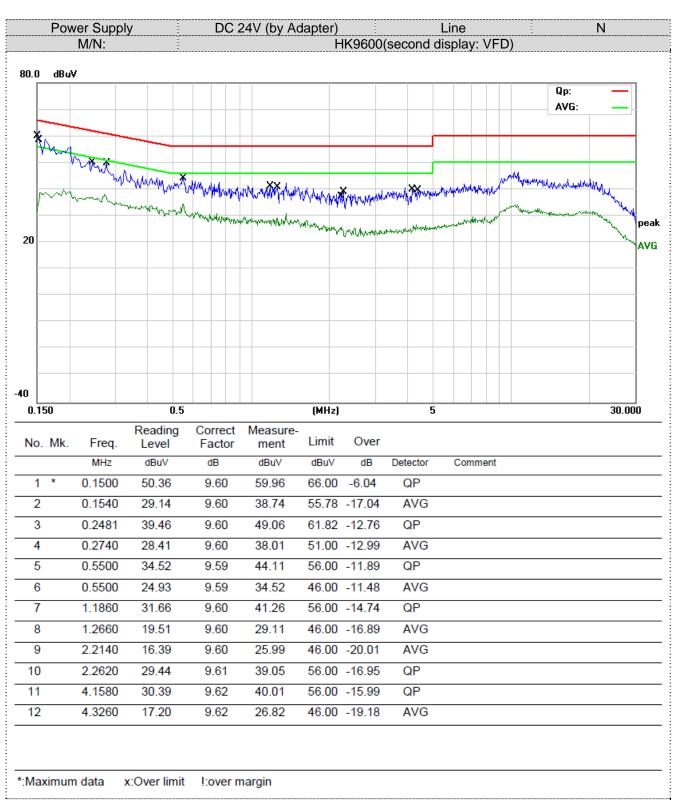
AC Power Conducted Emission Limit

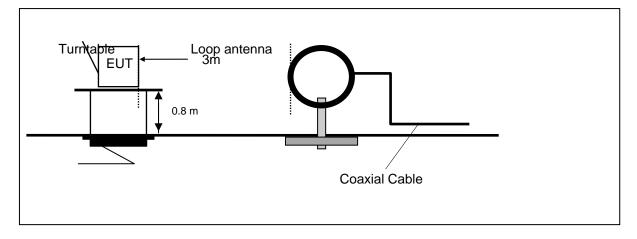

For unintentional device, according to RSS Gen 8.8 and § 15.207(a) Line Conducted Emission Limits is as following:

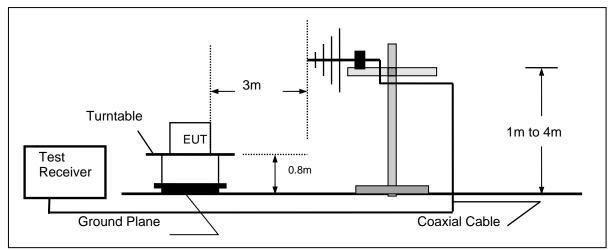

Fraguanay	Maximum RF Line Voltage		
Frequency (MHz)	Quasi-Peak Level	Average Level	
	dB(µV)	dB(μV)	
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*	
0.50 ~ 5.00	56	46	
5.00 ~ 30.00	60	50	


TEST RESULTS

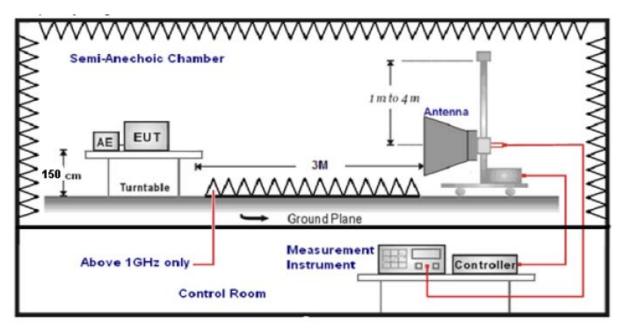
Pass


Remark: GM60-240250-F, FSP060-DAAN3, FSP120-AAAN3 three adapters have been tested, and only the worst adapter(GM60-240250-F) test data is shown




7.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

	f					
Test Frequency range	Test Antenna Type	Test Distance				
9KHz-30MHz	Active Loop Antenna	3				
30MHz-1GHz	Ultra-Broadband Antenna	3				
1GHz-18GHz	Double Ridged Horn Antenna	3				
18GHz-25GHz	Horn Anternna	1				

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
	Average Value: RBW=1MHz/VBW=10Hz,	
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission

Unwanted emissions that fall into restricted bands shall comply with the limits specified in RSS-Gen; and Unwanted emissions that do not fall within the restricted frequency bands shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Report No.: MTEB23070019-R3

Page 18 of 30

Frequency (MHz)	Distance	Radiated (dBµV/m)	Radiated (µV/m)
	(Meters)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	49.0	100
88-216	3	53.5	150
216-960	3	56.0	200
Above 960	3	64.0	500

According to FCC Part 15.205, Rastricted bands

MHz	MHz	MHz	GHz
0.090-0.110			4.5-5.15
10.495-0.505	16.69475-16.69525	<u>399.9-410</u> 608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

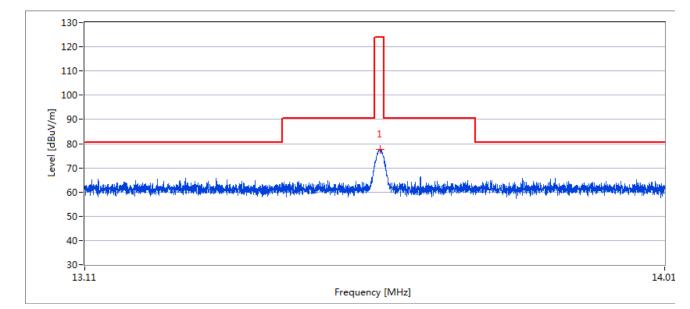
LIMITS OF RADIATED EMISSION MEASUREMENT (FCC 15.225)

(a)The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters, equal to 124dBuV/m at 3 meters.

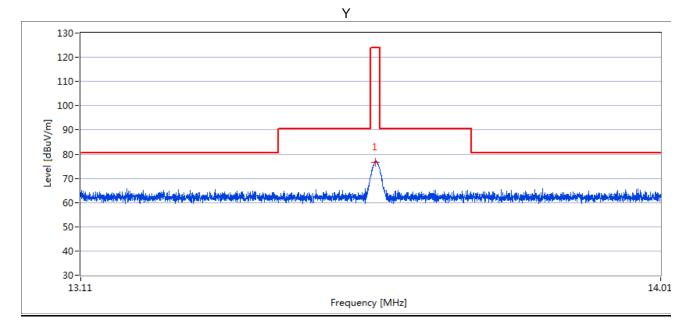
(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters, equal to 90.5dBuV/m at 3 meters.

c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters, equal to 80.5dBuV/m at 3 meters.

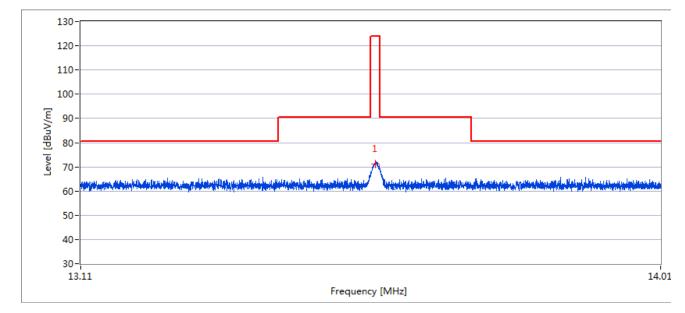
(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.


TEST RESULTS (BELOW 30MHz)

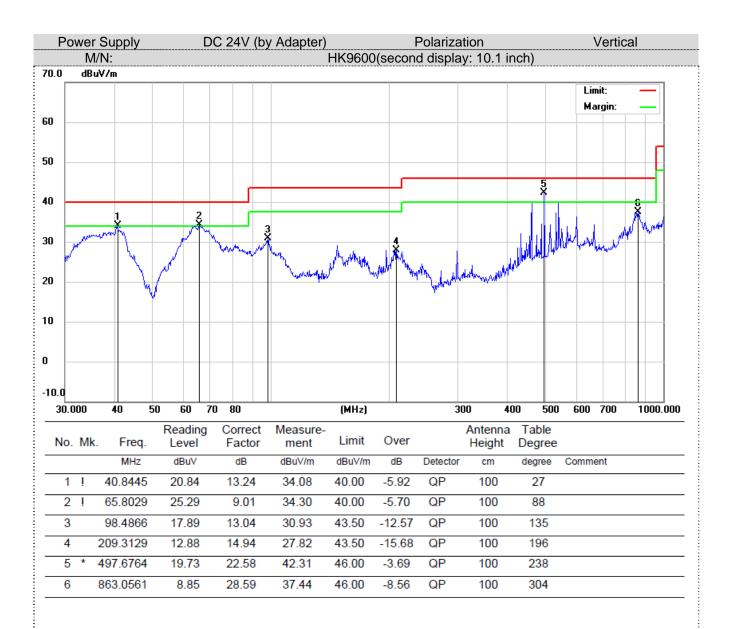
1: This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position. 2: Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

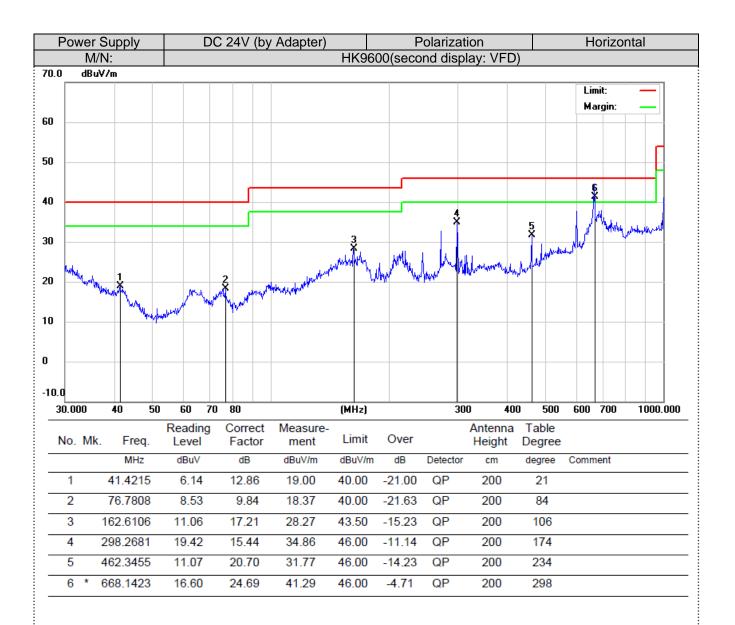

<u>X</u>

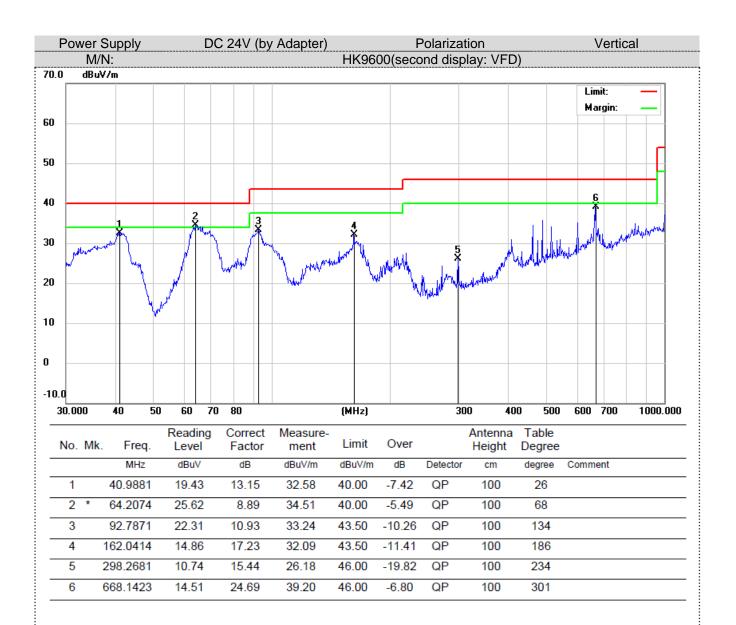
Remark: GM60-240250-F, FSP060-DAAN3, FSP120-AAAN3 three adapters have been tested, and only the worst adapter(GM60-240250-F) test data is shown


Report No.: MTEB23070019-R3

Frequency	Pre-scan Level MaxPeak	Final Test Level MaxPeak	Limit MaxPeak	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
13.56	78.6	78.6	124.0	45.8


Frequency	Pre-scan Level MaxPeak	Final Test Level MaxPeak	Limit MaxPeak	Margin	
MHz	dBuV/m	dBuV/m	dBuV/m	dB	
13.56	76.8	76.8	124.0	46.5	




Frequency	Pre-scan Level MaxPeak	Final Test Level MaxPeak	Limit MaxPeak	Margin	
MHz	dBuV/m	dBuV/m	dBuV/m	dB	
13.56	73.2	73.2	124.0	51.5	

Pc	ower	Supply	D	DC 24V (by	/ Adapter)		F	Polariza	ition		Н	orizo	ntal	
	Μ/			、 .		-IK9600			y: 10.1 ir	nch)				
70.0	dBu\	V/m												
												nit:		•
											Ma	argin:		·
50 -														
50 -														
10 -														
_								4		5 X			X	
30 -							3 X	I I	humphat		n	Lyphy W	e and the second	We -
20			1 Å		2 And Anthen and Anthen a	water when the		1. In	Internet to the later of the	man the with	MAN			
	- Martin	MWM4.	and the second	May a Marthant	erentrouse a	. Ye	unit and the	AN WALL	יאַנגעשיי די די געראר די י					
n l		My Weller	hug Ve	Υ) ^κ										
0		www.	huh Ma											
		Mindaha		vijr										
		Man An		νγ										
) 10.0	000			70 80		(MHz)			00 40		600	700		0.000
10.0 30.1	000	40 5	50 60 7 Reading	Correct	Measure-	(MHz)			00 40 Antenna	00 500 Table				
) 10.0 30.1		40 5 Freq.	50 60 7		ment	(MHz) Limit	Over		00 41	00 500				
) 10.0 30.1	000	40 5	50 60 7 Reading	Correct		(MHz)	Over		00 40 Antenna Height	00 500 Table		700		
) 10.0 30.1	000 . Mk.	40 5 Freq.	60 60 7 Reading Level	Correct Factor	ment	(MHz) Limit		3	00 40 Antenna Height	00 500 Table Degree	600	700		
) 10.0 30.1 No	000 . Mk.	40 5 Freq. MHz	i0 60 7 Reading Level dBuV	Correct Factor dB	ment dBuV/m	(MHz) Limit dBuV/m	dB	3 Detector	00 40 Antenna Height cm	00 500 Table Degree degree	600	700		
) 10.0 30.1 No	000 . Mk.	40 5 Freq. MHz 63.5356	0 60 7 Reading Level dBuV 12.54	Correct Factor dB 8.85	ment dBuV/m 21.39	(MHz) Limit dBuV/m 40.00	dB -18.61	3 Detector QP	00 40 Antenna Height cm 200	00 500 Table Degree degree 37	600	700		
) 10.0 30.1 No 1 2	000 . Mk.	40 5 Freq. MHz 63.5356 100.2285	60 60 7 Reading Level dBuV 12.54 7.24	Correct Factor dB 8.85 13.62	ment dBuV/m 21.39 20.86	(MHz) Limit dBuV/m 40.00 43.50	dB -18.61 -22.64	3 Detector QP QP	00 40 Antenna Height cm 200 200	00 500 Table Degree degree 37 138	600	700		
10.0 30.1 No 1 2 3	000 . Mk.	40 5 Freq. MHz 63.5356 100.2285 216.7828	60 60 7 Reading Level dBuV 12.54 7.24 11.19	Correct Factor dB 8.85 13.62 14.73	ment dBuV/m 21.39 20.86 25.92	(MHz) Limit dBuV/m 40.00 43.50 46.00	dB -18.61 -22.64 -20.08	Detector QP QP QP	00 40 Antenna Height 200 200 200	Do 500 Table Degree degree 37 138 208	600	700		

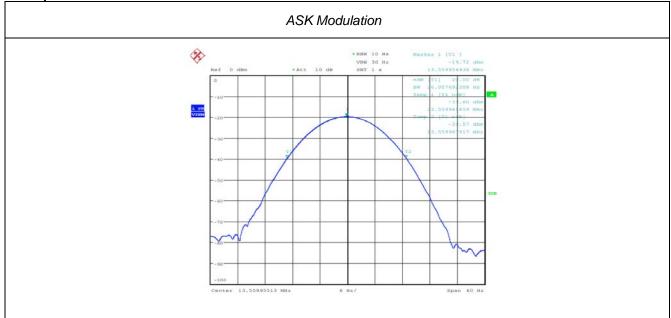
For 30MHz-1GHz

7.3. 20dB Bandwidth

TEST CONFIGURATION

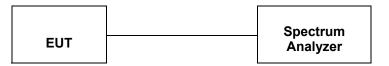
TEST PROCEDURE

The 20dB bandwidth and 99% bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.


The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

The occupied bandwidth (OBW), that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission

TEST RESULTS


Modulation	Channel Frequency (MHz)	20dB bandwidth (KHz)	Result
ASK	13.56	0.027	Pass

Test plot as follows:

7.4. FREQUENCY TOLERANCE

TEST CONFIGURATION

TEST PROCEDURE

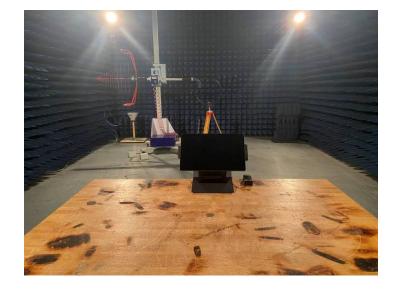
The EUT was placed on a turn table which is 0.8m above ground plane.

Set EUT as normal operation

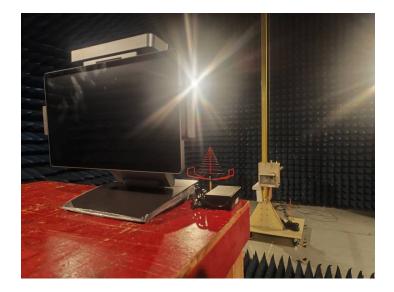
Set SPA Center Frequency = fundamental frequency, RBW, VBW= 10kHz, Span=100K Set SPA Max hold. Mark peak.

TEST RESULTS

Power Supply	Temperature(℃)	Measured Frequency (MHz)	Frequency Error (MHz)	Result(ppm)	Part 15.225 Limit
	-20	13.560056	0.000056	4.14	+/- 0.01%(100ppm)
DC 26.4V	20	13.560062	0.000062	4.56	+/- 0.01%(100ppm)
	50	13.560047	0.000047	3.44	+/- 0.01%(100ppm)
	-20	13.560034	0.000034	2.48	+/- 0.01%(100ppm)
DC 24V	20	13.560032	0.000032	2.35	+/- 0.01%(100ppm)
	50	13.560028	0.000028	2.06	+/- 0.01%(100ppm)
	-20	13.560033	0.000033	2.43	+/- 0.01%(100ppm)
DC 21.6V	20	13.560042	0.000042	3.10	+/- 0.01%(100ppm)
	50	13.560040	0.000040	2.94	+/- 0.01%(100ppm)


8. Test Setup Photos of the EUT

(HK9600(second display: 10.1 inch))



(HK9600(second display: VFD))

9. External and Internal Photos of the EUT

See related photo report.

.....End of Report.....