

FCC Radio Test Report

FCC ID: 2ATYCHMX03

Report No. : BTL-FCCP-1-2101T110

Equipment : HIPCAM

Model Name : Indoor Camera Max

Brand Name : HIPCAM

Applicant: Hipcam Global LLC

Address : 112 Capitol Trail, Newark, Delaware, 19711 United States

Manufacturer : Goldtek Technology Co., Ltd.

Address : 16F., No.166, Jian 1st Rd., Zhonghe Dist., New Taipei City 235, Taiwan

(R.O.C.)

Radio Function : Lora (Hybrid)

FCC Rule Part(s) : FCC Part15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2021/2/2

Date of Test : 2021/2/2 ~ 2021/3/17

Issued Date : 2021/4/16

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Peter Chen, Engineer

Approved by : ____

Scott Hsu , Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2101T110 Page 2 of 57 Report Version: R01

CONTENTS REVISON HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 7 1.2 1.3 TEST ENVIRONMENT CONDITIONS 8 1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 9 **GENERAL INFORMATION** 2 10 **DESCRIPTION OF EUT** 2.1 10 2.2 **TEST MODES** 11 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 12 2.4 SUPPORT UNITS 13 3 AC POWER LINE CONDUCTED EMISSIONS TEST 14 3.1 LIMIT 14 3.2 **TEST PROCEDURE** 14 **DEVIATION FROM TEST STANDARD** 3.3 14 3.4 **TEST SETUP** 15 3.5 **TEST RESULT** 15 4 RADIATED EMISSIONS TEST 16 4.1 LIMIT 16 4.2 **TEST PROCEDURE** 17 **DEVIATION FROM TEST STANDARD** 4.3 17 4.4 **TEST SETUP** 17 **EUT OPERATING CONDITIONS** 4.5 18 TEST RESULT - 30 MHZ TO 1 GHZ 4.6 19 4.7 TEST RESULT - ABOVE 1 GHZ 19 NUMBER OF HOPPING CHANNEL 5 20 5.1 LIMIT 20 **TEST PROCEDURE** 5.2 20 5.3 **DEVIATION FROM STANDARD** 20 5.4 **TEST SETUP** 20 **EUT OPERATION CONDITIONS** 20 5.5 **TEST RESULTS** 5.6 20 6 AVERAGE TIME OF OCCUPANCY (DWELL TIME) 21 6.1 21 6.2 **TEST PROCEDURE** 21 6.3 **DEVIATION FROM STANDARD** 21 **TEST SETUP** 6.4 21 **EUT OPERATION CONDITIONS** 6.5 21 6.6 **TEST RESULTS** 21 7 HOPPING CHANNEL SEPARATION MEASUREMENT 22 7.1 LIMIT 22 **TEST PROCEDURE** 22 7.2 7.3 **DEVIATION FROM STANDARD** 22 7.4 **TEST SETUP** 22 7.5 **TEST RESULTS** 22 20 DB BANDWIDTH TEST 23 8

8.1	LIMIT	23
8.2	TEST PROCEDURE	23
8.3	DEVIATION FROM STANDARD	23
8.4	TEST SETUP	23
8.5	EUT OPERATION CONDITIONS	23
8.6	TEST RESULTS	23
9	OUTPUT POWER TEST	24
9.1	LIMIT	24
9.2	TEST PROCEDURE	24
9.3	DEVIATION FROM STANDARD	24
9.4	TEST SETUP	24
9.5	EUT OPERATION CONDITIONS	24
9.6	TEST RESULTS	24
10	ANTENNA CONDUCTED SPURIOUS EMISSION	25
10.1	LIMIT	25
10.2	TEST PROCEDURE	25
10.3	DEVIATION FROM STANDARD	25
10.4	TEST SETUP	25
10.5	EUT OPERATION CONDITIONS	25
10.6	TEST RESULTS	25
11	POWER SPECTRAL DENSITY TEST	26
11.1	LIMIT	26
11.2	TEST PROCEDURE	26
11.3	DEVIATION FROM STANDARD	26
11.4	TEST SETUP	26
11.5	EUT OPERATION CONDITIONS	26
11.6	TEST RESULTS	26
12	LIST OF MEASURING EQUIPMENTS	27
13	EUT TEST PHOTO	29
14	EUT PHOTOS	29
APPEN	DIX A AC POWER LINE CONDUCTED EMISSIONS	30
APPEN	DIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	35
APPEN	DIX C RADIATED EMISSIONS - ABOVE 1 GHZ	38
APPEN	DIX D NUMBER OF HOPPING CHANNEL	43
APPEN	DIX E AVERAGE TIME OF OCCUPANCY (DWELL TIME)	45
APPEN	DIX F HOPPING CHANNEL SEPARATION MEASUREMENT	48
APPEN	DIX G 20dB BANDWIDTH	50
APPEN	DIX H OUTPUT POWER	52
APPEN	DIX I ANTENNA CONDUCTED SPURIOUS EMISSION	54
APPEN	DIX J POWER SPECTRAL DENSITY TEST	56

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-1-2101T110	R00	Original Report.	2021/4/9
BTL-FCCP-1-2101T110	R01	Revised report to address TCB's comments.	2021/4/16

Project No.: 2101T110 Page 5 of 57 Report Version: R01

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)								
Standard(s) Section	Description	Test Result	Judgement	Remark				
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass					
15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass					
15.247(a)(1)(i)	Number of Hopping Channel	APPENDIX D	Pass					
15.247(f)	Average Time of Occupancy (Dwell Time)	APPENDIX E	Pass					
15.247(a)(1)	Hopping Channel Separation	APPENDIX F	Pass					
15.247(a)(1)(i)	20dB Bandwidth	APPENDIX G	Pass					
15.247(b)(2)	Output Power	APPENDIX H	Pass					
15.247(d)	Antenna conducted Spurious Emission	APPENDIX I	Pass					
15.247(f)	Power Spectral Density	APPENDIX J	Pass					
15.203	Antenna Requirement		Pass					

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2101T110 Page 6 of 57 Report Version: R01

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

□ CB08 □ CB11 □ CB15 □ CB16

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Number of Hopping Channel	0.00
Average Time of Occupancy (Dwell Time)	1.20
Hopping Channel Separation	1.20
20dB Bandwidth	1.13
Output Power	1.06
Antenna conducted Spurious Emission	1.14
Conducted Band edges	1.13
Power Spectral Density	1.20

NOTE:

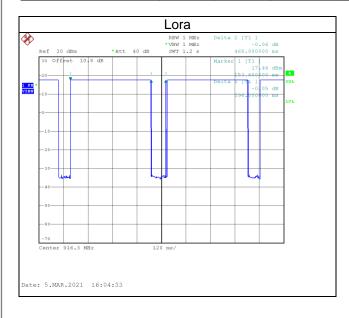
Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	20~21 °C, 70~74 %	AC 120V	Vincent Lee
Radiated emissions below 1 GHz	20 °C, 70 %	AC 120V	Jay Kao
Radiated emissions above 1 GHz	21 °C, 68 %	AC 120V	Jay Kao
Number of Hopping Frequency	22 °C, 52 %	AC 120V	Nero Hsieh
Average Time of Occupancy(Dwell Time)	22 °C, 52 %	AC 120V	Nero Hsieh
Hopping Channel Separation	22 °C, 52 %	AC 120V	Nero Hsieh
20dB Bandwidth	22 °C, 52 %	AC 120V	Nero Hsieh
Output Power	22 °C, 52 %	AC 120V	Nero Hsieh
Antenna conducted Spurious Emission	22 °C, 52 %	AC 120V	Nero Hsieh
Power Spectral Density	22 °C, 52 %	AC 120V	Nero Hsieh

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software		Ampak RFT	estTool v7.0	
Modulation Mode	916.3 MHz	917.3 MHz	918.3 MHz	Data Rate
FSK	DEF	DEF	DEF	-


Project No.: 2101T110 Page 8 of 57 Report Version: R01

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Mode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
Lora	396.000	1	396.000	468.000	84.62%	0.73

Project No.: 2101T110 Page 9 of 57 Report Version: R01

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	HIPCAM	
Model Name Indoor Camera Max		
Brand Name HIPCAM		
Model Difference	N/A	
	1.4.1	
Power Source	DC Voltage supplied from AC/DC adapter.	
Power Rating	I/P: 100-240V~ 50/60Hz 0.6A Max	
rower Raung	O/P: 12.0Vdc 2.0A 24.0W	
Droducto Covered	1 * Adapter: SIMSUKIAN / SK03T-1200200Z	
Products Covered	1 * Base	
Operation Frequency	916.3 MHz ~ 918.3 MHz	
Modulation Type	FSK	
Modulation Technology	FHSS	
Output Power Max.	17.78 dBm (0.0600 W)	
Test Model	Indoor Camera Max	
Sample Status	Engineering Sample	
EUT Modification(s)	N/A	

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

Channel	Frequency (MHz)
01	916.3
02	917.3
03	918.3

(3) Table for Filed Antenna:

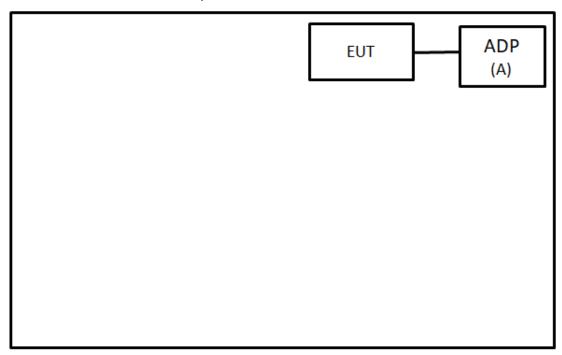
Ant.	Manufacture	Product	Туре	Connector	Frequency Range (MHz)	Gain (dBi)
1	PSA	Lora US915	FPCB	N/A	902-928	0.67

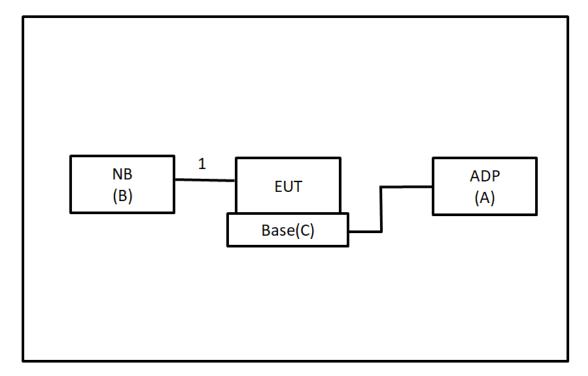
Project No.: 2101T110 Page 10 of 57 Report Version: R01

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	Lora	03	-
Transmitter Radiated Emissions (above 1GHz)	Lora	01/03	Harmonic
Number of Hopping Frequency	Lora	01~03	-
Average Time of Occupancy(Dwell Time)	Lora	01/02/03	-
Hopping Channel Separation	Lora	01/03	-
20dB Bandwidth	Lora	01/02/03	-
Output Power	Lora	01/02/03	-
Antenna conducted Spurious Emission	Lora	01/02/03	-
Power Spectral Density	Lora	01/02/03	-

NOTE:


- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.(3) There were no emissions found below 30 MHz within 20 dB of the limit.


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Adapter	SIMSUKIAN	SK03T-1200200Z	N/A	Supplied by test requester.
В	NB	hp	TPN-I119	N/A	Furnished by test lab.
С	Base	HIPCAM	N/A	N/A	Supplied by test requester.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks	l
1	N/A	N/A	1m	USB Cable	Furnished by test lab.	

Project No.: 2101T110 Page 13 of 57 Report Version: R01

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

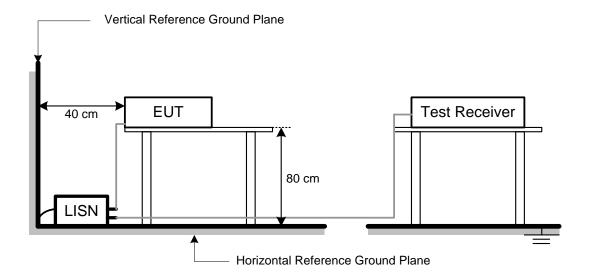
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2101T110 Page 14 of 57 Report Version: R01

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)		Emissions V/m)	Measurement Distance
(IVIHZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

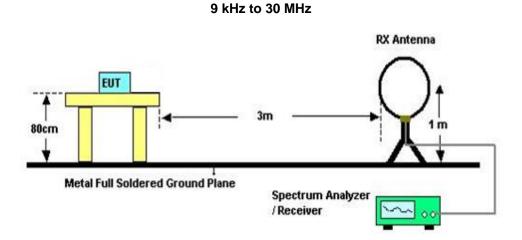
Reading Level		Correct Factor		Measurement Value
35.45	+	-11.37	=	24.08

Measurement Value		Limit Value		Margin Level
24.08	-	40	-	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

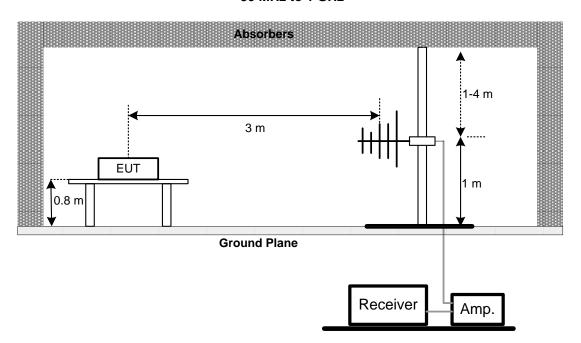
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2101T110 Page 16 of 57 Report Version: R01

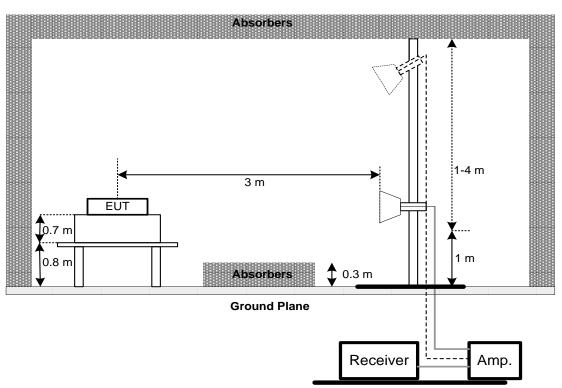

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

	Report No.: BTL-FCCP-1-2101T110
4.6 TEST RESULT – 30 MHZ TO 1 GHZ	
Please refer to the APPENDIX B.	
4.7 TEST RESULT – ABOVE 1 GHZ	
Please refer to the APPENDIX C.	
NOTE: (1) No limit: This is fundamental signal, the judgment is not appli For fundamental signal judgment was referred to Peak outpu	cable. t test.

Project No.: 2101T110 Page 19 of 57 Report Version: R01

5 NUMBER OF HOPPING CHANNEL

5.1 LIMIT

- □ N ≥ 50, 20 dB bandwidth of the hopping channel is less than 250 kHz
- ☐ N ≥ 25, 20 dB bandwidth of the hopping channel is 250 kHz or greater
- Mybrid mode, No minimum number of hopping channels associated with hybrid system.

N: Number of Hopping Frequencies

5.2 TEST PROCEDURE

- a. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Pf eak Trace max hold.
- b. Allow trace to stabilize.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2101T110 Page 20 of 57 Report Version: R01

6 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

6.1 LIMIT

- \square ≤ 0.4 second within a 20 second period, 20 dB bandwidth of the hopping channel is less than 250 kHz
- ☐ ≤ 0.4 second within a 10 second period, 20 dB bandwidth of the hopping channel is 250 kHz or greater
- ☑ Hybrid mode ,an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4

6.2 TEST PROCEDURE

- a. Set RBW=100kHz, VBW=300kHz, Sweep time=6.4s / 500ms, Detector=Peak, Span=0Hz, Trace max hold
- b. Measure and record the burst on time.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

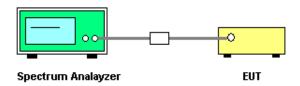
Please refer to the APPENDIX E.

Project No.: 2101T110 Page 21 of 57 Report Version: R01

7 Hopping Channel Separation Measurement

71 IIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.


7.2 TEST PROCEDURE

- a. Set RBW=10kHz, VBW=30kHz, Sweep time=Auto, Detector=Peak Trace max hold.
- b. Allow trace to stabilize.
- c. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX F.

Project No.: 2101T110 Page 22 of 57 Report Version: R01

8 20 dB BANDWIDTH TEST

81 IIMIT

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

8.2 TEST PROCEDURE

- a. Set RBW=3kHz, VBW=10kHz, Sweep time=Auto, Detector=Peak Trace max hold.
- b. Allow trace to stabilize.
- c. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

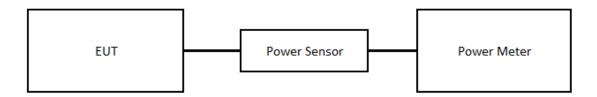
Please refer to the APPENDIX G.

Project No.: 2101T110 Page 23 of 57 Report Version: R01

9 OUTPUT POWER TEST

9.1 LIMIT

- □ 1 Watt, systems using digital modulation
- ☐ 1 Watt, frequency hopping systems employing at least 50 hopping channels
- □ 0.25 Watt, frequency hopping systems employing less than 50 hopping channels, but at least 25 hopping channels


9.2 TEST PROCEDURE

- a. A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- b. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

Project No.: 2101T110 Page 24 of 57 Report Version: R01

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

EUT SPECTRUM ANALYZER

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

Project No.: 2101T110 Page 25 of 57 Report Version: R01

11 POWER SPECTRAL DENSITY TEST

11.1 LIMIT

Power spectral density shall not be greater than 8 dBm in any 3 kHz band. This item is for Hybrid mode.

11.2 TEST PROCEDURE

- ☐ Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
- a. Set the RBW = 3kHz, VBW = 10kHz.
- b. Detector = Peak, Sweep time = auto couple.
- c. Trace mode = max hold, allow trace to fully stabilize.
- d. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
- a. Set the RBW = 3kHz, VBW = 10 kHz.
- b. Detector = RMS, Sweep time = auto couple.
- c. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- d. Use the peak marker function to determine the maximum amplitude level.

11.3 DEVIATION FROM STANDARD

No deviation.

11.4 TEST SETUP

11.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

11.6 TEST RESULTS

Please refer to the APPENDIX J.

Project No.: 2101T110 Page 26 of 57 Report Version: R01

12 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2020/6/11	2021/6/10		
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2020/6/8	2021/6/7		
3	EMI Test Receiver	R&S	ESCI	100080	2020/6/15	2021/6/14		
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

	Radiated Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Preamplifier	EMCI	EMC001340	980555	2020/4/10	2021/4/9		
2	Preamplifier	EMCI	EMC02325B	980217	2020/4/10	2021/4/9		
3	Preamplifier	EMCI	EMC012645B	980267	2020/4/10	2021/4/9		
4	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2020/4/10	2021/4/9		
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2020/4/10	2021/4/9		
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2020/4/10	2021/4/9		
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2020/6/10	2021/6/9		
8	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24		
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2020/6/16	2021/6/15		
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2020/6/12	2021/6/11		
11	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/23		
12	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/23		
13	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

	Number of Hopping Frequency							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14		

	Average Time of Occupancy(Dwell Time)							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14		

Hopping Channel Separation							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14	

Project No.: 2101T110 Page 27 of 57 Report Version: R01

20dB Bandwidth						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14

	Output Power						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Power Meter	Anritsu	ML2495A	1128008	2020/6/11	2021/6/10	
2	Power Sensor	Anritsu	MA2411B	1126001	2020/6/11	2021/6/10	

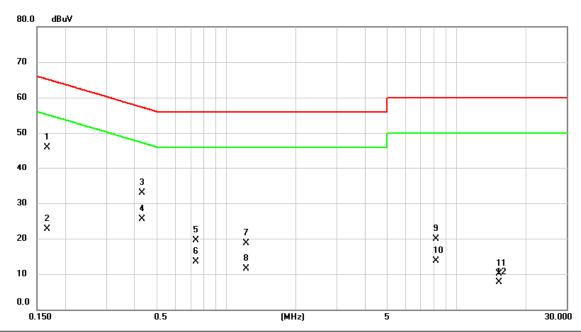
Antenna conducted Spurious Emission							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14	

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2101T110 Page 28 of 57 Report Version: R01

13 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2101T110-FCCP-1 (APPENDIX-TEST PHOTOS).
14 EUT PHOTOS
Please refer to document Appendix No.: EP-2101T110-1 (APPENDIX-EUT PHOTOS).

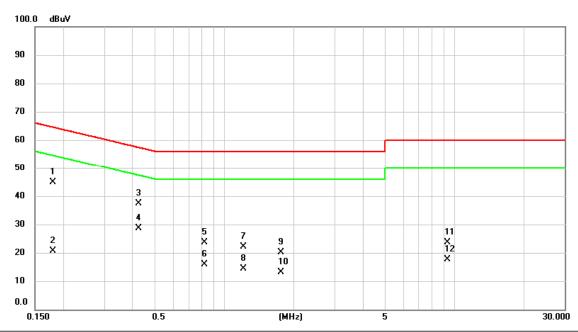
Project No.: 2101T110 Page 29 of 57 Report Version: R01



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2101T110 Page 30 of 57 Report Version: R01

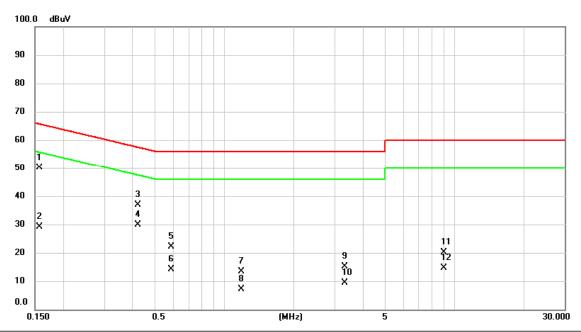
Test Mode	Normal	Tested Date	2021/3/9
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1658	36.28	9.68	45.96	65.17	-19.21	QP	
2		0.1658	13.12	9.68	22.80	55.17	-32.37	AVG	
3		0.4312	23.26	9.68	32.94	57.23	-24.29	QP	
4		0.4312	15.75	9.68	25.43	47.23	-21.80	AVG	
5		0.7372	9.90	9.68	19.58	56.00	-36.42	QP	
6		0.7372	3.81	9.68	13.49	46.00	-32.51	AVG	
7		1.2142	8.95	9.70	18.65	56.00	-37.35	QP	
8		1.2142	1.78	9.70	11.48	46.00	-34.52	AVG	
9		8.1532	10.05	9.89	19.94	60.00	-40.06	QP	
10		8.1532	3.91	9.89	13.80	50.00	-36.20	AVG	
11		15.2498	0.15	9.95	10.10	60.00	-49.90	QP	
12		15.2498	-2.21	9.95	7.74	50.00	-42.26	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

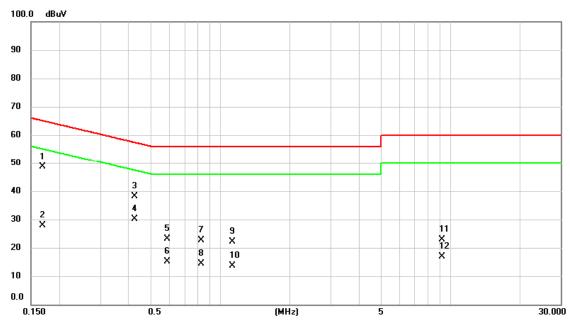
Test Mode	Normal	Tested Date	2021/3/9
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1793	35.23	9.67	44.90	64.52	-19.62	QP	
2		0.1793	10.96	9.67	20.63	54.52	-33.89	AVG	
3		0.4245	27.62	9.68	37.30	57.36	-20.06	QΡ	
4	*	0.4245	18.94	9.68	28.62	47.36	-18.74	AVG	
5		0.8227	13.92	9.69	23.61	56.00	-32.39	QP	
6		0.8227	6.31	9.69	16.00	46.00	-30.00	AVG	
7		1.2075	12.45	9.70	22.15	56.00	-33.85	QP	
8		1.2075	4.60	9.70	14.30	46.00	-31.70	AVG	
9		1.7633	10.43	9.73	20.16	56.00	-35.84	QP	
10		1.7633	3.33	9.73	13.06	46.00	-32.94	AVG	
11		9.3188	13.59	9.92	23.51	60.00	-36.49	QP	
12		9.3188	7.71	9.92	17.63	50.00	-32.37	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

٦	Test Mode	Idle	Tested Date	2021/3/9
٦	Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1568	40.35	9.68	50.03	65.63	-15.60	QР	
2		0.1568	19.33	9.68	29.01	55.63	-26.62	AVG	
3		0.4222	27.32	9.68	37.00	57.40	-20.40	QΡ	
4		0.4222	20.18	9.68	29.86	47.40	-17.54	AVG	
5		0.5865	12.42	9.68	22.10	56.00	-33.90	QP	
6		0.5865	4.40	9.68	14.08	46.00	-31.92	AVG	
7		1.1850	3.76	9.70	13.46	56.00	-42.54	QP	
8		1.1850	-2.50	9.70	7.20	46.00	-38.80	AVG	
9		3.3315	5.34	9.77	15.11	56.00	-40.89	QP	
10		3.3315	-0.32	9.77	9.45	46.00	-36.55	AVG	
11		9.0262	10.15	9.91	20.06	60.00	-39.94	QP	
12		9.0262	4.81	9.91	14.72	50.00	-35.28	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/3/9
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1680	38.83	9.68	48.51	65.06	-16.55	QP	
2		0.1680	18.22	9.68	27.90	55.06	-27.16	AVG	
3		0.4267	28.39	9.68	38.07	57.32	-19.25	QP	
4		0.4267	20.37	9.68	30.05	47.32	-17.27	AVG	
5		0.5887	13.56	9.68	23.24	56.00	-32.76	QP	
6		0.5887	5.43	9.68	15.11	46.00	-30.89	AVG	
7		0.8272	13.05	9.69	22.74	56.00	-33.26	QP	
8		0.8272	4.69	9.69	14.38	46.00	-31.62	AVG	
9		1.1242	12.37	9.69	22.06	56.00	-33.94	QP	
10		1.1242	3.86	9.69	13.55	46.00	-32.45	AVG	
11		9.1635	12.92	9.91	22.83	60.00	-37.17	QP	
12		9.1635	7.03	9.91	16.94	50.00	-33.06	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2101T110 Page 35 of 57 Report Version: R01

	Test Mo	ode	I	_ora		Test Date		202	1/3/5	
Te	est Frequ	uency	9	18.3		Polarizatio	n	Vertical		
	Temp		2	20°C		Hum.		70%		
80.0	dBuV/m									7
70										
60										
50										
40 —		2 ×	3		4.		5 X		é X	
30	×	×	×							
20										
10										
0.0 30.000	0 127.00	224.00	321.00	418.00	515.00 6	12.00 70	9.00 806	. 00	1000.00	_ ми.
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		1000.00	MIL
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		63.2710	37.71	-9.32	28.39	40.00	-11.61	peak		
2		181.4493	43.22	-9.87	33.35	43.50	-10.15	peak		
3		350.3263	39.19	-6.13	33.06	46.00	-12.94	QP		
4	*	532.0720	41.46	-2.14	39.32	46.00	-6.68	peak		
5		714.9170	36.15	1.15	37.30	46.00	-8.70	QP		
6		966.6967	32.07	5.30	37.37	54.00	-16.63	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ							

Project No.: 2101T110 Page 38 of 57 Report Version: R01

Te	Test Mo			ora 16.3		Test Date Polarizatio			1/3/8 rtical
	Temp			1°C		Hum.			8%
130.0	dBuV/m								
120 📖									
110									
110									
100									
90									
30									
'o 🗀									
io —									
50		₹ X							
10									
۳ ا									
30									
20									
10.0									
	000 1900.0	0 2800.00	3700.00	4600.00	5500.00 6	6400.00 73	00.00 820	0.00	10000.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-		Over		. 0000.00 1111
. 10.	141171	1 104.	Level	Factor	ment		0101		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2749.300	62.32	-13.90	48.42	74.00	-25.58	peak	
2	*	2749.300	62.32	-13.90	48.42	54.00	-5.58	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Fre	eque			9	ora 16.3				Test Dat Polarizati			Hori	1/3/8 zontal	
130.0	Tei dBuV/m	mp			2	1°C				Hum.			6	8%	
120															
110 100															
90 <u> </u>															
70															
60 50 –															
40			*												
30 20															
10.0															
No.	0.000 190 Mk.		2800.0 Freq.	Rea	o.oo ading evel	Corre Fact	ect	5500.00 Measu men	ıre-	00.00 7 Limit	7300.00 Ov	8200 ⁄er	J. UU	10000.00 M	4H2
			MHz		BuV	dB		dBuV		dBuV/m	n d	В	Detector	Commen	nt
1	*		2749.60 2749.60		.12	-13.9 -13.9		45.2 43.7		74.00 54.00	-28 -10		peak AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo Test Frequ	uency	9	ora 18.3		Test Date Polarization	n	Vei	1/3/8 rtical
130.0	Temp dBuV/m)	2	1°C		Hum.		6	8%
120									
110									
90 <u> </u>									
70									
60 50		1							
40		*							
30									
10.0									
1000 No.	0.000 1900.0 Mk.	oo 2800.00 Freq.	3700.00 Reading Level	Correct Factor	Measure- ment	400.00 730 Limit	00.00 820 Over	0.00	10000.00 MHz
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2754.700 2754.700	61.58 59.38	-13.87 -13.87	47.71 45.51	74.00 54.00	-26.29 -8.49	peak AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test I Test Fre					91	ora 18.3					Test D Polariza				1/3/8 zontal
130.0	Ter dBuV/m	mp				2	1°C					Hun	٦.		6	8%
T	GD G T 7 III															
120																
110																
100																
90 _																
80																
70																
60																
50			1													
40			* X													
30																
20 _																
10.0																
	0.000 190			00	3700.		4600		5500			00.00	7300		00.00	10000.00 MH:
No.	Mk.		Freq.		Read			rrect		easur ment		Limi	t	Over		
			MHz		dΒι		(dB	dl	BuV/ı	m	dBuV	/m	dB	Detector	Comment
1			2755.30	00	58.8	81	-1	3.87	4	44.94		74.0	0	-29.06	peak	
2	*		2755.30	00	56.0	05	-1	3.87	4	42.18	}	54.0	0	-11.82	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	APPENDIX D	NUMBER OF HOPPING CHANNEI	_
Drainat Na i 2			

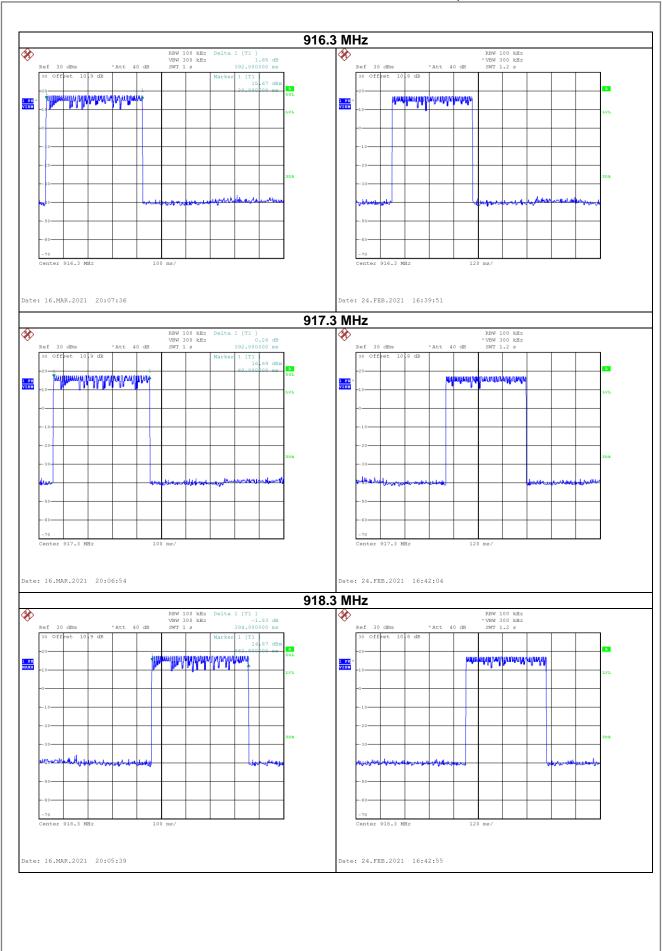
Project No.: 2101T110 Page 43 of 57 Report Version: R01



Test Mode Lora Date: 18.MAR.2021 19:12:03

Project No.: 2101T110 Page 44 of 57 Report Version: R01

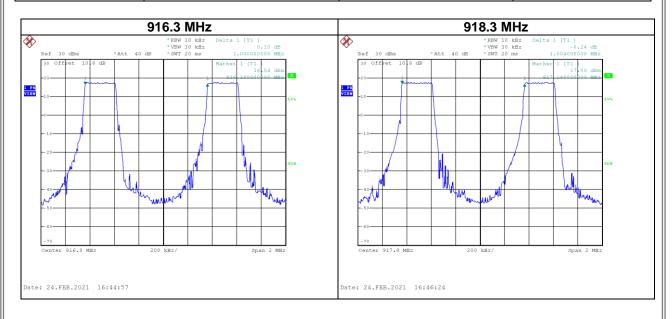
Project No.: 2101T110 Page 45 of 57 Report Version: R01


Report No.: BTL-FCCP-1-2101T110

Test Mode :	Lora

Frequency (MHz)	Pulse Duration (s)	Dwell Time (s)	Limits (s)	Test Result
916.3 MHz	0.3920	0.3920	0.4000	Pass
917.3 MHz	0.3920	0.3920	0.4000	Pass
918.3 MHz	0.3940	0.3940	0.4000	Pass

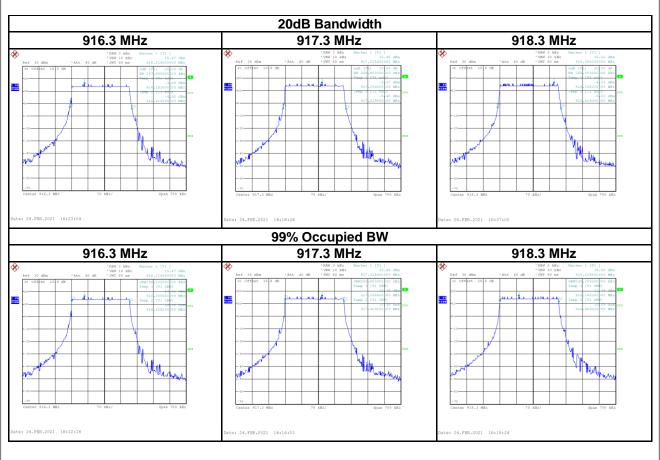
Project No.: 2101T110 Page 46 of 57 Report Version: R01



Project No.: 2101T110 Page 48 of 57 Report Version: R01

Test Mode:	Lora

Frequency (MHz)	Channel Separation (MHz)	Min. Limit (MHz)	Test Result
916.3	1.000	0.267	Pass
918.3	1.000	0.269	Pass


APPENDIX G	20dB BANDWIDTH	

Project No.: 2101T110 Page 50 of 57 Report Version: R01

Test Mode : Lora

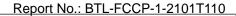
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW	Max. Limit (kHz)	Test Result
916.3	0.267	0.249	500	Pass
917.3	0.269	0.251	500	Pass
918.3	0.269	0.249	500	Pass

APPENDIX H	OUTPUT POWER

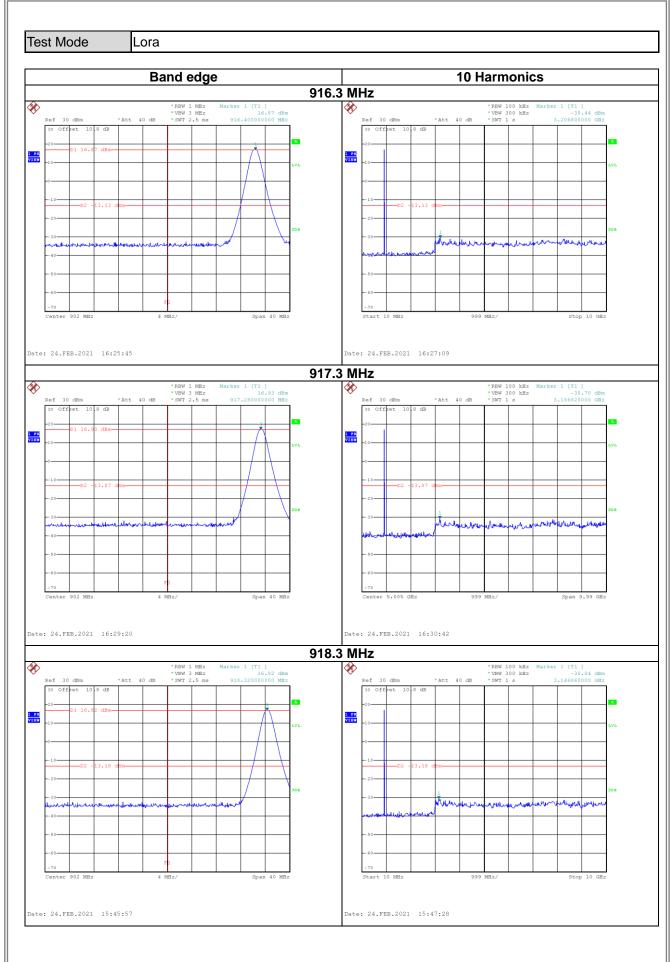
Project No.: 2101T110 Page 52 of 57 Report Version: R01

Report No.: BTL-FCCP-1-2101T110

Test Mode :	Lora	2021/2/24

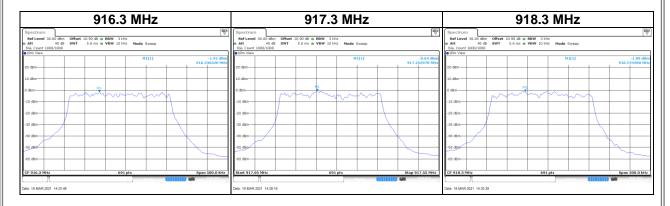

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
916.3	17.76	0.0597	30.00	1.0000	Pass
917.3	17.77	0.0598	30.00	1.0000	Pass
918.3	17.78	0.0600	30.00	1.0000	Pass

Project No.: 2101T110 Page 53 of 57 Report Version: R01



APPENDIX I	ANTENNA CONDUCTED SPURIOUS EMISSION

Project No.: 2101T110 Page 54 of 57 Report Version: R01


APPENDIX J POWER SPECTRAL DENSITY TEST	

Project No.: 2101T110 Page 56 of 57 Report Version: R01

Report No.: BTL-FCCP-1-2101T110

Test Mode : Lo	Lora
----------------	------

Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
916.3	-1.91	8	Pass
917.3	-0.64	8	Pass
918.3	-1.09	8	Pass

End of Test Report