

0659

FCC Radio Test Report

FCC ID: 2ATYCHMX03

Report No. : BTL-FCCP-3-2101T110

Equipment : HIPCAM

: Indoor Camera Max **Model Name**

: HIPCAM **Brand Name**

: Hipcam Global LLC Applicant

: 112 Capitol Trail, Newark, Delaware, 19711 United States Address

: Goldtek Technology Co., Ltd. Manufacturer

: 16F., No.166, Jian 1st Rd., Zhonghe Dist., New Taipei City 235, Taiwan Address

(R.O.C.)

Radio Function : WLAN 2.4 GHz

FCC Rule Part(s) : FCC Part15, Subpart C (15.247) : ANSI C63.10-2013

Measurement

Procedure(s)

Date of Receipt : 2021/2/2

Date of Test : 2021/2/2 ~ 2021/3/17

Issued Date : 2021/4/16

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Scott Hsu, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2101T110 Page 1 of 72 Report Version: R01

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2101T110 Page 2 of 72 Report Version: R01

CONTENTS REVISON HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 TEST ENVIRONMENT CONDITIONS 7 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.5 DUTY CYCLE 8 **GENERAL INFORMATION** 2 9 2.1 **DESCRIPTION OF EUT** 9 2.2 **TEST MODES** 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 12 3 AC POWER LINE CONDUCTED EMISSIONS TEST 13 13 3.1 LIMIT 3.2 TEST PROCEDURE 13 3.3 **DEVIATION FROM TEST STANDARD** 13 3.4 TEST SETUP 14 14 3.5 **TEST RESULT** 4 RADIATED EMISSIONS TEST 15 4.1 LIMIT 15 4.2 TEST PROCEDURE 16 **DEVIATION FROM TEST STANDARD** 4.3 16 **TEST SETUP** 4.4 16 4.5 **EUT OPERATING CONDITIONS** 17 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 18 4.7 TEST RESULT – ABOVE 1 GHZ 18 5 **BANDWIDTH TEST** 19 5.1 LIMIT 19 5.2 **TEST PROCEDURE** 19 **DEVIATION FROM TEST STANDARD** 19 5.3 5.4 **TEST SETUP** 19 5.5 **EUT OPERATING CONDITIONS** 19 **TEST RESULT** 5.6 19 **OUTPUT POWER TEST** 6 20 LIMIT 20 6.1 **TEST PROCEDURE** 20 6.2 6.3 **DEVIATION FROM TEST STANDARD** 20 6.4 **TEST SETUP** 20 **EUT OPERATING CONDITIONS** 6.5 20 6.6 **TEST RESULT** 20 7 POWER SPECTRAL DENSITY 21 7.1 LIMIT 21 7.2 TEST PROCEDURE 21 7.3 **DEVIATION FROM TEST STANDARD** 21 7.4 **TEST SETUP** 21 7.5 **EUT OPERATING CONDITIONS** 21 7.6 TEST RESULT 21 8 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST 22

8.1	LIMIT		22
8.2	TEST	PROCEDURE	22
8.3	DEVIA	ATION FROM TEST STANDARD	22
8.4	TEST	SETUP	22
8.5	EUT C	PERATING CONDITIONS	22
8.6	TEST	RESULT	22
9	LIST OF	MEASURING EQUIPMENTS	23
10	EUT TES	ST PHOTO	25
11	EUT PHO	DTOS	25
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	26
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	31
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	34
APPEND	IX D	BANDWIDTH	59
APPEND	IX E	OUTPUT POWER	63
APPEND	IX F	POWER SPECTRAL DENSITY	65
APPEND	IX G	ANTENNA CONDUCTED SPURIOUS EMISSIONS	69

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-3-2101T110	R00	Original Report.	2021/4/9
BTL-FCCP-3-2101T110	R01	Revised report to address TCB's comments.	2021/4/16

Project No.: 2101T110 Page 5 of 72 Report Version: R01

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)								
Standard(s) Section	Description	Test Result	Judgement	Remark				
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass					
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass					
15.247(a)	Bandwidth	APPENDIX D	Pass					
15.247(b)	Output Power	APPENDIX E	Pass					
15.247(e)	Power Spectral Density	APPENDIX F	Pass					
15.247(d)	Antenna conducted Spurious Emission	APPENDIX G	Pass					
15.203	Antenna Requirement		Pass					

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2101T110 Page 6 of 72 Report Version: R01

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

 $oxed{\boxtimes}$ C05 $oxed{\Box}$ CB08 $oxed{\Box}$ CB11 $oxed{\boxtimes}$ CB15 $oxed{\Box}$ CB16

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cisor} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

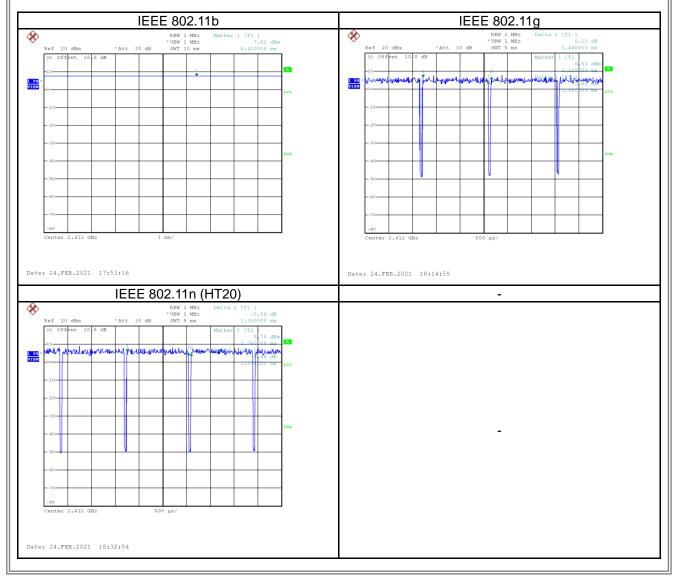
Test Item	U,(dB)
Bandwidth	1.13
Output power	1.06
Power Spectral Density	1.20
Conducted Spurious emissions	1.14
Conducted Band edges	1.13

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	20 °C, 74 %	AC 120V	Vincent Lee
Radiated emissions below 1 GHz	20 °C, 70 %	AC 120V	Jay Kao
Radiated emissions above 1 GHz	20~21 °C, 69~70 %	AC 120V	Jay Kao
Bandwidth	22 °C, 52 %	AC 120V	Nero Hsieh
Output Power	22 °C, 52 %	AC 120V	Nero Hsieh
Power Spectral Density	22 °C, 52 %	AC 120V	Nero Hsieh
Antenna conducted Spurious Emission	22 °C, 52 %	AC 120V	Nero Hsieh


1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software		Ampak RFT	estTool v7.0	
Mode	2412 MHz	2437 MHz	2462 MHz	Data Rate
IEEE 802.11b	DEF	DEF	DEF	1 Mbps
IEEE 802.11g	DEF	DEF	DEF	6 Mbps
IEEE 802.11n (HT20)	DEF	DEF	DEF	MCS 0

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

D	Dalta 4		l	Dalta 0	O . T /D	401: (4/5 + 0 -15)
Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Iviode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
IEEE 802.11b	1.00	1	1.00	1.00	100.00%	0.00
IEEE 802.11g	1.380	1	1.380	1.440	95.83%	0.18
IEEE 802.11n (HT20)	1.290	1	1.290	1.350	95.56%	0.20

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	HIPCAM
Model Name	Indoor Camera Max
Brand Name	HIPCAM
Model Difference	N/A
Power Source	DC Voltage supplied from AC/DC adapter.
Power Rating	I/P: 100-240V~ 50/60Hz 0.6A Max O/P: 12.0Vdc 2.0A 24.0W
Products Covered	1 * Adapter: SIMSUKIAN / SK03T-1200200Z 1 * Base
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2412 MHz ~ 2462 MHz
Modulation Technology	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM
Transfer Rate	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 72.2 Mbps
Output Power Max.	IEEE 802.11b: 17.89 dBm (0.0615 W) IEEE 802.11g: 21.99 dBm (0.1581W) IEEE 802.11n (HT20): 22.42 dBm (0.1746 W)
Test Model	Indoor Camera Max
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

(3) Table for Filed Antenna:

Ant.	Manufacture	Product	Туре	Connector	Frequency Range (MHz)	Gain (dBi)
1	2	Wi-Fi Ant.	РСВ	N/A	2400-2500	3.91

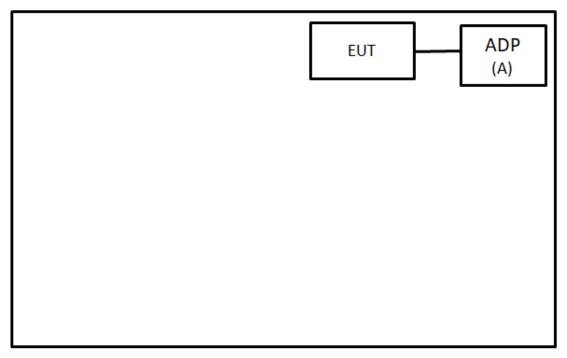
Project No.: 2101T110 Page 9 of 72 Report Version: R01

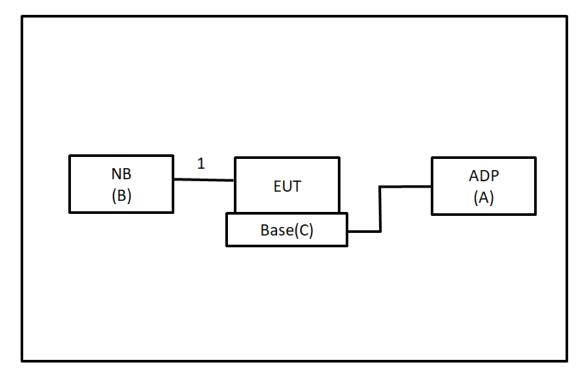
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	TX Mode_IEEE 802.11b	01	-
	TX Mode_IEEE 802.11b		
	TX Mode_IEEE 802.11g	01/11	Bandedge
Transmitter Radiated Emissions	TX Mode_IEEE 802.11n (HT20)		
(above 1GHz)	TX Mode_IEEE 802.11b		
	TX Mode_IEEE 802.11g	01/06/11	Harmonic
	TX Mode_IEEE 802.11n (HT20)		
Bandwidth &	TX Mode_IEEE 802.11b		
Power Spectral Density &	TX Mode_IEEE 802.11g	01/06/11	-
Antenna conducted Spurious Emission	TX Mode_IEEE 802.11n (HT20)		
	TX Mode_IEEE 802.11b		
Output Power	TX Mode_IEEE 802.11g	01/06/11	-
	TX Mode_IEEE 802.11n (HT20)		

NOTE:

- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.
- (4) There were no emissions found below 30 MHz within 20 dB of the limit.


Project No.: 2101T110 Page 10 of 72 Report Version: R01


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Adapter	SIMSUKIAN	SK03T-1200200Z	N/A	Supplied by test requester.
В	NB	hp	TPN-I119	N/A	Furnished by test lab.
С	Base	HIPCAM	N/A	N/A	Supplied by test requester.

ı							
	Item	Shielded	Ferrite Core	Length	Cable Type	Remarks	
ı	1	N/A	N/A	1m	USB Cable	Furnished by test lab.	1

Project No.: 2101T110 Page 12 of 72 Report Version: R01

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	ı	60	II	-18.33

The following table is the setting of the receiver.

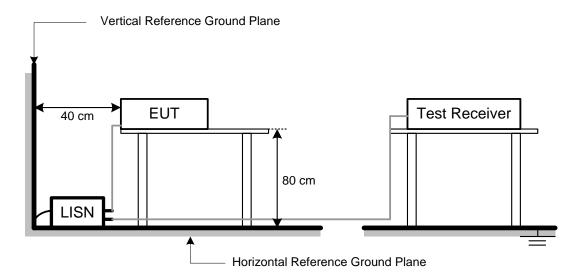
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2101T110 Page 13 of 72 Report Version: R01

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

Project No.: 2101T110 Page 14 of 72 Report Version: R01

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated Emissions (dBuV/m)		Measurement Distance	
(IVIIIZ)	Peak	Average	(meters)	
Above 1000	74	54	3	

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

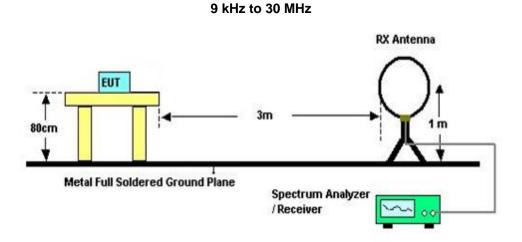
Reading Level		Correct Factor		Measurement Value
19.11	+	2.11		21.22

Measurement Value		Limit Value		Margin Level
21.22	-	54	=	-32.78

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

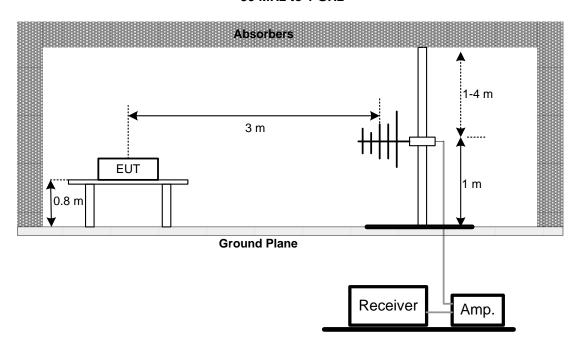
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2101T110 Page 15 of 72 Report Version: R01

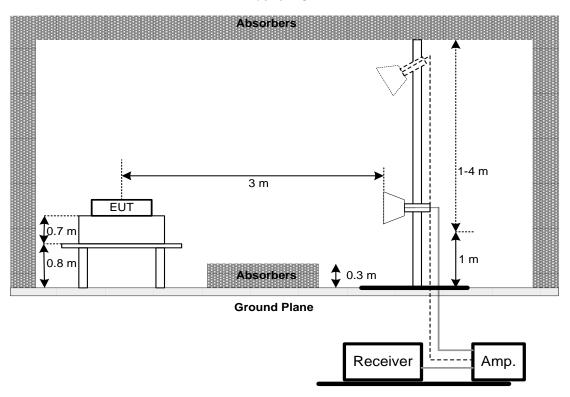

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

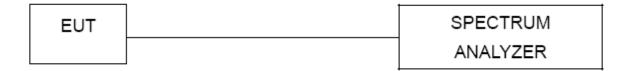
Report No.: BTL-FCCP-3-2101T110 4.6 TEST RESULT - 30 MHZ TO 1 GHZ Please refer to the APPENDIX B. **TEST RESULT – ABOVE 1 GHZ** Please refer to the APPENDIX C. NOTE: (1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2101T110 Page 18 of 72 Report Version: R01

5 BANDWIDTH TEST

5.1 LIMIT

	FCC Part15, Subpart C (15.247)	
Section	Test Item	Limit
15.247(a)	6 dB Bandwidth	500 kHz


5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULT

Please refer to the APPENDIX D.

6 OUTPUT POWER TEST

6.1 LIMIT

	FCC Part15, Subpart C (15.247)	
Section	Test Item	Limit
15.247(b)	Maximum Output Power	1 Watt or 30dBm

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with method 9.1.2 of FCC KDB 558074 D01 DTS Meas Guidance.

6.3 DEVIATION FROM TEST STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULT

Please refer to the APPENDIX E.

7 POWER SPECTRAL DENSITY

7.1 LIMIT

	FCC Part15, Subpart C (15.247)	
Section	Test Item	Limit
15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 3 kHz, VBW = 10 kHz, Sweep time = Auto.

7.3 DEVIATION FROM TEST STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULT

Please refer to the APPENDIX F.

8 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 100 kHz, VBW=300 kHz, Sweep time = Auto.
- c. Offset = antenna gain + cable loss.

8.3 DEVIATION FROM TEST STANDARD

No deviation.

8.4 TEST SETUP

EUT SPECTRUM ANALYZER

8.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULT

Please refer to the APPENDIX G.

Project No.: 2101T110 Page 22 of 72 Report Version: R01

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2020/6/11	2021/6/10
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2020/6/8	2021/6/7
3	EMI Test Receiver	R&S	ESCI	100080	2020/6/15	2021/6/14
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

	Radiated Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC001340	980555	2020/4/10	2021/4/9
2	Preamplifier	EMCI	EMC02325B	980217	2020/4/10	2021/4/9
3	Preamplifier	EMCI	EMC012645B	980267	2020/4/10	2021/4/9
4	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2020/4/10	2021/4/9
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2020/4/10	2021/4/9
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2020/4/10	2021/4/9
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2020/6/10	2021/6/9
8	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2020/6/16	2021/6/15
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2020/6/12	2021/6/11
11	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2020/7/9	2021/7/8
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/23
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/23
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

			Bandwidth			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14

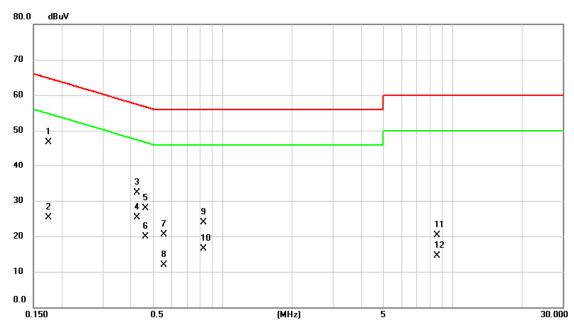
			Output Power			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2495A	1128008	2020/6/11	2021/6/10
2	Power Sensor	Anritsu	MA2411B	1126001	2020/6/11	2021/6/10

		F	ower Spectral De	nsity		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14

	Antenna conducted Spurious Emission					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.
All calibration period of equipment list is one year.

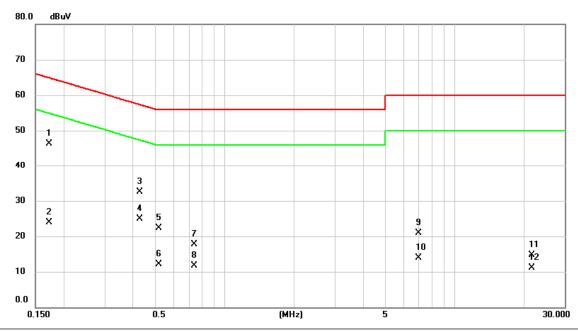
10 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2101T110-FCCP-1 (APPENDIX-TEST PHOTOS).
11 EUT PHOTOS
Please refer to document Appendix No.: EP-2101T110-1 (APPENDIX-EUT PHOTOS).


Project No.: 2101T110 Page 25 of 72 Report Version: R01

APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2101T110 Page 26 of 72 Report Version: R01

Test Mode	Normal	Tested Date	2021/3/9
Test Frequency	-	Phase	Line

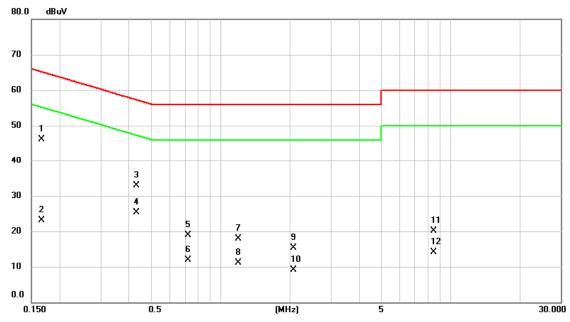


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.1750	37.03	9.68	46.71	64.72	-18.01	QP	
2	0.1750	15.71	9.68	25.39	54.72	-29.33	AVG	
3	0.4267	22.70	9.68	32.38	57.32	-24.94	QP	
4	0.4267	15.55	9.68	25.23	47.32	-22.09	AVG	
5	0.4627	18.27	9.68	27.95	56.64	-28.69	QP	
6	0.4627	10.17	9.68	19.85	46.64	-26.79	AVG	
7	0.5550	10.74	9.68	20.42	56.00	-35.58	QP	
8	0.5550	2.32	9.68	12.00	46.00	-34.00	AVG	
9	0.8250	14.21	9.69	23.90	56.00	-32.10	QP	
10	0.8250	6.91	9.69	16.60	46.00	-29.40	AVG	
11	8.5493	10.48	9.90	20.38	60.00	-39.62	QP	
12	8.5493	4.55	9.90	14.45	50.00	-35.55	AVG	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Ш					
	Test Mode	Normal	Tested Date	2021/3/9	
	Test Frequency	-	Phase	Neutral	

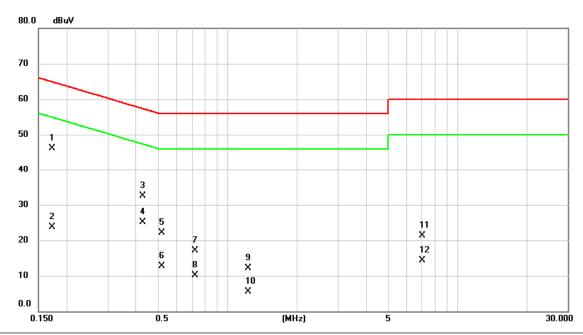

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1725	36.69	9.68	46.37	64.84	-18.47	QP	
2		0.1725	14.30	9.68	23.98	54.84	-30.86	AVG	
3		0.4290	22.81	9.68	32.49	57.27	-24.78	QP	
4		0.4290	15.23	9.68	24.91	47.27	-22.36	AVG	
5		0.5167	12.55	9.68	22.23	56.00	-33.77	QP	
6		0.5167	2.51	9.68	12.19	46.00	-33.81	AVG	
7		0.7395	7.98	9.68	17.66	56.00	-38.34	QP	
8		0.7395	1.99	9.68	11.67	46.00	-34.33	AVG	
9		6.9833	10.97	9.87	20.84	60.00	-39.16	QP	
10		6.9833	4.08	9.87	13.95	50.00	-36.05	AVG	
11		21.5925	4.73	9.95	14.68	60.00	-45.32	QP	
12		21.5925	1.21	9.95	11.16	50.00	-38.84	AVG	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2101T110 Page 28 of 72 Report Version: R01

Ш					
	Test Mode	Idle	Tested Date	2021/3/9	
	Test Frequency	-	Phase	Line	



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.1658	36.37	9.68	46.05	65.17	-19.12	QP	
2	0.1658	13.42	9.68	23.10	55.17	-32.07	AVG	
3	0.4312	23.19	9.68	32.87	57.23	-24.36	QP	
4	0.4312	15.63	9.68	25.31	47.23	-21.92	AVG	
5	0.7236	9.27	9.68	18.95	56.00	-37.05	QP	
6	0.7236	2.23	9.68	11.91	46.00	-34.09	AVG	
7	1.1940	8.21	9.70	17.91	56.00	-38.09	QP	
8	1.1940	1.39	9.70	11.09	46.00	-34.91	AVG	
9	2.0760	5.58	9.74	15.32	56.00	-40.68	QP	
10	2.0760	-0.73	9.74	9.01	46.00	-36.99	AVG	
11	8.4233	10.20	9.90	20.10	60.00	-39.90	QP	
12	8.4233	4.30	9.90	14.20	50.00	-35.80	AVG	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Ш					
	Test Mode	Idle	Tested Date	2021/3/9	
	Test Frequency	-	Phase	Neutral	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1725	36.44	9.68	46.12	64.84	-18.72	QP	
2		0.1725	14.10	9.68	23.78	54.84	-31.06	AVG	
3		0.4290	22.75	9.68	32.43	57.27	-24.84	QP	
4		0.4290	15.35	9.68	25.03	47.27	-22.24	AVG	
5		0.5190	12.35	9.68	22.03	56.00	-33.97	QP	
6		0.5190	3.11	9.68	12.79	46.00	-33.21	AVG	
7		0.7236	7.50	9.68	17.18	56.00	-38.82	QP	
- 8		0.7236	0.40	9.68	10.08	46.00	-35.92	AVG	
9		1.2232	2.36	9.70	12.06	56.00	-43.94	QP	
10		1.2232	-4.17	9.70	5.53	46.00	-40.47	AVG	
11		7.0192	11.41	9.87	21.28	60.00	-38.72	QP	
12		7.0192	4.46	9.87	14.33	50.00	-35.67	AVG	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2101T110 Page 30 of 72 Report Version: R01

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2101T110 Page 31 of 72 Report Version: R01

-	Test Mod	de	IEEE	802.11b		Test Date		202	1/3/5	
Tes	st Frequ	ency	241	2MHz		Polarization	n	Vertical		
	Temp		2	:0°C		Hum.		7(0%	
80.0 dB	uV/m									_
70										
60										
50										-
40			3 X	4 ×	5 X		6 X			
30 X		×								
20										
10										
0.0										
30.000	127.00	224.00	321.00	418.00	515.00 6		0.00 806	5.00	1000.00	МН
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		62.9800	41.14	-9.27	31.87	40.00	-8.13	QP		
2		181.3200	43.69	-9.86	33.83	43.50	-9.67	peak		
3		366.5900	43.78	-5.70	38.08	46.00	-7.92	peak		
4		433.5200	40.47	-4.07	36.40	46.00	-9.60	peak		
5		532.4600	40.32	-2.13	38.19	46.00	-7.81	peak		
6	*	711.9100	37.30	1.07	38.37	46.00	-7.63	QP		

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode	IEEE	802.11b		Test Date		202	1/3/5		
	Test Frequ	•		2MHz		Polarization			Horizontal		
	Tem)	2	0°C		Hum.		7	0%		
80.0	dBuV/m									_	
70											
60 —											
50										-	
40 —		2	3 X	4 ×	5 ×		6 X				
_		1 × ×			×		ſ				
30											
20											
10											
0.0	107.0	201.00	201.00	440.00		10.00			1000.00	<u> </u>	
30.00	00 127.00 Mk.		321.00	418.00		12.00 709 Limit	9.00 80 6 Over	5.00	1000.00	МН	
No.	IVIK.	Freq.	Reading Level	Correct Factor	Measure- ment	LITTIIL	Over				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent	
1		167.7400	44.90	-8.52	36.38	43.50	-7.12	peak	30		
2		245.3400	47.31	-9.46	37.85	46.00	-8.15	peak			
3	*	366.5900	49.42	-5.70	43.72	46.00	-2.28	QP			
4	!	433.5200	44.64	-4.07	40.57	46.00	-5.43	QP			
5		532.4600	39.94	-2.13	37.81	46.00	-8.19	peak			
6		714.8200	38.65	1.15	39.80	46.00	-6.20	QP			

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2101T110 Page 34 of 72 Report Version: R01

Test Mode			IEEE802.11b				Test Date				2021/3/3			
Test Frequency Temp				2412MHz				Polarization				Horizontal		
				21°C				Hum.				69%		
130.0 dB	uV/m													_
120														
110							*							-
100						+	\vdash							\parallel
90						+								-
80							-							
70					500		\	ካ						7
60		مداه مادر و بالباد _ و الراد			1 Transport			1	والمراجعة والمراجعة	سينه ويلى	المساولات	insterentlikaliskaliskaliskandali	5 X	
50	##hired.jphores	things with service consisters.	-Addition-		2				- Marchine - March	y spy (r mis-	clon n.s. sout	Company of the second second	advanted til tim e-n	***
40				•	,								- 6 X	+
30														
20														-
10.0														
	0 2332.00				2392.00			2432		2452.00		72.00	2512.00	МН
No.	Mk.	Freq.		iding vel	Correct Factor		easure ment	-	Limit	C	Over			
		MHz	dE	₿uV	dB	d	BuV/m	(dBuV/m	ì	dB	Detector	Comm	ent
1		2383.300) 26	.35	30.76		57.11		74.00	-1	6.89	peak		
2		2383.300) 14	.78	30.76		45.54		54.00	-8	3.46	AVG		
3	Χ	2412.000	79	.23	30.88	30.88			74.00	3	6.11	peak	NoLin	nit
4	*	2412.000	76	.04	30.88	1	106.92		54.00	5	2.92	AVG	NoLin	nit
5		2500.473	3 26	.63	31.23		57.86		74.00	-1	6.14	peak		
6		2500.473) 5	75	31.23		36.98		54.00	- 1	7.02	AVG		

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mode Test Frequency Temp			IEEE	802.11b		Test Date	2021/3/3 Horizontal		
				2MHz		Polarizatio			
			2	1°C		Hum.		69%	
130.0 dB	uV/m								
120									
110					*				
100					+				
90									
80									
70				\mathrew \land	pd				
60	1	and the second second	ومنتسم والرارات	. mustra		5 Majirana da			a chill balance subse
50 *** ****	han a san a s	ale Andre Anti-Arthur Ar Parkan	COLORONIA DE LA TENTA DE	4111		6	7.000	and all a red out to a red	
40	2 X					×			
30									
20									
10.0									
No.	0 2382.00 Mk.		2422.00	2442.00	2462.00 24 Measure-	182.00 250 Limit	02.00 252 Over	2.00	2562.00 MH
INO.	IVIK.	Freq.	Reading Level	Correct Factor	ment	LITTIIL	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2374.980	25.86	30.72	56.58	74.00	-17.42	peak	
2		2374.980	6.47	30.72	37.19	54.00	-16.81	AVG	
3	Χ	2462.000	78.92	31.08	110.00	74.00	36.00	peak	NoLimit
4	*	2462.000	75.73	31.08	106.81	54.00	52.81	AVG	NoLimit
5		2484.807	27.58	31.17	58.75	74.00	-15.25	peak	
6		2484.807	15.11	31.17	46.28	54.00	-7.72	AVG	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	IEEE	802.11g		Test Date		202	1/3/3
Te	est Frequ	iency		2MHz		Polarization	ı		zontal
	Temp		2	1°C		Hum.		69	9%
130.0 d	BuV/m								
120									
110 -					3				
100 -					* `				
90									
80									
70						11			
60			. An 18	A WALL	יורוויי	MANAGERA			
50	popular sharifyilipe	hard and residence of the second	a ji kundadjura dhiqidh jun Varid	2 X		Mappaparana	Manthagener	Academic State Comment	مسيدين الشريبية
40									6
30									×
20									
10.0									
	00 2332.0		2372.00	2392.00				2.00	2512.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2386.053	32.13	30.77	62.90	74.00	-11.10	peak	
2		2386.053	18.77	30.77	49.54	54.00	-4.46	AVG	
3	Χ	2412.000	79.40	30.88	110.28	74.00	36.28	peak	NoLimit
	*	2412.000	70.24	30.88	101.12	54.00	47.12	AVG	NoLimit
4		21121000							
4 5 6		2499.493	25.69 4.79	31.23 31.23	56.92 36.02	74.00	-17.08 -17.98	peak AVG	

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

٦	est Mod	de	IEEE	802.11g		Test Date		202	1/3/3
Tes	t Frequ	ency		S2MHz		Polarizatio	n	Horiz	zontal
	Temp		2	1°C		Hum.		69	9%
30.0 dB	uV/m								
20									
10					3				
00					/ * * `\				
0									
30									
, <u> </u>				n alauli		11			
50				Trong Manhala an	ıΨ	MR.			
io	1 4 		-homopropri podrebe ch th	4) "		S WAYNER	www.	han in the text desired	lange (Lincoln produced)
						×			
10 H	2 X								
30									
20									
0.0									
	2382.00		2422.00	2442.00				2.00	2562.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2386.533	26.07	30.77	56.84	74.00	-17.16	peak	• • • • • • • • • • • • • • • • • • • •
2		2386.533	5.18	30.77	35.95	54.00	-18.05	AVG	
3	Χ	2462.000	79.58	31.08	110.66	74.00	36.66	peak	NoLimit
4	*	2462.000	70.29	31.08	101.37	54.00	47.37	AVG	NoLimit
5		2483.773	34.10	31.16	65.26	74.00	-8.74	peak	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

٦	Test Mo	de	IEEE802	.11n (HT20	0)	Test Date		202	1/3/3	
Tes	t Frequ	iency	241	12MHz		Polarizatio	า	Hori	zontal	
	Temp)	2	21°C		Hum.		69	9%	
30.0 dB	uV/m									
20										
10					4					
00					* * *\					
00										
eo										
, <u> </u>				1. Julia						
50				LAMMATT.	n n	79 MO 4 .		5		
	gazagyanhadi.	الإمرامية والالتيانية والالتاريخ	way and on his Market N	V ^{11 VI} 2		Mahamman	all tradely training perty	mary wholestopher who	Aparta America	
io (************************************	,			_×						
10 <u> </u>								6 X		
30										
20										
0.0										
	0 2332.0		2372.00	2392.00				2.00	2512.00 M	4H
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Commen	nt
1		2389.307	36.85	30.78	67.63	74.00	-6.37	peak		
2		2389.307	20.01	30.78	50.79	54.00	-3.21	AVG		
3	Χ	2412.000		30.88	111.74	74.00	37.74	peak	NoLimit	
4	*	2412.000	71.26	30.88	102.14	54.00	48.14	AVG	NoLimit	i
5		2485.007	26.54	31.17	57.71	74.00	-16.29	peak		
6		2485.007	5.37	31.17	36.54	54.00	-17.46	AVG		

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

	Test Mo	de	IEEE80	2.11n (HT20)		Test Date		202	1/3/3
T	est Frequ	iency	24	62MHz		Polarizatio	า	Horiz	zontal
	Temp			21°C		Hum.		69	9%
130.0	dBuV/m								
120									
					3				
110					JAY A NAME OF THE PARTY OF THE				
00					^				
					_ \				
30									
30 —									
, <u> </u>				-		. 5			
				All physical Cardin	W,	₩Ĭ			
io	ţ			<i>,</i> ₩₩"	'	YVIIII		Marchine Markey at	
50 ****	edical hallow have to contract of which	on the state of th	Martin Andrews	ny		X	water that the provided	Chilathaean-aitheachdail	A TANA U MANAYAY
10 <u> </u>									
- 1	2 X								
30	X								
30	×								
20	×								
0.0	X 000 2382.0	0 2402.00	2422.00	2442.00	2462.00 24	82.00 250	02.00 252	2.00	2562.00 MI
20		0 2402.00 Freq.	2422.00 Reading		2462.00 24 Measure-	82.00 250 Limit	02.00 252 Over	2.00	2562.00 MI
20 0.0 2362.0	000 2382.0							2.00	2562.00 Mi
20 0.0 2362.0	000 2382.0	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Over dB	2.00 Detector	2562.00 MI
0.0 2362.1 No.	000 2382.0	Freq. MHz 2372.147	Reading Level dBuV 25.70	Correct Factor dB 30.72	Measure- ment dBuV/m 56.42	Limit dBuV/m 74.00	Over dB -17.58	Detector peak	
0.0 2362.1 No.	000 2382.0 Mk.	Freq. MHz 2372.147 2372.147	Reading Level dBuV 25.70 5.74	Correct Factor dB 30.72 30.72	Measure- ment dBuV/m 56.42 36.46	Limit dBuV/m 74.00 54.00	Over dB -17.58 -17.54	Detector peak AVG	Comment
20 0.0 2362.1 No.	000 2382.0 Mk.	MHz 2372.147 2372.147 2462.000	Reading Level dBuV 25.70 5.74 80.05	Correct Factor dB 30.72 30.72 31.08	Measure- ment dBuV/m 56.42 36.46 111.13	Limit dBuV/m 74.00 54.00 74.00	Over dB -17.58 -17.54 37.13	Detector peak AVG peak	Comment
20 2362.1 No.	000 2382.0 Mk.	Freq. MHz 2372.147 2372.147	Reading Level dBuV 25.70 5.74 80.05 70.98	Correct Factor dB 30.72 30.72	Measure- ment dBuV/m 56.42 36.46	Limit dBuV/m 74.00 54.00	Over dB -17.58 -17.54	Detector peak AVG	Comment

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	est Mo					302.11b				Test D					21/3/4
Tes	t Frequ					2MHz			Р	olariza					rtical
1000 10	Temp)			20	0°C				Hum	۱.			7	0%
130.0 dB	uV/m														
120															
120															
10															
100															
10															
30															
'o 🗀															
io															
io															
10		1													
		1 2 X													
80		^													
20															
10.0															
1000.00	3550.0	0 6100.	.00	8650.0	0	11200.00	137	50.00	163	00.00	1885	0.00	21400.00	D	26500.00 MH
No.	Mk.	Freq.		Read		Correct		easure) -	Limit	t	Ove	r		
				Leve		Factor		ment		ID \ \ (,	I.E.			•
		MHz		dBu		dB		BuV/m	1	dBuV/		dB		etector	Comment
1		4824.0		50.4		-9.96		40.51		74.00		-33.4		peak	
2	*	4824.0	00	43.0	1	-9.96	;	33.05		54.00)	-20.9	95	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo			E802.11b		Test Da			1/3/4
Tes	t Frequ		24	412MHz		Polariza			zontal
	Temp	1		20°C		Hum	-	7	0%
130.0 dB	ıV/m								
120									
20									
10									
00									
io									
о									
io									
50									
,0		½ ×							
10 <u> </u>		X							
10									
20									
10.0									
1000.000	3550.0	0 6100.00	0 8650.00	11200.00	13750.00	16300.00	18850.00 2	1400.00	26500.00 MH
No.	Mk.	Freq.	Reading		Measure				
		<u>'</u>	Level	Factor	ment				
		MHz	dBuV	dB	dBuV/n	n dBuV/ı	m dB	Detector	Comment
1		4824.000		-9.96	44.27	74.00	-29.73		
2	*	4824.000	50.54	-9.96	40.58	54.00	-13.42	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

1	est Mo	de		IEEE	802.11b			Т	est Da	ite		202	1/3/4
Tes	t Frequ				7MHz			Po	olarizat				rtical
	Temp			2	0°C				Hum.			7	0%
130.0 dB	uV/m												
120													
110													
100													
30													
30													
30													
70													
60			_										
			1 ½ X										
50			×										
40													
30													
20													
10.0													
	3550.00	D 6100.0	0 8650	0.00	11200.00	1375	0.00	1630	00.00	18850.00	214	00.00	26500.00 MH
No.	Mk.	Freq.		ding	Correct	Me	easure	-	Limit	С	ver		
				vel	Factor		ment						
		MHz		₿uV	dB		3uV/m	(dBuV/r		dB	Detector	Comment
1		7311.000		.43	-2.43		55.00		74.00		9.00	peak	
2	*	7311.000	52	.04	-2.43	4	19.61		54.00	-2	1.39	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod				802.11b			Test Dat			1/3/4
Test	Freque	ency			37MHz			Polarizati	on		zontal
	Temp			2	20°C			Hum.		/(0%
30.0 dBu	V/m										
20											
20											
10											
00											
0											
:0											
o 💳											
"											
50			1								
io			1 2								
			Х								
0											
;o											
20											
0.0											
1000.000	3550.00	6100.0	00	8650.00	11200.00	13750.00	16	300.00 1	8850.00	21400.00	26500.00 MH
No.	Mk.	Freq.		Reading	Correct	Measur	e-	Limit	Over	•	
		<u> </u>		Level	Factor	ment					
		MHz		dBuV	dB	dBuV/r		dBuV/m		Detector	Comment
1		7311.00		55.70	-2.43	53.27		74.00	-20.7		· · · · · · · · · · · · · · · · · · ·
2	*	7311.00	0	48.58	-2.43	46.15	_	54.00	-7.85	5 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod			E802.11b		Test Da			1/3/4
Tes	t Freque	ency	2	462MHz		Polariza			rtical
	Temp			20°C		Hum.	•	7	0%
130.0 dB	uV/m								
120									
110									
100									
90									
80									
70									
60			1						
50			X						
40									
30									
20									
10.0									
	3550.00		8650.00	11200.00	13750.00			400.00	26500.00 MH:
No.	Mk.	Freq.	Reading Level	g Correct Factor	Measure ment	e- Limit	Over		
		MHz	dBuV	dB	dBuV/m	n dBuV/r	n dB	Detector	Comment
1		7386.000	55.41	-2.09	53.32	74.00	-20.68	peak	
2	*	7386.000	50.56	-2.09	48.47	54.00	-5.53	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod t Freque				302.11b 2MHz			Test Da Polariza				1/3/4 zontal
163	Temp	ысу			0°C			Hum				2011(a) 0%
30.0 dB	.V/m				0 0			Hairi	·			3 70
20												
10												
10												
00												
o 📖												
0												
o 💳												
0												
o			ž									
.			×									
0												
0 -												
1000 000	3550.00	6100.00	8650	nn	11200.00	13750	0.00 10	6300.00	18850.00	214	00.00	26500.00 MF
No.	Mk.	Freq.	Rea		Correct		asure-	Limit		ver	00.00	20300.00 MT
140.	IVIIV.	i ieq.	Lev		Factor		nent	LIIIII	. 0	v GI		
		MHz	dB		dB		BuV/m	dBuV/	m c	iB	Detector	Comment
1		7386.000	52.		-2.09		0.15	74.00		3.85	peak	
2	*	7386.000	46.	96	-2.09	4	4.87	54.00) <u>-</u> a	.13	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				802.11g			est Dat			1/3/4
Te	st Frequ				2MHz		Po	larizati	on		rtical
	Temp			2	0°C			Hum.		7	0%
30.0 dE	3uV/m										
20											
10											
100											
10											
30											
'o 🗀											
io											
50											
		1 ×									
10		2									
30		×									
20											
10.0											
1000.00	00 3550.0	0 6100.0	00 8	650.00	11200.00	13750.00	1630	0.00 1	8850.00	21400.00	26500.00 MH
No.	Mk.	Freq.		eading	Correct	Measur	э-	Limit	Ove	•	
				Level	Factor	ment				_	
		MHz		dBuV	dB	dBuV/n		BuV/m		Detector	Comment
1		4824.00		51.89	-9.96	41.93		74.00	-32.0		
2	*	4824.00	0	42.39	-9.96	32.43		54.00	-21.5	7 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo					302.11g				Test Da				21/3/4
Tes	t Frequ					2MHz			F	Polariza				zontal
	Temp)			2	0°C				Hum	١.		7	0%
130.0 dB	.V/m													
120														
20														
10														
00														
_														
0														
0														
o 💳														
0														
0														
o		1 X												
		2 X												
0		^												
:0														
10.0														
1000.000	3550.0	0 6100	.00	8650	.00	11200.00	137	50.00	163	300.00	1885	0.00 21	1400.00	26500.00 MH
No.	Mk.	Freq		Rea		Corre		leasur	e-	Limit	t	Over	_	
				Le		Facto		ment						
		MHz		dB		dB		lBuV/r		dBuV/		dB	Detector	Comment
1		4824.0		52.		-9.96		42.48		74.00		-31.52		
2	*	4824.0	00	42.	62	-9.96		32.66		54.00)	-21.34	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod t Freque			E802.11g 37MHz		Test Date Polarizatio			1/3/4 rtical
163	Temp	ысу		20°C		Hum.	11		0%
30.0 dB	<u>10111₽</u> .W/m			200		T IGITI.			0 70
20									
10									
00									
10									
10									
0									
io			1 X 2						
0			×						
0									
0.0									
	3550.00		8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		7311.000	54.05	-2.43	51.62	74.00	-22.38	peak	
2	*	7311.000	43.33	-2.43	40.90	54.00	-13.10	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod			802.11g		Test Da			1/3/4
Tes	t Freque	ency		7MHz		Polariza			zontal
	Temp		2	0°C		Hum		7	0%
130.0 dB	W/m								
120									
20									
10									
00									
·									
:0									
o 💳									
0									
			1 ×						
io <u> </u>									
0			2 X						
80									
20									
10.0									
	3550.00		8650.00	11200.00	13750.00	16300.00		21400.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/ı	m dB	Detector	Comment
1		7311.000	53.46	-2.43	51.03	74.00			2 0
2	*	7311.000	42.58	-2.43	40.15	54.00		•	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod t Freque			802.11g 62MHz		Test Date Polarization			1/3/4 rtical
163	Temp	ысу		20°C		Hum.	11)%
30.0 dB	.V/m		•			1101111			<i>5</i> 70
20									
10									
00									
o									
0									
0			1 *						
0			2 X						
o									
o									
0.0	2550.00	6100.00	0050.00	11200.00	10750.00 14	2200.00 400	050.00	00.00	20500 00 141
No.	3550.00 Mk.	6100.00 Freq.	8650.00 Reading	11200.00 Correct	13750.00 10 Measure-	6300.00 188 Limit	850.00 214 Over	00.00	26500.00 MF
		- 1	Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		7386.000	52.89	-2.09	50.80	74.00	-23.20	peak	
2	*	7386.000	43.69	-2.09	41.60	54.00	-12.40	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod			EE802.					est Da				1/3/4
Tes	t Freque	ency	2	2462MF	Ηz			Po	larizat				zontal
	Temp			20°C					Hum.			7	0%
130.0 dB	W/m												
120													
110													
100													
0													
во													
70													
50			_										
50			X .										
4 0			2 X										
30													
20													
10.0													
	3550.00		8650.00		00.00	13750		1630		18850		00.00	26500.00 MH
No.	Mk.	Freq.	Readir Leve		orrect actor		asure- nent	-	Limit		Over		
		MHz	dBu∖		dB		BuV/m	С	lBuV/r	n	dB	Detector	Comment
1		7386.000	53.45	<u>-</u>	2.09	5	1.36		74.00		-22.64	peak	
2	*	7386.000	42.54	ļ -	2.09	4	0.45		54.00		-13.55	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo		IEE		.11n (HT20	0)	Test Da			21/3/4
Tes	t Frequ				2MHz		Polariza			ertical
	Temp	1		2	0°C		Hum			70%
130.0 dB	uV/m									
120										
20										
10										
00										
0										
·										
0 -										
0										
, u										
0		_								
0		1 X								
:0		2 X								
20										
0.0										
	3550.0			0.00	11200.00	13750.00	 300.00	18850.00	21400.00	26500.00 MH
No.	Mk.	Freq.		ading evel	Correct Factor	Measu	Limit	Ov	er	
		MHz		3uV	dB	men dBuV	dBuV/ı	m dl	B Detecto	Comment
1		4824.00		.92	-9.96	41.9	74.00			Johnnon
2	*	4824.00		2.59	-9.96	32.6	54.00			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	IEEE8	302.11r) (HT20))		-	Test Da	ate		202	1/3/4
	st Frequ			2412M		- /			olariza				zontal
	Temp			20°C	,				Hum.			7	0%
130.0 di	3uV/m								1				
120													
110													
100													
90													
80													
70													
60													
50													
40		X											
		2 X											
30		^											
20													
10.0													
1000.00	00 3550.0	0 6100.0	0 8650.0	0 11:	200.00	1375	50.00	163	00.00	18850	0.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Readi		orrect		easure	-	Limit		Over		
		N 41 1	Leve		actor		ment		JD 144		ID.	Datast	0
		MHz	dBu'		dB		BuV/m		dBuV/r		dB	Detector	Comment
1	*	4824.00			-9.96		42.94		74.00		-31.06	peak	
2	••	4824.00	2 42.6	ŏ	-9.96		32.72		54.00)	-21.28	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Т	est Mod	10	IEEE8	02.11n (H	1T20)		Tact	Date		202	1/3/4
	t Freque			437MHz				izatio			rtical
	Temp	J.1.0 y		20°C				um.			0%
130.0 dB	uV/m										
120											
110											
100											
90											
80											
70											
60											
50			1 X								
40			2 X								
30											
20											
10.0											
	3550.00						16300.00			1400.00	26500.00 MH:
No.	Mk.	Freq.	Readir Level			leasure ment	- Li	mit	Over		
		MHz	dBuV			BuV/m	dBı	ıV/m	dB	Detector	Comment
1		7311.000				52.53		.00	-21.47		
2	*	7311.000	44.42	-2.	43	41.99	54	.00	-12.01	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

-	est Mod	10	IEEE803	2.11n (HT20))	Test Da	tο	202	1/3/4
	t Freque			37MHz)	Polarizat			zontal
100	Temp	Jiioy		20°C		Hum.	.011		0%
130.0 dB	uV/m								
120									
110									
100									
90									
80									
70									
60									
50			×						
40			2 X						
30									
20									
10.0									
	3550.00		8650.00	11200.00	13750.00			4 00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	n dB	Detector	Comment
1		7311.000	52.90	-2.43	50.47	74.00	-23.53	peak	
2	*	7311.000	43.22	-2.43	40.79	54.00	-13.21	AVG	

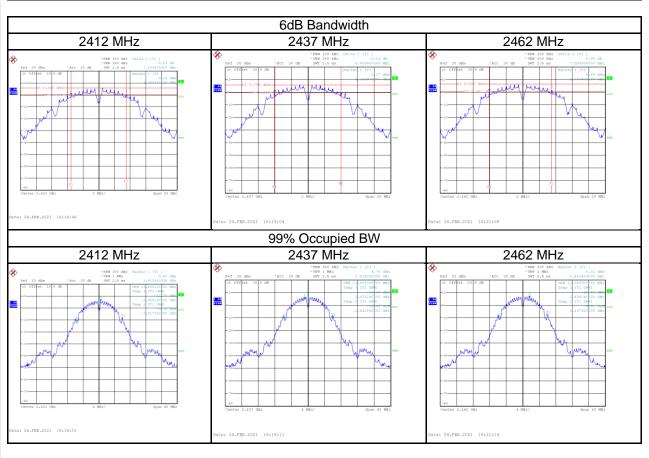
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod		IEEE		11n (HT20	0)		Test Da			21/3/4
Tes	t Freque	ency			2MHz			Polariza			ertical
	Temp			20)°C			Hum			70%
130.0 dB	IV/m										
120											
20											
110											
100											
_											
90											
30											
, <u> </u>											
60			1								
50											
10			2 X								
30											
20											
10.0											
1000.000	3550.00	6100.00	8650.0	00	11200.00	13750.0	0 16	300.00	18850.00	21400.00	26500.00 MH
No.	Mk.	Freq.	Read		Correct	Meas		Limit	Ov	er	
			Leve		Factor	me		15.)			
		MHz	dBu		dB	dBu\		dBuV/ı			Comment
1		7386.000			-2.09	53.		74.00			
2	*	7386.000	43.7	′4	-2.09	41.	65	54.00	-12	.35 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

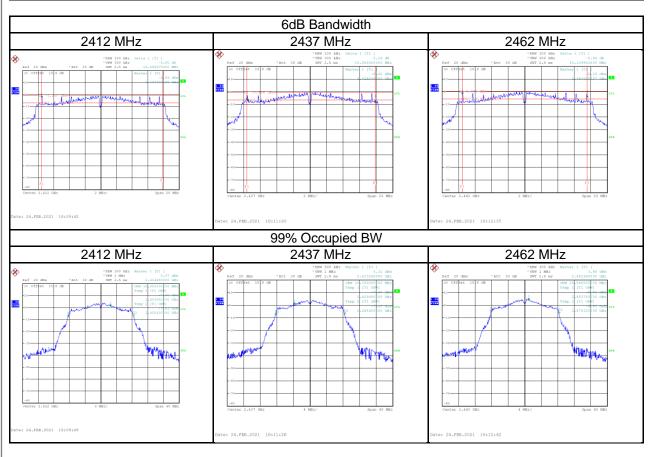
-				-000	44 (ПТО	2)		+				14/0/4
	est Mod		IEEE		11n (HT20 2MHz))		Test [Polariz				21/3/4 zontal
res	t Frequ Temp	ency			21VIHZ D°C			Polariz Hur		1		2011ai 0%
130.0 dB	nA∖w nA∖w			۷.	<i>.</i>			i iui	11.		,	0 70
120												
110												
100												
90												
80												
70												
60												
00			1									
50			X X									
40			2 X									
30												
20												
10.0												
1000.00	3550.00	6100.00	8650.	.00	11200.00	13750	.00 1	6300.00	188	50.00 2	21400.00	26500.00 MHz
No.	Mk.	Freq.	Read		Correct		asure-	Lim	it	Over		
		N 41 1	Lev		Factor		nent	ın '	11	ID.	Datasi	0
4		MHz	dBu		dB		uV/m	dBu\		dB	Detector	Comment
1	*	7386.000			-2.09		1.15	74.0		-22.85		
2		7386.000	42.	oδ	-2.09	4(0.59	54.0	JU	-13.41	l AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

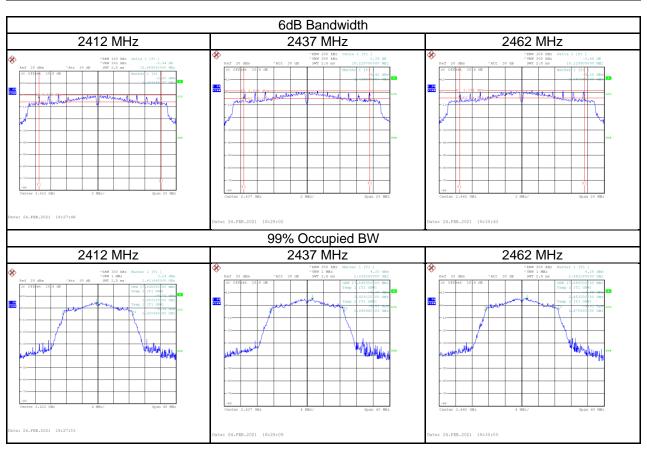

3LL		Report No.: BTL-FCCP-3-2101T110
		·
	APPENDIX D	BANDWIDTH

Project No.: 2101T110 Page 59 of 72 Report Version: R01

Test Mode IEEE 802.11b


Test Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2412	7.11	11.68	≥ 500	Pass
2437	8.07	11.60	≥ 500	Pass
2462	7.60	11.68	≥ 500	Pass

Test Mode IEEE 802.11g


Test Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2412	15.47	16.80	≥ 500	Pass
2437	15.55	16.72	≥ 500	Pass
2462	15.14	16.56	≥ 500	Pass

Test Mode	IEEE 802.11n (HT20)
-----------	---------------------

Test Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2412	15.67	17.84	≥ 500	Pass
2437	15.23	17.84	≥ 500	Pass
2462	15.13	17.68	≥ 500	Pass

APPENDIX E	OUTPUT POWER

Project No.: 2101T110 Page 63 of 72 Report Version: R01

Test Mode IEEE 802.11b	Tested Date	2021/2/24
------------------------	-------------	-----------

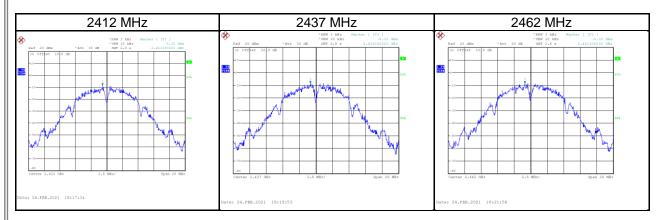
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)	Limit (W)	Result
2412	17.17	0.0521	30.00	1.0000	Complies
2437	17.70	0.0589	30.00	1.0000	Complies
2462	17.89	0.0615	30.00	1.0000	Complies

	IEEE 000 44	T	0004/0/04
Test Mode	IEEE 802.11g	Tested Date	2021/2/24

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)	Limit (W)	Result
2412	20.91	0.1233	30.00	1.0000	Complies
2437	21.47	0.1403	30.00	1.0000	Complies
2462	21.99	0.1581	30.00	1.0000	Complies

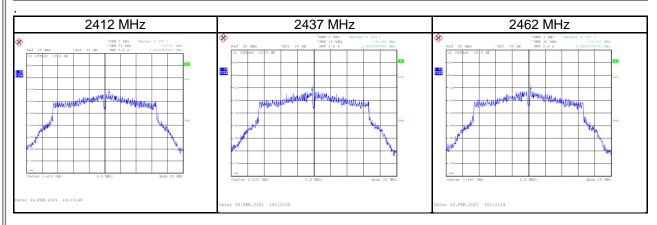
Frequency	Conducted Power	Conducted Power (W)	Limit	Limit	Result
(MHz)	(dBm)		(dBm)	(W)	
2412	21.57	0.1435	30.00	1.0000	Complies
2437	22.05	0.1603	30.00	1.0000	Complies
2462	22.42	0.1746	30.00	1.0000	Complies

Project No.: 2101T110 Page 64 of 72 Report Version: R01

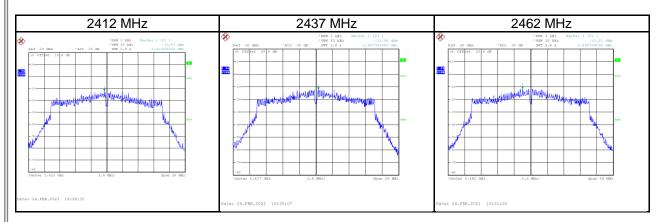

APPENDIX F	POWER SPECTRAL DENSITY		

Project No.: 2101T110 Page 65 of 72 Report Version: R01

Test Mode IEEE 802.11b

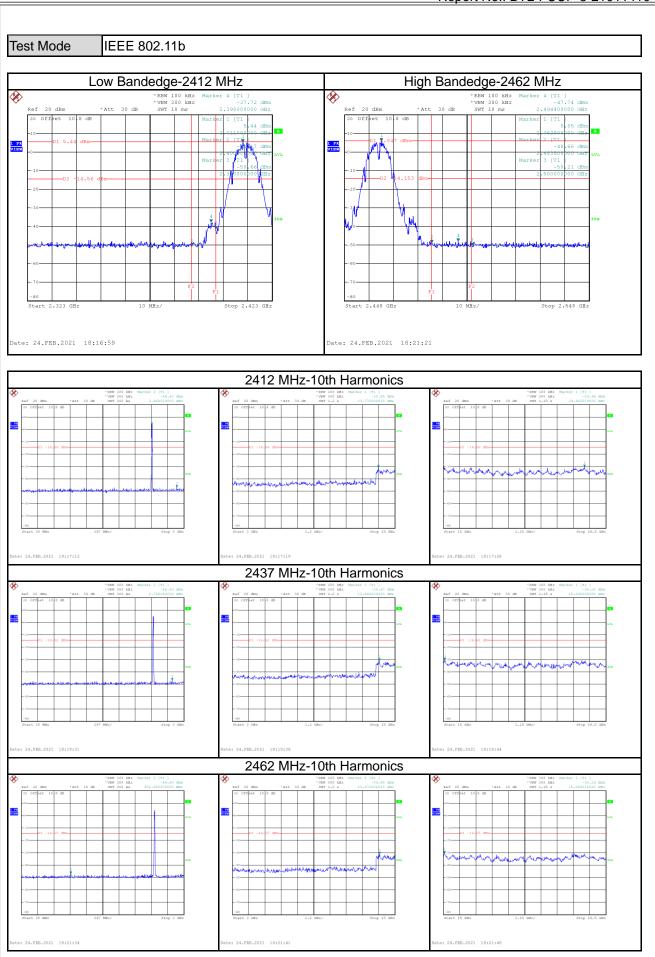

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-8.22	8.00	Pass
2437	-8.33	8.00	Pass
2462	-8.30	8.00	Pass

	Test Mode	IEEE 802.11g
--	-----------	--------------

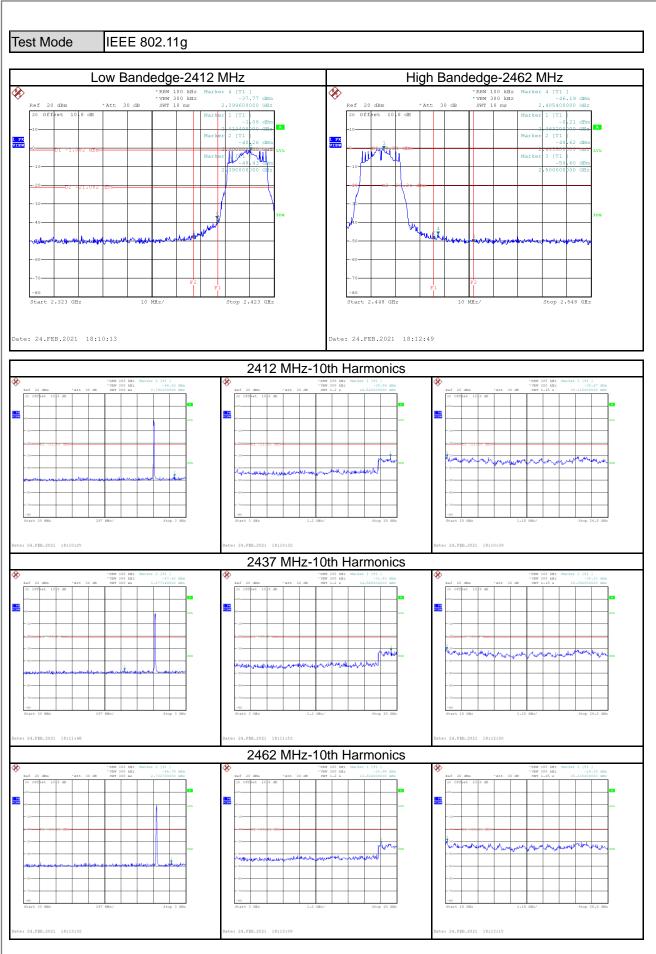

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-13.32	8.00	Pass
2437	-12.26	8.00	Pass
2462	-11.03	8.00	Pass

Test Mode	IEEE 802.11n (HT20)
-----------	---------------------

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-11.93	8.00	Pass
2437	-11.95	8.00	Pass
2462	-11.01	8.00	Pass



APPENDIX G	ANTENNA CONDUCTED SPURIOUS EMISSIONS


Project No.: 2101T110 Page 69 of 72 Report Version: R01

