

Testing Laboratory 0659

Maximum Permissible Exposure Report

FCC ID: 2ATYCHMX03

Report No. : BTL-FCCP-6-2101T110

Equipment : HIPCAM

Model Name : Indoor Camera Max

Brand Name : HIPCAM

Applicant: Hipcam Global LLC

Address : 112 Capitol Trail, Newark, Delaware, 19711 United States

Manufacturer : Goldtek Technology Co., Ltd.

Address : 16F., No.166, Jian 1st Rd., Zhonghe Dist., New Taipei City 235, Taiwan

(R.O.C.)

FCC Rule Part(s) : FCC CFR Title 47, Part 2 (2.1091)

FCC Guidelines for Human Exposure IEEE C95.1

Date of Receipt : 2021/2/2

Date of Test : 2021/2/2 ~ 2021/3/17

Issued Date : 2021/4/16

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Peter Chen, Engineer

Scott Hsu, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Report No.: BTL-FCCP-6-2101T110

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-6-2101T110	R00	Original Report.	2021/4/9
BTL-FCCP-6-2101T110	R01	Revised report to address TCB's comments.	2021/4/16

Project No.: 2101T110 Page 2 of 5 Report Version: R01

Report No.: BTL-FCCP-6-2101T110

Table for Filed Antenna

For LoRa:

Ant.	Manufacture	Product	Туре	Connector Frequency Range (MHz)		Gain (dBi)
1	PSA	Lora US915	FPCB	N/A	902-928	0.67

For BLE:

Ant.	Manufacture	Product	oduct Type		Frequency Range (MHz)	Gain (dBi)
1	PSA	Wi-Fi Ant.	PCB	N/A	2400-2500	3.91

For 2.4GHz WLAN:

Ant.	Manufacture	Product	Туре	Connector	Frequency Range (MHz)	Gain (dBi)	
1	PSA	Wi-Fi Ant.	PCB	N/A	2400-2500	3.91	

For 5GHz RLAN:

Ant.	Manufacture	Product	Туре	Connector	Frequency Range (MHz)	Gain (dBi)
	PSA	Wi-Fi Ant.	PCB		5150-5250	4.69
				N/A	5250-5350	5.40
'					5470-5725	5.25
					5725-5850	5.25

Maximum RF OUTPUT POWER

	Mode	Maximum Average Power (dBm)
	IEEE 802.11b	17.89
WLAN 2.4 GHz	IEEE 802.11g	21.99
	IEEE 802.11n (HT20)	22.42
	IEEE 802.11a	13.61
RLAN 5 GHz	IEEE 802.11n (HT20)	13.06
	IEEE 802.11n (HT40)	10.44
	BLE	5.16
	Lora	17.78

Project No.: 2101T110 Page 3 of 5 Report Version: R01

MPE CALCULATION METHOD:

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna
G = power gain of the antenna in the direction of interest relative to an isotropic radiator
R = distance to the center of radiation of the antenna

RESULTS

For BLE:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
3.91	2.4604	5.16	3.2810	0.00160676	1	Complies

For 2.4G WLAN:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
3.91	2.4604	22.42	174.5822	0.08549690	1	Complies

For 5G RLAN:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
5.40	3.4674	13.61	22.9615	0.01584712	1	Complies

Note:

1. The calculated distance is 20 cm.

Project No.: 2101T110 Page 4 of 5 Report Version: R01

For LoRa:

Limit

Frequency Range (MHz)	Power Density (mW /cm²)	Averaging Time (minutes)
300~1500	F/1500	30
1500~100000	1.0	30

MPE EVALUATION FORMULA

$$Pd = \frac{Pt}{4*Pi*R^2}$$

where:

Pd= Power density in mW/cm2

Pt= EIRP in Mw

Pi= 3.1416

R= Measurement distance

RESULTS

Frequency (MHz)	Maximum Output Power (dBm)	Maximum Output Power (mW)	Antenna gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Density Limit
902.3	17.78	59.979	0.67	20.0	0.014	0.602

Simultaneous Transmission:

Both of the Lora, Bluetooth and Wi-Fi can transmit simultaneously, the formula of calculated the MPE is: CPD1 / LPD1 + CPD2 / LPD2 +etc. <1

CPD: Calculation power density LPD: Limit of power density

Therefore, the worst –case situation calculated as below, which the result is less than "1". 0.00160676/1+0.08549690/1+0.01584712/1+0.014/1=0.11695078<1

End of Test Report